1
|
Wang Y, Gou C, Chen L, Liao Y, Zhang H, Luo L, Ji J, Qi Y. Solid-State Fermentation with White Rot Fungi ( Pleurotus Species) Improves the Chemical Composition of Highland Barley Straw as a Ruminant Feed and Enhances In Vitro Rumen Digestibility. J Fungi (Basel) 2023; 9:1156. [PMID: 38132757 PMCID: PMC10744516 DOI: 10.3390/jof9121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Lignin degradation is important for enhancing the digestibility and improving the nutritive quality of ruminant feeds. White rot fungi are well known for their bioconversion of lignocellulosic biomass. The objective of this paper was to evaluate whether Lentinus sajor-caju, Pleurotus ostreatus, Phyllotopsis rhodophylla, Pleurotus djamor, Pleurotus eryngii, and Pleurotus citrinopileatus treatments altered the chemical compositions of highland barley straw constituents and enhanced their nutritional value as a ruminant feed. All white rot fungi significantly increased the relative crude protein (CP), ethyl ether extract (EE), starch, soluble protein (SP), and non-protein nitrogen (NPN) contents but decreased the ash, neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), and acid detergent insoluble protein (ADFIP) contents. In addition, L. sajor-caju treatment increased (p < 0.001) the levels of PA, PB2, PB3, CA, CB1, CB2, and CNSC, but reduced (p < 0.001) the PC and CC in the solid-state fermentation of highland barley straw. Maximum ligninlysis (50.19%) was optimally produced in the presence of 1.53% glucose and 2.29% urea at 22.72 ℃. The in vitro dry matter digestibility and total volatile fatty acid concentrations of fermented highland barley straw, as well as the fermentability, were optimized and improved with L. sajor-caju, which degraded the lignocellulose and improved the nutritional value of highland barley straw as a ruminant feed.
Collapse
Affiliation(s)
- Yuqiong Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Changlong Gou
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Liming Chen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Yangci Liao
- Institute of Pratacultural, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China;
| | - Hang Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Lilong Luo
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Jiahang Ji
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| | - Yu Qi
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.W.); (L.C.); (H.Z.); (L.L.); (J.J.); (Y.Q.)
| |
Collapse
|
2
|
Serbent MP, Gonçalves Timm T, Vieira Helm C, Benathar Ballod Tavares L. Growth, laccase activity and role in 2,4-D degradation of Lentinus crinitus (L.) Fr. in a liquid medium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Kumari K, Behera HT, Nayak PP, Sinha A, Nandi A, Ghosh A, Saha U, Suar M, Panda PK, Verma SK, Raina V. Amelioration of lipopeptide biosurfactants for enhanced antibacterial and biocompatibility through molecular antioxidant property by methoxy and carboxyl moieties. Biomed Pharmacother 2023; 161:114493. [PMID: 36906974 DOI: 10.1016/j.biopha.2023.114493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Biosurfactants having surface-active biomolecules have been the cynosure in environment research due to their vast application. However, the lack of information about their low-cost production and detailed mechanistic biocompatibility limits the applicability. The study explores techniques for the production and design of low-cost, biodegradable, and non-toxic biosurfactants from Brevibacterium casei strain LS14 and excavates the mechanistic details of their biomedical properties like antibacterial effects and biocompatibility. Taguchi's design of experiment was used to optimize for enhancing biosurfactant production by optimal factor combinations like Waste glycerol (1%v/v), peptone (1%w/v), NaCl 0.4% (w/v), and pH 6. Under optimal conditions, the purified biosurfactant reduced the surface tension to 35 mN/m from 72.8 mN/m (MSM) and a critical micelle concentration of 25 mg/ml was achieved. Spectroscopic analyses of the purified biosurfactant using Nuclear Magnetic Resonance suggested it as a lipopeptide biosurfactant. The evaluation of mechanistic antibacterial, antiradical, antiproliferative, and cellular effects indicated the efficient antibacterial activity (against Pseudomonas aeruginosa) of biosurfactants due to free radical scavenging activity and oxidative stress. Moreover, the cellular cytotoxicity was estimated by MTT and other cellular assays revealing the phenomenon as the dose-dependent induction of apoptosis due to free radical scavenging with an LC50 of 55.6 ± 2.3 mg/ml.
Collapse
Affiliation(s)
- Khushbu Kumari
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | | | - Adrija Sinha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | - Utsa Saha
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India
| | | | - Pritam Kumar Panda
- Department of Physics and Astronomy (Materials Theory), Uppsala University, 75121, Sweden.
| | - Suresh K Verma
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| | - Vishakha Raina
- School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
| |
Collapse
|
4
|
Optimization of culture conditions for biomass and lipid production by oleaginous fungus Penicillium citrinum PKB20 using response surface methodology (RSM). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Ardila-Leal LD, Albarracín-Pardo DA, Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, Cardozo-Bernal AM, Quevedo-Hidalgo BE, Pedroza-Rodríguez AM, Díaz-Rincón DJ, Rodríguez-López A, Alméciga-Díaz CJ, Cuervo-Patiño CL. Media improvement for 10 L bioreactor production of rPOXA 1B laccase by P. pastoris. 3 Biotech 2019; 9:447. [PMID: 31763125 DOI: 10.1007/s13205-019-1979-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/29/2019] [Indexed: 01/31/2023] Open
Abstract
In this work, we statistically improved culture media for rPOXA 1B laccase production, expressed in Pichia pastoris containing pGAPZαA-LaccPost-Stop construct and assayed at 10 L bioreactor production scale (6 L effective work volume). The concentrated enzyme was evaluated for temperature and pH stability and kinetic parameter, characterized by monitoring oxidation of different ABTS [2, 20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] substrate concentrations. Plackett-Burman experimental design (PBED) implementation improved previous work results by 3.05-fold, obtaining a laccase activity of 1373.72 ± 0.37 U L-1 at 168 h of culture in a 500 mL shake flask. In contrast, one factor experimental design (OFED) applied after PBED improved by threefold the previous study, additionally increasing the C/N ratio. Employing OFED media at 10 L bioreactor scale was capable of producing 3159.93 ± 498.90 U L-1 at 192 h, representing a 2.4-fold increase. rPOXA 1B concentrate remained stable between 10 and 50 °C and retained over 70% residual enzymatic activity at 60 °C and 50% at 70 °C. Concerning pH stability, the enzyme was stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity (60%) was obtained at pH 10.0 ± 0.2. Furthermore, the apparent kinetic parameters were V max of 3.163 × 10-2 mM min-1 and K m of 1.716 mM. Collectively, regarding enzyme stability our data provide possibilities for applications involving a wide range of pH and temperatures.
Collapse
|
6
|
Statistical optimization for enhanced production of extracellular laccase from Aspergillus sp. HB_RZ4 isolated from bark scrapping. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0015-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Optimization of a Culture Medium Using the Taguchi Approach for the Production of Microorganisms Active in Odorous Compound Removal. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Plackett-Burman Design for rGILCC1 Laccase Activity Enhancement in Pichia pastoris: Concentrated Enzyme Kinetic Characterization. Enzyme Res 2017; 2017:5947581. [PMID: 28421142 PMCID: PMC5379127 DOI: 10.1155/2017/5947581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 01/09/2023] Open
Abstract
Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.
Collapse
|
9
|
Chen Y, Fan H, Meng F. Pleurotus ostreatus decreases cornstalk lignin content, potentially improving its suitability for animal feed. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1592-1598. [PMID: 27417952 DOI: 10.1002/jsfa.7907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/16/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The capacity of Pleurotus ostreatus to degrade lignin was investigated in the fermentation of cornstalk. Cornstalk was incubated with P. ostreatus for 30 days, and acid-soluble and acid-insoluble lignins were assessed. The microscopic structure of cornstalk samples was studied by scanning electron microscopy (SEM), and spectroscopic characteristics were measured by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and solid state nuclear magnetic resonance (13 C NMR) spectroscopy. RESULTS During fermentation of cornstalk, the proportion of acid-soluble lignin did not vary significantly (P > 0.05), but that of acid-insoluble lignin decreased gradually from 17.8% on day 0 to 7.6% on day 30 (P < 0.01). SEM revealed that the surface of cornstalk was gradually damaged with cavities increasing in number and size, forming a quasi-network structure. Crystallinity decreased from 35.0 on day 0 to 15.2 on day 30. FTIR and cross-polarization magic angle spinning (CPMAS) 13 C NMR spectra showed that the intensity of the peaks corresponding to lignin, cellulose and hemicellulose also decreased gradually over 30 days. CONCLUSION Cornstalk can be effectively degraded by P. ostreatus within 30 days. Pleurotus ostreatus decreases cornstalk lignin content, potentially improving its suitability for animal feed. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Chen
- Tianjin Institute of Forest and Pomology, Tianjin, China
| | - Huan Fan
- Tianjin Institute of Animal Husbandry and Veterinary Research, Tianjin, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Fanrui Meng
- Tianjin Institute of Animal Husbandry and Veterinary Research, Tianjin, China
| |
Collapse
|
10
|
Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for biobleaching of kraft pulp and deinking of waste paper. Bioprocess Biosyst Eng 2014; 38:947-56. [DOI: 10.1007/s00449-014-1340-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
|
11
|
Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, Pedroza-Rodríguez AM, RodrÍguez-Vázquez R, Delgado-Boada JM. Fungal laccases. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2013.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Zhao Z, Ramachandran P, Kim TS, Chen Z, Jeya M, Lee JK. Characterization of an acid-tolerant β-1,4-glucosidase from Fusarium oxysporum and its potential as an animal feed additive. Appl Microbiol Biotechnol 2013; 97:10003-11. [PMID: 23604557 DOI: 10.1007/s00253-013-4767-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 10/26/2022]
Abstract
An extracellular β-glucosidase (BGL) from Fusarium oxysporum was purified to homogeneity by a single chromatography step on a gel filtration column. The optimum activity of BGL on cellobiose was observed at pH 5.0 and 60 °C. Under the same conditions, the K(m) and V(max) values for p-nitrophenyl β-D-glucopyranoside and cellobiose were 2.53 mM, 268 U mg protein(-1) and 20.3 mM, 193 U mg protein(-1), respectively. The F. oxysporum BGL enzyme was highly stable at acidic pH (t 1/2 = 470 min at pH 3). A commercial BGL Novo188 (Novozymes) and F. oxysporum BGL were compared in their ability to supplement Celluclast 1.5 L (Novozymes). In comparison with the commercial Novo188 (267 mg g substrate(-1)), F. oxysporum BGL supplementation released more reducing sugars (330 mg g substrate(-1)) from cellulose under simulated gastric conditions. These properties make F. oxysporum BGL a good candidate as a new commercial BGL to improve the nutrient bioavailability of animal feed.
Collapse
Affiliation(s)
- Zongpei Zhao
- Department of Chemical Engineering, Konkuk University, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Sathish T, Prakasham RS. Intensification of Fructosyltransferases and Fructo-Oligosaccharides Production in Solid State Fermentation by Aspergillus awamori GHRTS. Indian J Microbiol 2013; 53:337-42. [PMID: 24426134 DOI: 10.1007/s12088-013-0380-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 02/25/2013] [Indexed: 10/27/2022] Open
Abstract
The present work was aimed to investigate the impact of the solid substrates mixture on Fructosyltransferases (FTase) and Fructo-oligosaccharides (FOS) production. An augmented simplex lattice design was used to optimize a three component mixture for FTase production. Among selected substrates corn cobs has highest impact on FTase production followed by wheat bran and rice bran. All two substrates and three substrate combinations showed the highest enzyme production than their individual levels. Among the tested various models quadratic model was found to be the best suitable model to explain mixture design. Corncobs, wheat bran and rice bran in a ratio of approximately 45:29:26 is best suitable for the FTase production by isolated Aspergillus awamori GHRTS. This study signifies mixture design could be effective utilize for selection of best combination of multi substrate for improved production of high value products under solid state fermentation.
Collapse
Affiliation(s)
- Thadikamala Sathish
- Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad, India ; Department of Marine Biotechnology, ANCOST, NIOT, Port-Blair, Andaman Nicobar Islands India
| | - Reddy Shetty Prakasham
- Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|