1
|
García-Mogollón CA, Mendoza DF, Quintero-Díaz JC. Electrostatic ethanol fermentation: Experimental study and kinetic-based metabolic modeling. Heliyon 2024; 10:e36587. [PMID: 39281627 PMCID: PMC11401030 DOI: 10.1016/j.heliyon.2024.e36587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Due to the electrical nature of the cell, it is possible to modulate its behavior through the application of non-lethal external electric fields to improve fermentation processes. In this work, a microbial cell system with a chamber and two electrodes inside and connected to a voltage source was used. One of the electrodes was kept isolated to create an electric field without the flow of current. Cultures with two ethanol-producing microbial strains (Saccharomyces cerevisiae and Zymomonas mobilis) were conducted in this device. The application of voltages between 0 and 18 V was evaluated to determine the impact of the generated electric field on ethanol production. To analyze the possible effect of the field on the central carbon metabolism in each strain, biochemical-based kinetic models were formulated to describe the experimental fermentation kinetics obtained. It was found that low applied voltages did not have significant effects on growth rate in either strain, but all voltages evaluated increased substrate consumption and ethanol production rate in Z. mobilis, while only 18 V affected these rates in S. cerevisiae, indicating that Z. mobilis was the most sensitive to the electric field. At the end of the fermentation, significant increases in ethanol yields of 10.7% and 19.5% were detected for S. cerevisiae and Z. mobilis, respectively. The proposed mathematical models showed that substrate transport through the membrane catalyzed by the phosphotransferase system (PTS) for Z. mobilis and hexose transport proteins mechanism and hexokinase (HK) activity for S. cerevisiae and the transformation of pyruvate to ethanol, catalyzed by the decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzymes, were the reactions most affected by the application of the external field.
Collapse
Affiliation(s)
| | - Diego F Mendoza
- Departamento de Ingeniería Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, 050010, Antioquia, Colombia
| | - Juan Carlos Quintero-Díaz
- Departamento de Ingeniería Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, 050010, Antioquia, Colombia
| |
Collapse
|
2
|
Zheng X, Chen F, Zhu Y, Zhang X, Li Z, Ji J, Wang G, Guan C. Laccase as a useful assistant for maize to accelerate the phenanthrene degradation in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4848-4863. [PMID: 38105330 DOI: 10.1007/s11356-023-31515-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollution has attracted much attention due to their wide distribution in soil environment and serious harm to human health. In order to establish an efficient and eco-friendly technology for remediation of PAH-contaminated soil, phytoremediation utilizing maize assisted with enzyme remediation was explored in this study. The results showed that the participation of laccase could promote the degradation of phenanthrene (PHE) from soil and significantly reduce the accumulation of PHE in maize. The degradation efficiency of PHE in soil could reach 77.19% under laccase-assisted maize remediation treatment, while the accumulation of PHE in maize roots and leaves decreased by 41.23% and 74.63%, respectively, compared to that without laccase treatment, after 24 days of maize cultivation. Moreover, it was found that laccase addition shifted the soil microbial community structure and promoted the relative abundance of some PAH degrading bacteria, such as Pseudomonas and Sphingomonas. In addition, the activities of some enzymes that were involved in PAH degradation process and soil nutrient cycle increased with the treatment of laccase enzyme. Above all, the addition of laccase could not only improve the removal efficiency of PHE in soil, but also alter the soil environment and reduce the accumulation of PHE in maize. This study provided new perspective for exploring the efficiency of the laccase-assisted maize in the remediation of contaminated soil, evaluating the way for reducing the risk of secondary pollution of plants in the phytoremediation process.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
3
|
Sena-Torralba A, Banguera-Ordoñez YD, Mira-Pascual L, Maquieira Á, Morais S. Exploring the potential of paper-based electrokinetic phenomena in PoC biosensing. Trends Biotechnol 2023; 41:1299-1313. [PMID: 37150668 DOI: 10.1016/j.tibtech.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023]
Abstract
In order to decentralize health care, the development of point-of-care (PoC) assays has gained significant attention in recent decades. The lateral flow immunoassay (LFIA) has emerged as a promising bioanalytical method due to its low cost and single-step detection process. However, its limited sensitivity and inability to detect disease biomarkers at clinically relevant levels have hindered its application for early diagnosis. This review explores the potential of merging different electrokinetic phenomena into paper-based assays to enhance their analytical performance, offering a versatile and affordable approach for PoC testing. The review exposes the challenges faced in integrating electrokinetic phenomena with paper-based biosensing and concludes by discussing the issues that need to be improved to maximize the potential of this technology for early diagnosis.
Collapse
Affiliation(s)
- Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Yulieth D Banguera-Ordoñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Laia Mira-Pascual
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Sergi Morais
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
4
|
Al-Sakkaf MK, Basfer I, Iddrisu M, Bahadi SA, Nasser MS, Abussaud B, Drmosh QA, Onaizi SA. An Up-to-Date Review on the Remediation of Dyes and Phenolic Compounds from Wastewaters Using Enzymes Immobilized on Emerging and Nanostructured Materials: Promises and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2152. [PMID: 37570470 PMCID: PMC10420689 DOI: 10.3390/nano13152152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Addressing the critical issue of water pollution, this review article emphasizes the need to remove hazardous dyes and phenolic compounds from wastewater. These pollutants pose severe risks due to their toxic, mutagenic, and carcinogenic properties. The study explores various techniques for the remediation of organic contaminants from wastewater, including an enzymatic approach. A significant challenge in enzymatic wastewater treatment is the loss of enzyme activity and difficulty in recovery post-treatment. To mitigate these issues, this review examines the strategy of immobilizing enzymes on newly developed nanostructured materials like graphene, carbon nanotubes (CNTs), and metal-organic frameworks (MOFs). These materials offer high surface areas, excellent porosity, and ample anchoring sites for effective enzyme immobilization. The review evaluates recent research on enzyme immobilization on these supports and their applications in biocatalytic nanoparticles. It also analyzes the impact of operational factors (e.g., time, pH, and temperature) on dye and phenolic compound removal from wastewater using these enzymes. Despite promising outcomes, this review acknowledges the challenges for large-scale implementation and offers recommendations for future research to tackle these obstacles. This review concludes by suggesting that enzyme immobilization on these emerging materials could present a sustainable, environmentally friendly solution to the escalating water pollution crisis.
Collapse
Affiliation(s)
- Mohammed K. Al-Sakkaf
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim Basfer
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustapha Iddrisu
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Salem A. Bahadi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mustafa S. Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Basim Abussaud
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Qasem A. Drmosh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A. Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
5
|
Moghiseh Z, Xiao Y, Kalantar M, Barati B, Ghahrchi M. Role of bio-electrochemical technology for enzyme activity stimulation in high-consumption pharmaceuticals biodegradation. 3 Biotech 2023; 13:119. [PMID: 37025753 PMCID: PMC10070591 DOI: 10.1007/s13205-023-03539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Active pharmaceutical ingredients (APIs) and their intermediate residues have recently been considered a serious concern. Among technologies, bio-electrochemical technologies (BETs) have stimulated the production of bio-electrical energy. This review aims to examine the benefit and mechanism of BETs on the degradation of high-consumption pharmaceutical compounds, including antibiotic, anti-inflammatory, and analgesic drugs, and the stimulation of enzymes induced in a bioreactor. Moreover, intermediates and the proposed pathways of pharmaceutical compound biodegradation in BETs are to be explained in this review. According to studies performed exclusively, the benefit of BETs is using bio-electroactive microbes to mineralize recalcitrant pharmaceutical contaminants by promoting enzyme activity and energy. Since BETs use the electron transfer chain between bio-anode/-cathode and pharmaceuticals, the enzyme activity is essential in the oxidation and reduction of phenolic rings of drugs and the ineffective detoxification of effluent from the treatment plant. This study is suggested a vital and influential role of BETs in mineralizing and enzyme induction in bioreactors. Eventually, a content of future developments or outlooks of BETs are propounded to improve the pharmaceutical industries' wastewater problems.
Collapse
Affiliation(s)
- Zohreh Moghiseh
- Department of Environmental Health Engineering, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021 People’s Republic of China
| | - Mojtaba Kalantar
- Department of Occupational Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Barat Barati
- Department of Radiologic Technology, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Mina Ghahrchi
- Department of Environmental Health Engineering, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| |
Collapse
|
6
|
Ferreira-Santos P, Miranda SM, Belo I, Spigno G, Teixeira JA, Rocha CM. Sequential multi-stage extraction of biocompounds from Spirulina platensis: Combined effect of ohmic heating and enzymatic treatment. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Zhuang M, Ren D, Guo H, Wang Z, Zhang S, Zhang X, Gong X. Degradation of 2,4-dichlorophenol contaminated soil by ultrasound-enhanced laccase. ENVIRONMENTAL TECHNOLOGY 2021; 42:1428-1437. [PMID: 31530251 DOI: 10.1080/09593330.2019.1669723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
In this paper, ultrasound was used to enhance the degradation effect of laccase for 2,4-dichlorophenol (2,4-DCP) in soil. The degradation effect and mechanism of the ultrasound-enhanced laccase were investigated. From the results, the degradation rate of 2,4-DCP can reach as high as 51.7% under the following conditions: reaction period was 21 h, pH = 5.5, ultrasound power was 240 W, duty cycle was 50%, and moisture content was 50%. Using the ultrasound-enhanced laccase, the degradation rate of 2,4-DCP was significantly higher than that using only laccase or only ultrasound. In addition, when ultrasound was used, the optimum pH for the degradation of 2,4-DCP using laccase was increased, making the degradation technology more practical. The analysis results from high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) revealed the degradation pathway of 2,4-DCP in soil: first, 2,4-DCP gradually became phenol through dechlorination, then the small molecular organic matter was generated from the hydroxyl radical or laccase reaction.
Collapse
Affiliation(s)
- Mengjuan Zhuang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Dajun Ren
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Huiwen Guo
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Zhaobo Wang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Shuqin Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Xiaoqing Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| | - Xiangyi Gong
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Hubei, People's Republic of China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Hubei, People's Republic of China
| |
Collapse
|
8
|
Maphuhla NG, Lewu FB, Oyedeji OO. The Effects of Physicochemical Parameters on Analysed Soil Enzyme Activity from Alice Landfill Site. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010221. [PMID: 33396701 PMCID: PMC7795255 DOI: 10.3390/ijerph18010221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 11/28/2022]
Abstract
The soil pollution as a product of xenobiotics, industrial action, agricultural chemicals, or inappropriate disposal of waste can change the natural environment of soil indices and trigger life-threatening situations. Soil enzyme activity is the suitable bio-indicator or parameter for monitoring soil pollution due to their sensitivity that quickly responds to any soil disturbances. Also, they are known to play an essential role in maintaining soil health and a quality environment. This study aimed to determine the levels of enzyme activity in soil from polluted and unpolluted sites and study the relationship between the physicochemical properties and soil enzyme activity to manage soil pollution. Four selected enzymes (Urease, Invertase, Catalase, and Phosphatase) were examined for their activity from forty samples using the assay method for 24 h; the colorimetry spectrophotometer measured their activity. The obtained data revealed that Invertase activity was a predominant enzyme in all soil samples. Whereas, the urease activity had obtained in low amounts for all collection sites, especially on Site A1. Soil pH had discovered to range between 5.8 and 8.51, moisture content values recorded to vary from 0.12% to 9.09%, and soil organic carbon recorded to fluctuate between 0.08% and 1.54%. Urease and phosphatase activity correlated positively with all soil physicochemical properties except for moisture content, which correlated negatively (r = −0.297; p ≥ 0.05). The invertase activity negatively associated all soil physicochemical properties, excluding the moisture content that correlated positively and significantly with invertase activity. We noted that the dumpsite soil contains low enzyme activity levels, which might attribute to the type of waste disposed off. Also, only the phosphatase activity reported correlating positively with all examined physicochemical parameters entirely.
Collapse
Affiliation(s)
- Nontobeko Gloria Maphuhla
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- Correspondence: or (N.G.M.); (O.O.O.)
| | - Francis Bayo Lewu
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington Campus, P.O. Box X8, Wellington 7655, Western Cape, South Africa;
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- Correspondence: or (N.G.M.); (O.O.O.)
| |
Collapse
|
9
|
Singh DN, Sood U, Singh AK, Gupta V, Shakarad M, Rawat CD, Lal R. Genome Sequencing Revealed the Biotechnological Potential of an Obligate Thermophile Geobacillus thermoleovorans Strain RL Isolated from Hot Water Spring. Indian J Microbiol 2019; 59:351-355. [PMID: 31388213 DOI: 10.1007/s12088-019-00809-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023] Open
Abstract
In the present study, we report the draft genome sequence of an obligate thermophile Geobacillus thermoleovorans strain RL isolated from Manikaran hot water spring located atop the Himalayan ranges, India. Strain RL grew optimally at 70 °C but not below 45 °C. The draft genome (3.39 Mb) obtained by Illumina sequencing contains 138 contigs with an average G + C content of 52.30%. RAST annotation showed that amino acid metabolism pathways were most dominant followed by carbohydrate metabolism. Genome-wide analysis using NCBI's Prokaryotic Genome Annotation Pipeline revealed that strain RL encodes for a cocktail of industrially important hydrolytic enzymes glycoside hydrolase, α-and β-glucosidase, xylanase, amylase, neopullulanase, pullulanase and lipases required for white biotechnology. In addition, the presence of genes encoding green biocatalyst multicopper polyphenol oxidase (laccase) and an anticancer enzyme l-glutaminase reflects the significance of strain RL in gray and red biotechnology, respectively. Strain RL is a thermophilic multi-enzyme encoding bacterium which could be the source for the recombinant production of biotechnologically significant enzymes. In, addition whole cells of strain RL may be used in bioremediation studies.
Collapse
Affiliation(s)
| | - Utkarsh Sood
- 1Department of Zoology, University of Delhi, Delhi, 110007 India.,Present Address: PhiXGen Private Limited, Gurugram, Haryana 122001 India
| | - Amit Kumar Singh
- 3Department of Biotechnology, Jamia Millia Islamia, New Delhi, Delhi 110025 India
| | - Vipin Gupta
- 1Department of Zoology, University of Delhi, Delhi, 110007 India.,Present Address: PhiXGen Private Limited, Gurugram, Haryana 122001 India
| | | | - Charu Dogra Rawat
- 4Department of Zoology, Ramjas College, University of Delhi, Delhi, 110007 India
| | - Rup Lal
- 1Department of Zoology, University of Delhi, Delhi, 110007 India.,Present Address: PhiXGen Private Limited, Gurugram, Haryana 122001 India
| |
Collapse
|
10
|
Shi S, Xu J, Zeng Q, Liu J, Hou Y, Jiang B. Impacts of applied voltage on EMBR treating phenol wastewater: Performance and membrane antifouling mechanism. BIORESOURCE TECHNOLOGY 2019; 282:56-62. [PMID: 30851574 DOI: 10.1016/j.biortech.2019.02.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
The impacts of electric field applied in MBR (EMBR) for treating phenol wastewater and membrane antifouling mechanism were systematically investigated. Phenol degradation rate increased from 0 to 0.8 V/cm, while decreased from 0.8 to 1.75 V/cm, which significantly positively correlated with key enzymes. The membrane fouling rate of EMBR gradually slowed down with voltage increasing. The applied voltage significantly reduced EPS contents, and altered its compositions probably due to H2O2 oxidation, which were the major reasons for membrane antifouling. Red shift in UV-Vis spectrum at 210-220 nm and reduction of fluorescence emission intensity from tryptophan protein-like substances in EPS reduced the energy requirement for electrons transition of electron-donating groups with voltage increasing. Positively charged bond NH2 decreased and negatively charged bond COO increased in EPS with voltage increasing, which led to the increase of absolute value of zeta potential and then remarkable augmented of electrostatic repulsion between sludge and membrane.
Collapse
Affiliation(s)
- Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| | - Jin Xu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Qianzhi Zeng
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuan Hou
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Bei Jiang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| |
Collapse
|
11
|
Farashi S, Sasanpour P, Rafii-Tabar H. Interaction of low frequency external electric fields and pancreatic β-cell: a mathematical modeling approach to identify the influence of excitation parameters. Int J Radiat Biol 2018; 94:1038-1048. [DOI: 10.1080/09553002.2018.1478162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sajjad Farashi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Computational Nano-Bioelectromagnetics Research Group, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Li L, Qian G, Ye L, Hu X, Yu X, Lyu W. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant. WATER RESEARCH 2018; 140:77-89. [PMID: 29698857 DOI: 10.1016/j.watres.2018.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH4+-N, and NO3--N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas.
Collapse
Affiliation(s)
- Liang Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Guangsheng Qian
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China.
| | - Linlin Ye
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Xiaomin Hu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Xin Yu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Weijian Lyu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| |
Collapse
|
13
|
Aldhahri MM, Almulaiky YQ, El-Shishtawy RM, Al-Shawafi W, Alngadh A, Maghrabi R. Facile Immobilization of Enzyme via Co-Electrospinning: A Simple Method for Enhancing Enzyme Reusability and Monitoring an Activity-Based Organic Semiconductor. ACS OMEGA 2018; 3:6346-6350. [PMID: 31458817 PMCID: PMC6644564 DOI: 10.1021/acsomega.8b00366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/04/2018] [Indexed: 05/31/2023]
Abstract
The stability, reusability, and monitoring of enzyme activity have been investigated to improve their efficiency for successful utilization in a broad range of industrial and medical applications. Herein, we present a simple method for fabricating an electrospun fiber/enzyme scaffold via co-electrospinning. The characterization of soluble and immobilized α-amylases with regard to pH, thermal stability, and reusability were studied. An organic light emitting material tris(8-hydroxyquinoline)aluminum was incorporated to monitor the enzyme activity for several reuses.
Collapse
Affiliation(s)
- Musab M. Aldhahri
- Center
of Nanotechnology, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Biochemistry, Department of Chemistry, and Department of Biochemistry, King Abdulaziz University, P. O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department
of Biochemistry, Faculty of Science, University
of Jeddah, P.O.Box 80203, Jeddah 21589, Saudi Arabia
| | - Reda M. El-Shishtawy
- Department of Biochemistry, Department of Chemistry, and Department of Biochemistry, King Abdulaziz University, P. O. Box 80200, Jeddah 21589, Saudi Arabia
- Department
of Dyeing, Printing and Textile Auxiliaries, National Research Centre, Dokki, 71516 Cairo, Egypt
| | - Waleed Al-Shawafi
- Department of Biochemistry, Department of Chemistry, and Department of Biochemistry, King Abdulaziz University, P. O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Ahmed Alngadh
- King Abdulaziz
City for Science and Technology, P.O.
Box 6086, Riyadh 11442, Saudi Arabia
| | - Rayan Maghrabi
- Department of Biochemistry, Department of Chemistry, and Department of Biochemistry, King Abdulaziz University, P. O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Yeruva DK, Shanthi Sravan J, Butti SK, Annie Modestra J, Venkata Mohan S. Spatial variation of electrode position in bioelectrochemical treatment system: Design consideration for azo dye remediation. BIORESOURCE TECHNOLOGY 2018; 256:374-383. [PMID: 29475145 DOI: 10.1016/j.biortech.2018.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
In the present study, three bio-electrochemical treatment systems (BET) were designed with variations in cathode electrode placement [air exposed (BET1), partially submerged (BET2) and fully submerged (BET3)] to evaluate azo-dye based wastewater treatment at three dye loading concentrations (50, 250 and 500 mg L-1). Highest dye decolorization (94.5 ± 0.4%) and COD removal (62.2 ± 0.8%) efficiencies were observed in BET3 (fully submerged electrodes) followed by BET1 and BET2, while bioelectrogenic activity was highest in BET1 followed by BET2 and BET3. It was observed that competition among electron acceptors (electrode, dye molecules and intermediates) critically regulated the fate of bio-electrogenesis to be higher in BET1 and dye removal higher in BET3. Maximum half-cell potentials in BET3 depict higher electron acceptance by electrodes utilized for dye degradation. Study infers that spatial positioning of electrodes in BET3 is more suitable towards dye remediation, which can be considered for scaling-up/designing a treatment plant for large-scale industrial applications.
Collapse
Affiliation(s)
- Dileep Kumar Yeruva
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Hyderabad, India
| | - J Shanthi Sravan
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Hyderabad, India
| | - Sai Kishore Butti
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Hyderabad, India
| | - J Annie Modestra
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Hyderabad, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, EEFF Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| |
Collapse
|
15
|
Qian G, Hu X, Li L, Ye L, Lv W. Effect of iron ions and electric field on nitrification process in the periodic reversal bio-electrocoagulation system. BIORESOURCE TECHNOLOGY 2017; 244:382-390. [PMID: 28783565 DOI: 10.1016/j.biortech.2017.07.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
This study explored the nitrification mechanism of a periodic reversal bio-electrocoagulation system with Fe-C electrodes. The ammonia nitrogen removal was compared in four identical cylindrical sequencing bath reactors. Two of them were reactors with Fe-C electrodes (S1) and C-C electrodes (S2), respectively. The other two were a reactor with iron ions (S3) and a traditional SBR (S4), respectively. The results demonstrated that the effect on enhancing nitrification in S1 was the best among all four SBRs, followed by S3, S2 and S4. Iron ions increased the biomass, and electric field improved the proton transfer and enzyme activity. The dominant bacterial genera in the four SBRs were Hyphomicrobium, Thauera, Nitrobacter, Nitrosomonas, Paracoccus and Hydrogenophaga. The iron ions may increase the levels of Nitrosomonas and Nitrobacter, both of which were the main microbes of the nitrification process. This study provided a significant and meaningful understanding of nitrification in a bio-electrocoagulation system.
Collapse
Affiliation(s)
- Guangsheng Qian
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Xiaomin Hu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China.
| | - Liang Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Linlin Ye
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Weijian Lv
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| |
Collapse
|
16
|
Gupta V, Gupta N, Capalash N, Sharma P. Bio-prospecting Bacterial Diversity of Hot Springs in Northern Himalayan Region of India for Laccases. Indian J Microbiol 2017; 57:285-291. [PMID: 28904412 DOI: 10.1007/s12088-017-0656-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 01/12/2023] Open
Abstract
Bacterial diversity of hot springs of northern Himalayan region of India was studied and explored for laccases, the multicopper enzymes applicable in a large number of industries due to their ability to utilize a wide range of substrates. 220 operational taxonomic units (OTUs) out of 5551 sequence reads for bacterial diversity and 3 OTUs out of 19 sequence reads for Laccase like multicopper oxidases (LMCOs) diversity were generated. Bacteroidetes (74.28%) was the most abundant phylum including genus Paludibacter (66.96%), followed by phylum Proteobacteria (24.53%) including genera Chitinilyticum (7.55%) and Cellvibrio (6.14%). In case of laccase diversity, three LMCO sequences showed affiliation with proteobacteria and one with two domain laccase from uncultivable bacteroidetes. LMCO sequences belonged to H and N families.
Collapse
Affiliation(s)
- Vijaya Gupta
- Department of Microbiology, Panjab University, South Campus, Sector-25, Chandigarh, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, South Campus, Sector-25, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, South Campus, Sector-25, Chandigarh, India
| |
Collapse
|
17
|
Yan WC, Chua QW, Ong XJ, Sharma VK, Tong YW, Wang CH. Fabrication of ultrasound-responsive microbubbles via coaxial electrohydrodynamic atomization for triggered release of tPA. J Colloid Interface Sci 2017; 501:282-293. [PMID: 28460221 DOI: 10.1016/j.jcis.2017.04.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 01/16/2023]
Abstract
A single-step fabrication method, coaxial electrohydrodynamic atomization (CEHDA), was developed to synthesize drug-loaded microbubbles (MBs) for combination treatment of ischemic stroke. The bioactivity of therapeutic agent (tPA, tissue plasminogen activator) after preparation was evaluated, showing that CEHDA could be very promising method for producing MBs with therapeutic functions. The bubble performance and tPA release profiles were also examined by exposing the bubbles to 2MHz ultrasound of various intensities. The results showed that the mean diameter of tPA-loaded MBs was found to fluctuate about its original diameter when exposed to ultrasound and higher intensity ultrasound was more effective in triggering the burst of CEHDA MBs. High ultrasound-triggered bubble disintegration effectiveness in a short period (first 5min) fits well with the requirement of short ultrasound exposure time for human brain. Moreover, a numerical model was also applied to investigate the stability of the fabricated MBs in the bloodstream. It was found that MB dissolution time increased with initial radius, decreased with initial surface tension and increased with initial shell resistance but it was barely affected by the average excessive bloodstream pressure.
Collapse
Affiliation(s)
- Wei-Cheng Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qing Wei Chua
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiu Jing Ong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Vijay Kumar Sharma
- Division of Neurology, Department of Medicine, National University Hospital, Tower Block Level 10, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|