1
|
Poylin VY, Shaffer VO, Felder SI, Goldstein LE, Goldberg JE, Kalady MF, Lightner AL, Feingold DL, Paquette IM. The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Inherited Adenomatous Polyposis Syndromes. Dis Colon Rectum 2024; 67:213-227. [PMID: 37682806 DOI: 10.1097/dcr.0000000000003072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Affiliation(s)
- Vitaliy Y Poylin
- Division of Gastrointestinal and Oncologic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Virginia O Shaffer
- Department of Surgery, Emory University College of Medicine, Atlanta, Georgia
| | - Seth I Felder
- Department of Surgery, Moffit Cancer Center, Tampa, Florida
| | - Lindsey E Goldstein
- Division of General Surgery, North Florida/South Georgia Veteran's Health System, Gainesville, Florida
| | - Joel E Goldberg
- Division of General and Gastrointestinal Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew F Kalady
- Division of Colon and Rectal Surgery, Ohio State University, Columbus, Ohio
| | - Amy L Lightner
- Department of Colorectal Surgery, Scripps Clinic, San Diego, California
| | - Daniel L Feingold
- Division of Colorectal Surgery, Rutgers University, New Brunswick, New Jersey
| | - Ian M Paquette
- Division of Colon and Rectal Surgery, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
2
|
Kim JC, Bodmer WF. Genomic landscape of colorectal carcinogenesis. J Cancer Res Clin Oncol 2022; 148:533-545. [DOI: 10.1007/s00432-021-03888-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
|
3
|
Kim JC, Bodmer WF. Genotypic and Phenotypic Characteristics of Hereditary Colorectal Cancer. Ann Coloproctol 2021; 37:368-381. [PMID: 34961301 PMCID: PMC8717071 DOI: 10.3393/ac.2021.00878.0125] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
The genomic causes and clinical manifestations of hereditary colorectal cancer (HCRC) might be stratified into 2 groups, namely, familial (FCRC) and a limited sense of HCRC, respectively. Otherwise, FCRC is canonically classified into 2 major categories; Lynch syndrome (LS) or associated spectra and inherited polyposis syndrome. By contrast, despite an increasing body of genotypic and phenotypic traits, some FCRC cannot be clearly differentiated as definitively single type, and the situation has become more complex as additional causative genes have been discovered. This review provides an overview of HCRC, including 6 LS or associated spectra and 8 inherited polyposis syndromes, according to molecular pathogenesis. Variants and newly-identified FCRC are particularly emphasized, including MUTYH (or MYH)-associated polyposis, Muir-Torre syndrome, constitutional mismatch repair deficiency, EPCAM-associated LS, polymerase proofreading-associated polyposis, RNF43- or NTHL1-associated serrated polyposis syndrome, PTEN hamartoma tumor syndrome, and hereditary mixed polyposis syndrome. We also comment on the clinical utility of multigene panel tests, focusing on comprehensive cancer panels that include HCRC. Finally, HCRC surveillance strategies are recommended, based on revised or notable concepts underpinned by competent validation and clinical implications, and favoring major guidelines. As hereditary syndromes are mainly attributable to genomic constitutions of distinctive ancestral groups, an integrative national HCRC registry and guideline is an urgent priority.
Collapse
Affiliation(s)
- Jin Cheon Kim
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.,Laboratory of Cancer Biology and Genetics, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Walter F Bodmer
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Wang J, Jia N, Lin Q, Huang Y, Li J, Jiang Q, Liu W, Xu J, Hou Y, Liu J, Li M, Lu W, Zhou Y, Zhang Y, Tong H. Clinicopathological and molecular characteristics of abdominal desmoid tumors in the Chinese population: A single-center report of 15 cases. Oncol Lett 2019; 18:6443-6450. [PMID: 31807167 PMCID: PMC6876325 DOI: 10.3892/ol.2019.11038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/24/2019] [Indexed: 12/05/2022] Open
Abstract
Desmoid tumors (DTs), derived from the abdomen, are a type of rare and aggressive borderline tumor exhibiting high recurrence and malignant potential. The aim of the present study was to investigate the clinicopathological and molecular characteristics of abdominal DT in a Chinese population and to provide clues for selecting the optimal treatment strategy for different types of abdominal DT. The clinicopathological data of 15 consecutive patients with DT was collected. Matched fresh-frozen tumor tissues and peripheral blood samples were used to detect mutations of adenomatous polyposis coli gene (APC), β-catenin (CTNNB1) and MutY DNA glycosylase (MUTYH) using Sanger sequencing. Pearson's test was conducted to analyze the differences between sporadic DT and familial adenomatous polyposis (FAP) associated with DT. Time to progress (TTP) and overall survival curves were estimated using the Kaplan-Meier method and compared using the log-rank test. A review of the patient clinicopathological characteristics revealed that FAP-associated DT exhibited a higher rate of abdominal surgery history (P=0.011), with no significant differences in any other characteristics. Sequencing revealed that mutations in the APC, CTNNB1 and MUTYH genes were common in DT, and only one patient harbored no mutations in these genes. Survival analyses revealed that patients with FAP exhibited shorter TTP (P=0.030). Log-rank test demonstrated a tendency towards shorter TTP in the cases where an R2 resection was performed (P=0.072) and a tendency towards poor prognosis in the cases of DT associated with FAP (P=0.087). In conclusion, Abdominal DTs were prone to occur in patients with FAP with a history of abdominal surgery. Mutations in the APC, CTNNB1 and MUTYH genes were detected in patients with DTs. To the best of our knowledge, this is the first study of abdominal DT occurrence in patients with MUTYH-associated FAP. The prognosis of DT associated with FAP may be worse compared with that of sporadic DT.
Collapse
Affiliation(s)
- Jiongyuan Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ning Jia
- Laboratory of Molecular Biology, Department of Biochemistry, An Hui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiaowei Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yuan Huang
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jinglei Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Quan Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wenshuai Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jing Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ju Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yuhong Zhou
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
5
|
de Mesquita GHA, Carvalho BJ, de Almeida Medeiros KA, Nii F, Martines DR, Pipek LZ, Jardim YJ, Waisberg DR, Obara MT, Sitnik R, Meyer A, Mangueira CLP. Intussusception reveals MUTYH-associated polyposis syndrome and colorectal cancer: a case report. BMC Cancer 2019; 19:324. [PMID: 30953464 PMCID: PMC6451307 DOI: 10.1186/s12885-019-5505-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We are reporting a rare case of MUTYH-associated polyposis, a colorectal cancer hereditary syndrome, diagnosticated after an intussusception. Colorectal cancer is an important cause of cancer related mortality that can be manifested by an intussusception, a rare occurrence in adults and almost always related to tumors. Approximately 5% of colorectal cancers can be attributed to syndromes known to cause hereditary colorectal cancer, such as MUTYH-associated polyposis, autosomal genetic syndrome associated with this disease. CASE PRESENTATION We present the case of a 44 years old male, that sought medical consultation with a complaint of abdominal discomfort, that after five days changed its characteristics. The patient was sent to the emergency department were a CT-scan revealed intestinal sub-occlusion by ileocolic invagination. Right colectomy was carried out. The anatomic-pathological examination revealed a moderately differentiated mucinous adenocarcinoma and multiples sessile polyps, which led to the suspicion of a genetic syndrome. In the genetics analysis two mutations were observed in the MUTYH gene, and MUTYH-associated polyposis was diagnosticated. CONCLUSION This case demonstrates the importance of meticulous analysis of the patient examinations results to identify possible discrete alterations that can lead to improved understanding of disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniel Reis Waisberg
- Departamento de Gastroenterologia, Hospital das Clínicas, HCFMUSP, São Paulo, Brazil
| | | | | | - Alberto Meyer
- Departamento de Gastroenterologia, Hospital das Clínicas, HCFMUSP, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | |
Collapse
|
6
|
Sharbeen G, Youkhana J, Mawson A, McCarroll J, Nunez A, Biankin A, Johns A, Goldstein D, Phillips P. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity. Oncotarget 2017; 8:9216-9229. [PMID: 27999205 PMCID: PMC5354726 DOI: 10.18632/oncotarget.13985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 12/12/2016] [Indexed: 12/30/2022] Open
Abstract
Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread.
Collapse
Affiliation(s)
- George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Amanda Mawson
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Joshua McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
| | - Andrea Nunez
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Andrew Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Amber Johns
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Phoebe Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Cutaneous Sebaceous Lesions in a Patient With MUTYH-Associated Polyposis Mimicking Muir-Torre Syndrome. Am J Dermatopathol 2017; 38:915-923. [PMID: 27870730 DOI: 10.1097/dad.0000000000000649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A 76-year-old white male with a history of adenocarcinoma of the rectosigmoideum and multiple colonic polyps removed at the age of 38 and 39 years by an abdominoperitoneal amputation and total colectomy, respectively, presented with multiple whitish and yellowish papules on the face and a verrucous lesion on the trunk. The lesions were surgically removed during the next 3 years and a total of 13 lesions were investigated histologically. The diagnoses included 11 sebaceous adenomas, 1 low-grade sebaceous carcinoma, and 1 squamous cell carcinoma. In some sebaceous lesions, squamous metaplasia, intratumoral heterogeneity, mucinous changes, and peritumoral lymphocytes as sometimes seen in sebaceous lesions in Muir-Torre syndrome were noted. Mutation analysis of the peripheral blood revealed a germline mutation c.692G>A,p.(Arg231His) in exon 9 and c.1145G>A, p.(Gly382Asp) in exon 13 of the MUTYH gene. A KRAS mutation G12C (c.34G>T, p.Gly12Cys) was detected in 1 sebaceous adenoma and a NRAS mutation Q61K (c.181C>A, p.Gln61Lys) was found in 2 other sebaceous adenomas. No germline mutations in MLH1, MSH2, MSH6 and PMS2 genes, no microsatellite instability, no aberrant methylation of MLH1 promoter, and no somatic mutations in MSH2 and MSH6 were found. An identical MUTYH germline mutation was found in the patient's daughter. Despite striking clinicopathological similarities with Muir-Torre syndrome, the molecular biologic testing confirmed the final diagnosis of MUTYH-associated polyposis.
Collapse
|
8
|
Kravochuck SE, Church JM. Hereditary non-polyposis colorectal cancer/Lynch syndrome in three dimensions. ANZ J Surg 2016; 87:1006-1010. [PMID: 26990828 DOI: 10.1111/ans.13483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hereditary non-polyposis colorectal cancer (HNPCC) is defined by family history, and Lynch syndrome (LS) is defined genetically. However, universal tumour testing is now increasingly used to screen for patients with defective mismatch repair. This mixing of the results of family history, tumour testing and germline testing produces multiple permutations and combinations that can foster confusion. We wanted to clarify hereditary colorectal cancer using the three dimensions of classification: family history, tumour testing and germline testing. METHODS Family history (Amsterdam I or II criteria versus not Amsterdam criteria) was used to define patients and families with HNPCC. Tumour testing and germline testing were then performed to sub-classify patients and families. The permutations of these classifications are applied to our registry. RESULTS There were 234 HNPCC families: 129 had LS of which 55 were three-dimensional Lynch (family history, tumour testing and germline testing), 66 were two-dimensional Lynch and eight were one-dimensional Lynch. A total of 10 families had tumour Lynch (tumours with microsatellite instability or loss of expression of a mismatch repair protein but an Amsterdam-negative family and negative germline testing), five were Lynch like (Amsterdam-positive family, tumours with microsatellite instability or loss of expression of a mismatch repair protein on immunohistochemistry but negative germline testing), 26 were familial colorectal cancer type X and 95 were HNPCC. CONCLUSION Hereditary colorectal cancer can be confusing. Sorting families in three dimensions can clarify the confusion and may direct further testing and, ultimately, surveillance.
Collapse
Affiliation(s)
- Sara E Kravochuck
- Sanford R. Weiss, MD, Center for Hereditary Colorectal Neoplasia, Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - James M Church
- Sanford R. Weiss, MD, Center for Hereditary Colorectal Neoplasia, Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|