1
|
Kumar V, Tyagi I, Patidar A, Singha D, Tyagi K. Gut bacterial diversity on the basis of feeding behaviour in different species of thrips (Thysanoptera). JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2123208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Abhishek Patidar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Devkant Singha
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| |
Collapse
|
2
|
Conjard S, Meyer DF, Aprelon R, Pagès N, Gros O. Evidence of new strains of Wolbachia symbiont colonising semiaquatic bugs (Hemiptera: Gerroidea) in mangrove environment of the Lesser Antilles. PLoS One 2022; 17:e0273668. [PMID: 36040904 PMCID: PMC9426913 DOI: 10.1371/journal.pone.0273668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Wolbachia Hertig, 1936 is an intracellular bacterial symbiont colonizing many arthropods. Of the studies done on the bacteria present in the superfamily Gerroidea Leach, 1815, no report of Wolbachia infection had yet been made. Thus, we checked the presence of Wolbachia in six Gerroidea species which colonize tropical aquatic environments by PCR using wsp primer set before sequencing and phylogenetic analyses. Insects were collected in the marine fringe of mangroves, in river estuaries, in swampy mangroves, and in ponds from Guadeloupe islands (Caribbean). Two new strains of Wolbachia were detected in these Gerroidea. They were named wLfran and wRmang. The wsp sequences suggest that the strains belong to the already described E supergroup or similar. wLfran is present in Limnogonus franciscanus Stål, 1859 and Rheumatobates trinitatis (China, 1943) while wRmang appears to be present exclusively in R. mangrovensis (China, 1943). Three other species were analysed, but did not appear to be infected: Brachymetra albinerva (Amyot & Serville, 1843), Halobates micans Eschscheltz, 1822, and Microvelia pulchella Westwood, 1834. The results presented here highlight for the first time the presence of new intracellular Wolbachia strains in Gerroidea colonising tropical aquatic environments like mangrove habitats from inlands to sea shore.
Collapse
Affiliation(s)
- Suzanne Conjard
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles Pointe-à-Pitre, Guadeloupe, France
- * E-mail: (SC); (DFM)
| | - Damien F. Meyer
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, Université Montpellier, CIRAD, INRA, Montpellier, France
- * E-mail: (SC); (DFM)
| | - Rosalie Aprelon
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, Université Montpellier, CIRAD, INRA, Montpellier, France
| | - Nonito Pagès
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, Université Montpellier, CIRAD, INRA, Montpellier, France
| | - Olivier Gros
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles Pointe-à-Pitre, Guadeloupe, France
| |
Collapse
|
3
|
Gut Metagenomic Profiling of Gossypol Induced Oxycarenus laetus (Hemiptera: Lygaeidae) Reveals Gossypol Tolerating Bacterial Species. Indian J Microbiol 2022; 62:54-60. [PMID: 35068604 PMCID: PMC8758820 DOI: 10.1007/s12088-021-00964-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022] Open
Abstract
Oxycarenus laetus is a cotton pest that primarily feeds on seeds that are rich in gossypol. Though gossypol is toxic to general herbivores, O. laetus does not show such complications and instead grows and reproduces well on cotton plants compared to its other hosts. In this study, we have fed O. laetus with natural and induced gossypol-based diets to explore the difference in its gut microbiota. We performed NGS 16S rRNA amplicon sequencing on the Illumina MiSeq platform and analyzed the data using the QIIME2 pipeline supplemented with Greengenes and EZBioCloud reference databases. We also used culture-based methods to identify a few abundant gut bacteria present in O. laetus. Enterococcus faecalis, Wolbachia bourtzisii, Wolbachia pipientis, Corynebacterium glyciniphilum, Staphylococcus sciuri, and Kocuria rosea were some of the major species that formed the core gut microbiome of O. laetus. We have also observed that some species were present only in the sample with the highest concentration of gossypol, signifying that they might have the potential to degrade gossypol. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12088-021-00964-0.
Collapse
|
4
|
Cano-Calle D, Saldamando-Benjumea CI, Vivero-Gómez RJ, Moreno-Herrera CX, Arango-Isaza RE. Two New Strains of Wolbachia Affecting Natural Avocado Thrips. Indian J Microbiol 2021; 61:348-354. [PMID: 34295000 PMCID: PMC8263844 DOI: 10.1007/s12088-021-00951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/29/2021] [Indexed: 11/28/2022] Open
Abstract
Wolbachia is an obligate intracellular bacterium with a high frequency of infection and a continental distribution in arthropods and nematodes. This endosymbiont can induce various reproductive phenotypes in their hosts and has been previously found naturally in several pests including thrips (Thripidae). These insects cause physical fruit damage and economic losses in avocado. The presence of Wolbachia was evaluated for the first time in avocado thrips populations of Frankliniella sp. and Scirtothrips hansoni sp.n. from eastern Antioquia. DNA from adult thrips individuals was used to assess the detection of Wolbachia by amplifying a fragment (600 bp) of the Wolbachia major surface protein (wsp) gene. Results confirmed the presence of two new Wolbachia strains in these two thrips species, with a higher percentage of natural infection in S. hansoni sp.n. The first Wolbachia species was found in Frankliniella sp. and belongs to supergroup A and the second was detected in S. hansoni sp.n. and is part of supergroup B. Wolbachia was more frequently found in females (32.73%), and only found in one male. Analysis of phylogenetic relationships, suggests that the two new Wolbachia sequences (wFran: Frankliniella and wShan: Scirtothrips hansoni) detected here represent two new groups for this endosymbiont. The haplotype network shows the presence of two possible haplotypes for each strain. Future studies to evaluate the possible use of Wolbachia as a control agent in avocado thrips are necessary. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12088-021-00951-5.
Collapse
Affiliation(s)
- Daniela Cano-Calle
- Facultad de Ciencias, Grupo Biotecnología Vegetal UNALMED-CIB, Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
- Facultad de Ciencias, Grupo Microbiodiversidad y Bioprospección (MICROBIOP), Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
- Corporación Para Investigaciones Biológicas (CIB), Cra. 65 #59a-110, 050034 Medellín, Antioquia Colombia
| | - Clara I. Saldamando-Benjumea
- Facultad de Ciencias, Grupo Biotecnología Vegetal UNALMED-CIB, Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
- Corporación Para Investigaciones Biológicas (CIB), Cra. 65 #59a-110, 050034 Medellín, Antioquia Colombia
| | - Rafael J. Vivero-Gómez
- Facultad de Ciencias, Grupo Microbiodiversidad y Bioprospección (MICROBIOP), Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
| | - Claudia X. Moreno-Herrera
- Facultad de Ciencias, Grupo Microbiodiversidad y Bioprospección (MICROBIOP), Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
| | - Rafael E. Arango-Isaza
- Facultad de Ciencias, Grupo Biotecnología Vegetal UNALMED-CIB, Universidad Nacional de Colombia Sede-Medellín, Medellín, Antioquia Colombia
- Corporación Para Investigaciones Biológicas (CIB), Cra. 65 #59a-110, 050034 Medellín, Antioquia Colombia
| |
Collapse
|
5
|
Gawande SJ, Anandhan S, Ingle A, Roylawar P, Khandagale K, Gawai T, Jacobson A, Asokan R, Singh M. Microbiome profiling of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae). PLoS One 2019; 14:e0223281. [PMID: 31568480 PMCID: PMC6768462 DOI: 10.1371/journal.pone.0223281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
The gut microbial community structure of adult Thrips tabaci collected from 10 different agro-climatically diverse locations of India was characterized by using the Illumina MiSeq platform to amplify the V3 region of the 16S rRNA gene of bacteria present in the sampled insects. Analyses were performed to study the bacterial communities associated with Thrips tabaci in India. The complete bacterial metagenome of T. tabaci was comprised of 1662 OTUs of which 62.25% belong to known and 37.7% of unidentified/unknown bacteria. These OTUs constituted 21 bacterial phyla of 276 identified genera. Phylum Proteobacteria was predominant, followed by Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. Additionally, the occurrence of the reproductive endosymbiont, Wolbachia was detected at two locations (0.56%) of the total known OTUs. There is high variation in diversity and species richness among the different locations. Alpha-diversity metrics indicated the higher gut bacterial diversity at Bangalore and lowest at Rahuri whereas higher bacterial species richness at T. tabaci samples from Imphal and lowest at Jhalawar. Beta diversity analyses comparing bacterial communities between the samples showed distinct differences in bacterial community composition of T. tabaci samples from different locations. This paper also constitutes the first record of detailed bacterial communities associated with T. tabaci. The location-wise variation in microbial metagenome profile of T. tabaci suggests that bacterial diversity might be governed by its population genetic structure, environment and habitat.
Collapse
Affiliation(s)
- Suresh J. Gawande
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | | | - Ashish Ingle
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Praveen Roylawar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Kiran Khandagale
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Tushar Gawai
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Hessarghatta Lake, Bengaluru, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, India
| |
Collapse
|
6
|
Kaczmarczyk A, Kucharczyk H, Kucharczyk M, Kapusta P, Sell J, Zielińska S. First insight into microbiome profile of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) at different developmental stages: molecular evidence of Wolbachia endosymbiosis. Sci Rep 2018; 8:14376. [PMID: 30258200 PMCID: PMC6158184 DOI: 10.1038/s41598-018-32747-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/12/2018] [Indexed: 12/26/2022] Open
Abstract
Insects' exoskeleton, gut, hemocoel, and cells are colonized by various microorganisms that often play important roles in their host life. Moreover, insects are frequently infected by vertically transmitted symbionts that can manipulate their reproduction. The aims of this study were the characterization of bacterial communities of four developmental stages of the fungivorous species Hoplothrips carpathicus (Thysanoptera: Phlaeothripidae), verification of the presence of Wolbachia, in silico prediction of metabolic potentials of the microorganisms, and sequencing its mitochondrial COI barcode. Taxonomy-based analysis indicated that the bacterial community of H. carpathicus contained 21 bacterial phyla. The most abundant phyla were Proteobacteria, Actinobacteria, Bacterioidetes and Firmicutes, and the most abundant classes were Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Betaproteobacteria, with different proportions in the total share. For pupa and imago (adult) the most abundant genus was Wolbachia, which comprised 69.95% and 56.11% of total bacterial population respectively. Moreover, similarity analysis of bacterial communities showed that changes in microbiome composition are congruent with the successive stages of H. carpathicus development. PICRUSt analysis predicted that each bacterial community should be rich in genes involved in membrane transport, amino acid metabolism, carbohydrate metabolism, replication and repair processes.
Collapse
Affiliation(s)
- Agnieszka Kaczmarczyk
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Halina Kucharczyk
- Department of Zoology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Marek Kucharczyk
- Department of Nature Protection, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Przemysław Kapusta
- Center for Medical Genomics - OMICRON, Jagiellonian University Medical College, Kopernika 7c, 31-034, Kraków, Poland
| | - Jerzy Sell
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Sylwia Zielińska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
- Phage Consultants, Partyzantow 10/18, 80-254, Gdansk, Poland
| |
Collapse
|
7
|
Schausberger P. Herbivore-Associated Bacteria as Potential Mediators and Modifiers of Induced Plant Defense Against Spider Mites and Thrips. FRONTIERS IN PLANT SCIENCE 2018; 9:1107. [PMID: 30105044 PMCID: PMC6077224 DOI: 10.3389/fpls.2018.01107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 05/13/2023]
Abstract
Induced plant defense, comprising contact with exogenous stimuli, production of endogenous signals alerting the plant, associated biochemical cascades, and local and/or systemic expression of the defense mechanisms, critically depends on the nature of the inducing agents. At large, bio-trophic pathogenic microorganisms and viruses usually trigger the salicylate (SA)-mediated pathway, whereas necro-trophic pathogens and herbivores usually trigger the jasmonate (JA)-mediated pathway in plants. The SA- and JA-mediated pathways do not operate independently but commonly interfere with each other. Several recent studies revealed abnormal plant responses upon herbivore attack in diverse plant-herbivore systems. Observed abnormalities range from suppression of the common JA-pathway, induction of the SA-pathway to no response, yet the underlying proximate causes and ultimate consequences of these variations are elusive. Strikingly, some studies provide compelling evidence that anti-herbivore plant responses may decisively depend on bacteria associated with the herbivore attacking the plant (HAB for herbivore-associated bacteria). HAB may influence herbivore recognition by the plant and alter the biochemical cascades inside plants. Here, I report cases in point of HAB manipulating induced anti-herbivore plant responses, suggest spatial and temporal categorization of HAB, and point at proximate and ultimate aspects of plant defense manipulation by HAB. Following, I overview the diversity of HAB of spider mites and herbivorous thrips, argue that, considering recently reported phenomena of abnormal plant responses upon spider mite attack, some of these HAB could represent important, but hitherto largely neglected, mediators/modifiers of induced plant defense against spider mites and thrips, and conclude with suggestions for future research.
Collapse
Affiliation(s)
- Peter Schausberger
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Ueda, Japan
- *Correspondence: Peter Schausberger,
| |
Collapse
|
8
|
Murata M, Hariyama T, Yamahama Y, Toyama M, Ohta I. Effects of the range of light wavelengths on the phototactic behaviour and biological traits in the melon thrips,Thrips palmi Karny (Thysanoptera Thripidae). ETHOL ECOL EVOL 2017. [DOI: 10.1080/03949370.2017.1320688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mika Murata
- Division of Vegetable Pest Management and Functional Analysis, Institute of Vegetable and Floriculture Science, NARO (NIVFS), Tsu, Mie Prefecture 514-2392, Japan
| | - Takahiko Hariyama
- Department of Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka Prefecture 431-3192, Japan
| | - Yumi Yamahama
- Department of Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka Prefecture 431-3192, Japan
| | - Mina Toyama
- Department of Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka Prefecture 431-3192, Japan
| | - Izumi Ohta
- Division of Vegetable Pest Management and Functional Analysis, Institute of Vegetable and Floriculture Science, NARO (NIVFS), Tsu, Mie Prefecture 514-2392, Japan
| |
Collapse
|