1
|
Dey P, Malik A, Singh DK, Haange SB, von Bergen M, Jehmlich N. Unveiling fungal strategies: Mycoremediation in multi-metal pesticide environment using proteomics. Sci Rep 2024; 14:23171. [PMID: 39369035 PMCID: PMC11457522 DOI: 10.1038/s41598-024-74517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
Micropollutants, such as heavy metals and pesticides, inhibit microbial growth, threatening ecosystems. Yet, the mechanism behind mycoremediation of the pesticide lindane and multiple metals (Cd, Total Cr, Cu, Ni, Pb, Zn) remains poorly understood. In our study, we investigated cellular responses in Aspergillus fumigatus PD-18 using LC-MS/MS, identifying 2190 proteins, 1147 of which were consistently present under both stress conditions. Specifically, Cu-Zn superoxide dismutase and heat shock proteins were up-regulated to counter oxidative stress and protein misfolding. Proteins involved in intracellular trafficking, secretion, and vesicular transport; RNA processing and modification showed enhanced abundance and regulating stress response pathways. Additionally, haloalkane dehalogenase and homogentisate 1,2-dioxygenase played pivotal roles in lindane mineralization. Bioinformatics analysis highlighted enriched pathways such as Glyoxylate and dicarboxylate metabolism and Purine metabolism, that are crucial for combating adverse environments. We identified the hub protein 26 S proteasome regulatory subunit complex as potential biomarker and remedial targets for mycoremediation of wastewater, suggesting practical applications for environmental remediation.
Collapse
Affiliation(s)
- Priyadarshini Dey
- Applied Microbiology Lab, Indian Institute of Technology Delhi, Centre for Rural Development and Technology, Hauz Khas, New Delhi, 110016, India
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research-UFZ GmbH, 04318, Leipzig, Germany
- Department of Biotechnology, MS Ramaiah Institute of Technology, MSR Nagar, Bengaluru, 560054, India
| | - Anushree Malik
- Applied Microbiology Lab, Indian Institute of Technology Delhi, Centre for Rural Development and Technology, Hauz Khas, New Delhi, 110016, India
| | | | - Sven-Bastiaan Haange
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research-UFZ GmbH, 04318, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research-UFZ GmbH, 04318, Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04109, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research-UFZ GmbH, 04318, Leipzig, Germany.
| |
Collapse
|
2
|
Zhang R, Chen Y, Wang W, Chen J, Liu D, Zhang L, Xiang Q, Zhao K, Ma M, Yu X, Chen Q, Penttinen P, Gu Y. Combined transcriptomic and metabolomic analysis revealed that pH changes affected the expression of carbohydrate and ribosome biogenesis-related genes in Aspergillus niger SICU-33. Front Microbiol 2024; 15:1389268. [PMID: 38962137 PMCID: PMC11220263 DOI: 10.3389/fmicb.2024.1389268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The process of carbohydrate metabolism and genetic information transfer is an important part of the study on the effects of the external environment on microbial growth and development. As one of the most significant environmental parameters, pH has an important effect on mycelial growth. In this study, the effects of environmental pH on the growth and nutrient composition of Aspergillus niger (A. niger) filaments were determined. The pH values of the medium were 5, 7, and 9, respectively, and the molecular mechanism was further investigated by transcriptomics and metabolomics methods. The results showed that pH 5 and 9 significantly inhibited filament growth and polysaccharide accumulation of A. niger. Further, the mycelium biomass of A. niger and the crude polysaccharide content was higher when the medium's pH was 7. The DEGs related to ribosome biogenesis were the most abundant, and the downregulated expression of genes encoding XRN1, RRM, and RIO1 affected protein translation, modification, and carbohydrate metabolism in fungi. The dynamic changes of pargyline and choline were in response to the oxidative metabolism of A. niger SICU-33. The ribophorin_I enzymes and DL-lactate may be important substances related to pH changes during carbohydrate metabolism of A.niger SICU-33. The results of this study provide useful transcriptomic and metabolomic information for further analyzing the bioinformatic characteristics of A. niger and improving the application in ecological agricultural fermentation.
Collapse
Affiliation(s)
- Runji Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yulan Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wenxian Wang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Juan Chen
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Dongyang Liu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Zhang Q, Wang Y, Hou Y, Zhao Q, Yang L, Zhang Y, Zhou L. Metabarcode insights into the airborne fungal diversity in the indoor and outdoor environments in archives from Yunnan, Southwestern China. Braz J Microbiol 2024; 55:1601-1618. [PMID: 38587763 PMCID: PMC11153435 DOI: 10.1007/s42770-024-01323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
Monitoring dynamics of airborne fungal species and controlling of harmful ones are of vital importance to conservation of cultural relics. However, the evaluation of air quality and the community structure characteristics of microorganisms, especially fungi, in the atmosphere of archives is in a stage of continuous exploration though more than 4,000 archives were constructed in China. Seventy-two air samples were collected in this study under different spatial and weather conditions from the archives of Kunming Medical University, located in the Kunming metropolitan area, Yunnan province, southwestern China. A total of 22 airborne fungal classes, 160 genera and 699 ASVs were identified, the species diversity is on the rise with the strengthening of air circulation with the outside space, and thus the intensive energy metabolism and activity were found in the spaces with window and sunny weather, except for the higher lipid synthesis of indoor samples than that of outdoor ones. Furthermore, there were significant differences in fungal community composition and abundance between sunny and rainy weathers. A considerable number of species have been identified as indicator in various environmental and weather conditions of the archives, and temperature and humidity were thought to have significant correlations with the abundance of these species. Meanwhile, Cladosporium and Alternaria were the dominant genera here, which may pose a threat to the health of archive professionals. Therefore, monitoring and controlling the growth of these fungal species is crucial for both conservation of paper records and health of archive professionals.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650032, China
| | - Yuan Wang
- Archives of Kunming Medical University, Kunming, 650500, China
| | - Yutong Hou
- The School of Health, Fujian Medical University, Fuzhou, 350100, China
| | - Qingxue Zhao
- School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Liu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650032, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650032, China.
| | - Lu Zhou
- Archives of Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
4
|
Šimonovičová A, Vojtková H, Nosalj S, Piecková E, Švehláková H, Kraková L, Drahovská H, Stalmachová B, Kučová K, Pangallo D. Aspergillus niger Environmental Isolates and Their Specific Diversity Through Metabolite Profiling. Front Microbiol 2021; 12:658010. [PMID: 34248871 PMCID: PMC8261049 DOI: 10.3389/fmicb.2021.658010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
We present a biological profile of 16 Aspergillus niger environmental isolates from different types of soils and solid substrates across a pH range, from an ultra-acidic (<3.5) to a very strongly alkaline (>9.0) environment. The soils and solid substrates also differ in varying degrees of anthropic pollution, which in most cases is caused by several centuries of mining activity at old mining sites, sludge beds, ore deposits, stream sediments, and coal dust. The values of toxic elements (As, Sb, Zn, Cu, Pb) very often exceed the limit values. The isolates possess different macro- and micromorphological features. All the identifications of Aspergillus niger isolates were confirmed by molecular PCR analysis and their similarity was expressed by RAMP analysis. The biochemical profile of isolates based on FF-MicroPlate tests from the Biolog system showed identical biochemical reactions in 50 tests, while in 46 tests the utilisation reactions differed. The highest similarity of strains isolated from substrates with the same pH, as well as the most suitable biochemical tests for analysis of the phenotypic similarity of isolated strains, were confirmed when evaluating the biochemical profile using multicriterial analysis in the Canoco program. The isolates were screened for mycotoxin production by thin-layer chromatography (TLC), as well. Two of them were able to synthesise ochratoxin A, while none produced fumonisins under experimental conditions. Presence of toxic compounds in contaminated sites may affect environmental microscopic fungi and cause the genome alteration, which may result in changes of their physiology, including the production of different (secondary) metabolites, such as mycotoxins.
Collapse
Affiliation(s)
- Alexandra Šimonovičová
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Sanja Nosalj
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Elena Piecková
- Department of Microbiology, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Hana Švehláková
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Lucia Kraková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hana Drahovská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Barbara Stalmachová
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Kateřina Kučová
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Differences in metabolites production using the Biolog FF Microplate™ system with an emphasis on some organic acids of Aspergillus niger wild type strains. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00521-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Šimonovičová A, Kraková L, Pauditšová E, Pangallo D. Occurrence and diversity of cultivable autochthonous microscopic fungi in substrates of old environmental loads from mining activities in Slovakia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:194-202. [PMID: 30708231 DOI: 10.1016/j.ecoenv.2019.01.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Distribution and biodiversity of soil microscopic fungi in 5 areas of old environmental loads in Slovakia were studied in relation to very low amount of organic matter (%TOC from 0.2 to 3.54) and to the pH gradient from ultra-acidic (< 3.5) to very strongly alkaline (> 9.0). All soil samples were affected by several hundred years of mining activities and contained heavy metals and other toxic elements: arsenic, cadmium, copper, zinc, antimony, lead. Concentrations of toxicants highly exceeded their limited values. Fifty-three genera and 112 species of microscopic fungi were identified. Among them, Zygomycota occurred very rarely (8 genera and 12 species), except of samples with the highest content of TOC (2.01-3.54% - samples 2 and 6), regardless their pH. Though, on the other hand, from some similar samples (3, 5 and 9), incl. those with relatively high TOC (0.14-2.62%), the lower fungi were not recovered. Forty one genera and 95 species of Ascomycota represented the most abundant fungal phylum in all investigated samples. Among them, Penicillium chrysogenum var. chrysogenum, Aspergillus niger and Neosartorya fischeri were isolated the most often. Phytopathogenic moulds of Bionectria ochroleuca, Lewia infectoria, Phoma macrostoma and Phlebia acerina were also occurred frequently. The highest biodiversity of microfungal community was recorded in the extreme acidic environment, followed by the neutral, ultra-acidic and the very strong acidic ones. There was no similarity in microfungal spectrum found in the samples studied. Except of the ultra acidic and extreme acidic samples (1-2) as well as the ultra acidic and strong acidic ones (1-4) with the most rich mycobiota, that may indicate a certain similarity degree.
Collapse
Affiliation(s)
- Alexandra Šimonovičová
- Department of Soil Science, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Lucia Kraková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic
| | - Eva Pauditšová
- Department of Landscape Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic.
| |
Collapse
|
7
|
Removal of aluminium from aqueous solution by four wild-type strains of Aspergillus niger. Bioprocess Biosyst Eng 2018; 42:291-296. [PMID: 30406393 DOI: 10.1007/s00449-018-2033-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 01/23/2023]
Abstract
This paper provides a unique comparison of the performance of four wild-type Aspergillus niger strains in remediation of aluminium(III)-contaminated aqueous solutions. The direct fungal aluminium removal via biosorption and bioaccumulation was compared among all fungal strains, including bioaccumulation efficiency during dynamic and static cultivation. Our results indicate that aluminium bioaccumulation by living biomass outperformed biosorption, although biosorption by non-living biomass is a less time-demanding process. Among others, only one strain significantly differed regarding comparison of dynamic and static bioaccumulation. In this case, a significantly higher removal performance was achieved under dynamic cultivation conditions at initial aluminium(III) concentrations over 2.5 mg L-1. Although the fungal sensitivity towards aluminium(III) differed among selected fungal strains, there was no apparent correlation between the strains' removal performance and their adaptive mechanisms.
Collapse
|
8
|
Gáplovská K, Šimonovičová A, Halko R, Okenicová L, Žemberyová M, Čerňanský S, Brandeburová P, Mackuľak T. Study of the binding sites in the biomass of Aspergillus niger wild-type strains by FTIR spectroscopy. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0487-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Šimonovičová A, Ferianc P, Vojtková H, Pangallo D, Hanajík P, Kraková L, Feketeová Z, Čerňanský S, Okenicová L, Žemberyová M, Bujdoš M, Pauditšová E. Alkaline Technosol contaminated by former mining activity and its culturable autochthonous microbiota. CHEMOSPHERE 2017; 171:89-96. [PMID: 28006667 PMCID: PMC5267631 DOI: 10.1016/j.chemosphere.2016.11.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 05/31/2023]
Abstract
Technosols or technogenic substrates contaminated by potentially toxic elements as a result of iron mining causes not only contamination of the surrounding ecosystem but may also lead to changes of the extent, abundance, structure and activity of soil microbial community. Microbial biomass were significantly inhibited mainly by exceeding limits of potentially toxic metals as arsenic (in the range of 343-511 mg/kg), copper (in the range of 7980-9227 mg/kg), manganese (in the range of 2417-2670 mg/kg), alkaline and strong alkaline pH conditions and minimal contents of organic nutrients. All of the 14 bacterial isolates, belonged to 4 bacterial phyla, Actinobacteria, Firmicutes; β- and γ-Proteobacteria. Thirteen genera and 20 species of microscopic filamentous fungi were recovered. The most frequently found species belonged to genera Aspergillus (A. clavatus, A. niger, A. flavus, A. versicolor, Aspergillus sp.) with the dominating A. niger in all samples, and Penicillium (P. canescens, P. chrysogenum, P. spinulosum, Penicillium sp.). Fungal plant pathogens occurred in all surface samples. These included Bjerkandera adustata, Bionectria ochloleuca with anamorph state Clonostachys pseudochloleuca, Lewia infectoria, Phoma macrostoma and Rhizoctonia sp.
Collapse
Affiliation(s)
- A Šimonovičová
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovak Republic.
| | - P Ferianc
- Institut of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - H Vojtková
- Institute of Environmental Engineering, Faculty of Mining and Geology, VŠB - Technical University of Ostrava, Czech Republic
| | - D Pangallo
- Institut of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - P Hanajík
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovak Republic
| | - L Kraková
- Institut of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Z Feketeová
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovak Republic
| | - S Čerňanský
- Department of Environmental Ecology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovak Republic
| | - L Okenicová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovak Republic
| | - M Žemberyová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovak Republic
| | - M Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovak Republic
| | - E Pauditšová
- Department of Landscape Ecology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovak Republic
| |
Collapse
|
10
|
Ye M, Lin Y, Huang W, Wei J. Comparative Analysis of Aspergillus oryzae with Normal and Abnormal Color Conidia. Indian J Microbiol 2013; 54:108-10. [PMID: 24426175 DOI: 10.1007/s12088-013-0416-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/16/2013] [Indexed: 11/28/2022] Open
Abstract
This study focuses on the characteristic of strains with anomalous color conidium and compares with normal color conidium. Comparative analysis of enzymes activity and extracellular proteins revealed that A. oryzae with anomalous color conidium was not different from the strain with normal color conidium. In addition, A. oryzae with anomalous color conidium could not influence the palatability and quality of the soy sauce. These findings provide an insight into A. oryzae with anomalous color conidium.
Collapse
Affiliation(s)
- Mao Ye
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 51006 China ; Foshan Haitian Flavouring and Food Co., Ltd., Foshan, 528000 China
| | - Ying Lin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 51006 China
| | - Wenbiao Huang
- Foshan Haitian Flavouring and Food Co., Ltd., Foshan, 528000 China
| | - Jinhua Wei
- Foshan Haitian Flavouring and Food Co., Ltd., Foshan, 528000 China
| |
Collapse
|