1
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
2
|
Cunningham R, Jia S, Purohit K, Salem O, Hui NS, Lin Y, Carragher NO, Hansen CG. YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations. Clin Transl Med 2023; 13:e1190. [PMID: 36740402 PMCID: PMC9899629 DOI: 10.1002/ctm2.1190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
The Hippo signalling pathway is dysregulated across a wide range of cancer types and, although driver mutations that directly affect the core Hippo components are rare, a handful is found within pleural mesothelioma (PM). PM is a deadly disease of the lining of the lung caused by asbestos exposure. By pooling the largest-scale clinical datasets publicly available, we here interrogate associations between the most prevalent driver mutations within PM and Hippo pathway disruption in patients, while assessing correlations with a variety of clinical markers. This analysis reveals a consistent worse outcome in patients exhibiting transcriptional markers of YAP/TAZ activation, pointing to the potential of leveraging Hippo pathway transcriptional activation status as a metric by which patients may be meaningfully stratified. Preclinical models recapitulating disease are transformative in order to develop new therapeutic strategies. We here establish an isogenic cell-line model of PM, which represents the most frequently mutated genes and which faithfully recapitulates the molecular features of clinical PM. This preclinical model is developed to probe the molecular basis by which the Hippo pathway and key driver mutations affect cancer initiation and progression. Implementing this approach, we reveal the role of NF2 as a mechanosensory component of the Hippo pathway in mesothelial cells. Cellular NF2 loss upon physiological stiffnesses analogous to the tumour niche drive YAP/TAZ-dependent anchorage-independent growth. Consequently, the development and characterisation of this cellular model provide a unique resource to obtain molecular insights into the disease and progress new drug discovery programs together with future stratification of PM patients.
Collapse
Affiliation(s)
- Richard Cunningham
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Siyang Jia
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Krishna Purohit
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Omar Salem
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Ning Sze Hui
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Yue Lin
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Neil O. Carragher
- Cancer Research UK Scotland CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Carsten Gram Hansen
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| |
Collapse
|
3
|
Fu Y, Ci H, Du W, Dong Q, Jia H. CHRNA5 Contributes to Hepatocellular Carcinoma Progression by Regulating YAP Activity. Pharmaceutics 2022; 14:pharmaceutics14020275. [PMID: 35214008 PMCID: PMC8877699 DOI: 10.3390/pharmaceutics14020275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide. A better understanding of the mechanisms underlying the malignant phenotype is necessary for developing novel therapeutic strategies for HCC. Signaling pathways initiated by neurotransmitter receptors, such as α5-nicotinic acetylcholine receptor (CHRNA5), have been reported to be implicated in tumor progression. However, the functional mechanism of CHRNA5 in HCC remains unclear. In this study, we explored the role of CHRNA5 in HCC and found that CHRNA5 expression was increased in human HCC tissues and positively correlated with the T stage (p < 0.05) and AJCC phase (p < 0.05). The KM plotter database showed that the high expression level of CHRNA5 was strongly associated with worse survival in HCC patients. Both in vitro and in vivo assays showed that CHRNA5 regulates the proliferation ability of HCC by regulating YAP activity. In addition, CHRNA5 promotes the stemness of HCC by regulating stemness-associated genes, such as Nanog, Sox2 and OCT4. Cell migration and invasion assays demonstrated that CHRNA5 significantly enhanced the metastasis of HCC by regulating epithelial–mesenchymal transition (EMT)-associated genes. Furthermore, we found that CHRNA5 regulates the sensitivity of sorafenib in HCC. Our findings suggest that CHRNA5 plays a key role in the progression and drug resistance of HCC, and targeting CHRNA5 may be a strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
| | - Hongfei Ci
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
| | - Wei Du
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 200437, China
- Correspondence: (Q.D.); (H.J.); Tel./Fax: +86-21-5423-7960 (Q.D.); +86-21-5288-7175 (H.J.)
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
- Correspondence: (Q.D.); (H.J.); Tel./Fax: +86-21-5423-7960 (Q.D.); +86-21-5288-7175 (H.J.)
| |
Collapse
|
4
|
Wang G, Zhou Y, Chen W, Yang Y, Ye J, Ou H, Wu H. miR-21-5p promotes lung adenocarcinoma cell proliferation, migration and invasion via targeting WWC2. Cancer Biomark 2021; 28:549-559. [PMID: 32623387 DOI: 10.3233/cbm-201489] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Studies have suggested that miR-21-5p and WWC2 are key players in most cancer types, yet the underlying mechanisms in lung adenocarcinoma (LUAD) remain elusive. This study made in-depth research on the two factors-dependent mechanisms underlying LUAD occurrence and development. METHODS Bioinformatics methods were employed to identify the miRNA and its target gene of interest. In all, 20 pairs of LUAD tumor tissue samples and matched adjacent normal samples along with 5 LUAD cell lines were collected for evaluating the aberrant expression of miR-21-5p and WWC2. Dual-luciferase reporter assay was performed to validate the targeted relationship between miR-21-5p and WWC2. A series of in vitro experiments including colony formation assay, EdU, wound healing assay and Transwell were conducted for assessment of the LUAD cell biological behaviors. In addition, Western blot was carried out to determine the protein expression of epithelial-mesenchymal transition (EMT)-related proteins. RESULTS miR-21-5p was found to be considerably increased in LUAD tissue and cells relative to that in the adjacent tissue and the human bronchial epithelial cells, whereas WWC2 was significantly decreased. Dual-luciferase reporter assay revealed that miR-21-5p targeted WWC2 and down-regulated its expression. Besides, silencing miR-21-5p or overexpressing WWC2 played an inhibitory role in PC-9 cancer cell proliferation, migration and invasion, but such effect was suppressed when miR-21-5p was overexpressed. Furthermore, Western blot uncovered that WWC2 overexpression impeded the EMT process in LUAD cells. CONCLUSION miR-21-5p facilitates LUAD cell proliferation, migration and invasion through targeting WWC2, which provides a novel therapeutic target for LUAD treatment.
Collapse
|
5
|
Yang J, Zhang X, Liu L, Yang X, Qian Q, Du B. c-Src promotes the growth and tumorigenesis of hepatocellular carcinoma via the Hippo signaling pathway. Life Sci 2021; 264:118711. [PMID: 33186566 DOI: 10.1016/j.lfs.2020.118711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023]
Abstract
We investigated the association between c-Src and the progression of hepatocellular carcinoma (HCC) and its underlying mechanisms. The relationship between c-Src expression and the occurrence and development of HCC was explored using GEPIA and further confirmed by western blotting analysis and real-time quantitative PCR. CCK-8, flow cytometry, Transwell, and wound-healing assays were conducted to analyze the effects of c-Src on the growth, cell cycle, apoptosis, migration, and infiltration of HCC cells. Mouse models of transplanted xenogeneic human tumors were constructed to explore the effects of c-Src on HCC tumor growth. Compared with that in adjacent normal liver tissues, the expression level of c-Src in HCC tissues was significantly increased and was negatively correlated with patient survival. These findings are consistent with those in the GEPIA database. Downregulation of c-Src expression can inhibit the growth, infiltration, and migration of HCC cells. c-Src impeded the translocation of YAP from the nucleus to the cytoplasm and promoted Yes-associated protein transcriptional activity. In vivo experiments showed that c-Src inhibition suppressed tumor growth in mice. We found that c-Src can promote the growth and tumorigenesis of HCC cells by activating the Hippo signaling pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Hippo Signaling Pathway
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Nude
- Neoplasm Invasiveness
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins pp60(c-src)/antagonists & inhibitors
- Proto-Oncogene Proteins pp60(c-src)/genetics
- Proto-Oncogene Proteins pp60(c-src)/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Up-Regulation/drug effects
- YAP-Signaling Proteins
- Mice
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Xiujuan Zhang
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China.
| | - Leilei Liu
- Department of Ultrasound, The Second People's Hospital of Fujian Province, Fuzhou 350001, Fujian, China
| | - Xin Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Qingfu Qian
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Bin Du
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| |
Collapse
|
6
|
Owens DJ, Fischer M, Jabre S, Moog S, Mamchaoui K, Butler-Browne G, Coirault C. Lamin Mutations Cause Increased YAP Nuclear Entry in Muscle Stem Cells. Cells 2020; 9:cells9040816. [PMID: 32231000 PMCID: PMC7226749 DOI: 10.3390/cells9040816] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/17/2023] Open
Abstract
Mutations in the LMNA gene, encoding the nuclear envelope A-type lamins, are responsible for muscular dystrophies, the most severe form being the LMNA-related congenital muscular dystrophy (L-CMD), with severe defects in myonucleus integrity. We previously reported that L-CMD mutations compromise the ability of muscle stem cells to modulate the yes-associated protein (YAP), a pivotal factor in mechanotransduction and myogenesis. Here, we investigated the intrinsic mechanisms by which lamins influence YAP subcellular distribution, by analyzing different conditions affecting the balance between nuclear import and export of YAP. In contrast to wild type (WT) cells, LMNADK32 mutations failed to exclude YAP from the nucleus and to inactivate its transcriptional activity at high cell density, despite activation of the Hippo pathway. Inhibiting nuclear pore import abolished YAP nuclear accumulation in confluent mutant cells, thus showing persistent nuclear import of YAP at cell confluence. YAP deregulation was also present in congenital myopathy related to nesprin-1 KASH mutation, but not in cells expressing the LMNAH222P mutation, the adult form of lamin-related muscle dystrophy with reduced nuclear deformability. In conclusion, our data showed that L-CMD mutations increased YAP nuclear localization via an increased nuclear import and implicated YAP as a pathogenic contributor in muscle dystrophies caused by nuclear envelop defects.
Collapse
Affiliation(s)
- Daniel J. Owens
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Martina Fischer
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
| | - Saline Jabre
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
| | | | | | - Gillian Butler-Browne
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
| | - Catherine Coirault
- INSERM UMRS_974, Centre for Research in Myology, Sorbonne Université, 75013 Paris, France; (D.J.O.); (M.F.); (S.J.); (G.B.-B.)
- Correspondence: ; Tel.: +33-142-16-57-08
| |
Collapse
|
7
|
Thompson BJ. YAP/TAZ: Drivers of Tumor Growth, Metastasis, and Resistance to Therapy. Bioessays 2020; 42:e1900162. [DOI: 10.1002/bies.201900162] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/11/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Barry J. Thompson
- EMBL AustraliaJohn Curtin School of Medical ResearchThe Australian National University 131 Garran Rd, Acton 2602 Canberra ACT Australia
| |
Collapse
|
8
|
Wang H, Dong S, Liu Y, Ma F, Fang J, Zhang W, Shao S, Shen H, Jin J. DAB2 suppresses gastric cancer migration by regulating the Wnt/β-catenin and Hippo-YAP signaling pathways. Transl Cancer Res 2020; 9:1174-1184. [PMID: 35117462 PMCID: PMC8798574 DOI: 10.21037/tcr.2019.12.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Disabled-2 (DAB2), a potential tumor suppressor, plays an in important role in cancer development and cellular differentiation. Its lower expression levels have founded in many cancers. In addition, DAB2 is involved in multiple signaling pathways, including TGF-β and Wnt signal pathways. Gastric cancer (GC) is a common gastrointestinal malignant tumor. Nonetheless, the role of DAB2 in GC remains unclear. METHODS Thirty-seven clinical specimens of GC tissues and adjacent non-tumor tissues were examined by immunohistochemistry. Proteins were extracted from two of them to perform Western blot analysis. Then, CMV-MCS-3FLAG-SV40-DAB2 and si-DAB2 were transfected into MGC and SGC cell line, respectively. The migration of GC cells was evaluated by transwell migration assay. And, the expression of migration related proteins was detected by Western blot and immunofluorescence (IF). RESULTS Eighty-six percent (32/37) of patients DAB2 staining was reduced in GC tissues compared to adjacent normal tissues. Further studies showed that in six human GC cell lines, the level of DAB2 expression was lower than normal gastric epithelial cells, and that DAB2 was closely related to cell migration in vitro. In DAB2 silenced cells, the Wnt/β-catenin signaling was increased and the Hippo-YAP pathway was affected. In addition, lower DAB2 level led to nuclear translocation of β-catenin and Yap. CONCLUSIONS The lower expression of DAB2 regulates cell migration in GC via interfering with the Wnt and Hippo signaling pathway. Our findings suggested that DAB2 played an important role in the migration of GC.
Collapse
Affiliation(s)
- Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Surong Dong
- Department of Laboratory Medicine, Taizhou People's Hospital, Taizhou 225300, China
| | - Yun Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Feng Ma
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jian Fang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wentao Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jingpeng Jin
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
9
|
Miao J, Kyoyama H, Liu L, Chan G, Wang Y, Urisman A, Yang Y, Liu S, Xu Z, Bin H, Li H, Jablons DM, You L. Inhibition of cyclin-dependent kinase 7 down-regulates yes-associated protein expression in mesothelioma cells. J Cell Mol Med 2020; 24:1087-1098. [PMID: 31755214 PMCID: PMC6933402 DOI: 10.1111/jcmm.14841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/30/2019] [Accepted: 10/20/2019] [Indexed: 01/23/2023] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) is a protein kinase that plays a major role in transcription initiation. Yes-associated protein (YAP) is a main effector of the Hippo/YAP signalling pathway. Here, we investigated the role of CDK7 on YAP regulation in human malignant pleural mesothelioma (MPM). We found that in microarray samples of human MPM tissue, immunohistochemistry staining showed correlation between the expression level of CDK7 and YAP (n = 70, r = .513). In MPM cells, CDK7 expression level was significantly correlated with GTIIC reporter activity (r = .886, P = .019). Inhibition of CDK7 by siRNA decreased the YAP protein level and the GTIIC reporter activity in the MPM cell lines 211H, H290 and H2052. Degradation of the YAP protein was accelerated after CDK7 knockdown in 211H, H290 and H2052 cells. Inhibition of CDK7 reduced tumour cell migration and invasion, as well as tumorsphere formation ability. Restoration of the CDK7 gene rescued the YAP protein level and GTIIC reporter activity after siRNA knockdown in 211H and H2052 cells. Finally, we performed a co-immunoprecipitation analysis using an anti-YAP antibody and captured the CDK7 protein in 211H cells. Our results suggest that CDK7 inhibition reduces the YAP protein level by promoting its degradation and suppresses the migration and invasion of MPM cells. Cyclin-dependent kinase 7 may be a promising therapeutic target for MPM.
Collapse
Affiliation(s)
- Jinbai Miao
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - Hiroyuki Kyoyama
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Luwei Liu
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Class of 2018Stony Brook UniversityStony BrookNYUSA
| | - Geraldine Chan
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Class of 2020Medical College of WisconsinMilwaukeeWIUSA
| | - Yucheng Wang
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Anatoly Urisman
- Department of PathologyUniversity of CaliforniaSan FranciscoCAUSA
| | - Yi‐Lin Yang
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Shu Liu
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Zhidong Xu
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Hu Bin
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - Hui Li
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - David M. Jablons
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Liang You
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|
10
|
Li Y, Lu J, Chen Q, Han S, Shao H, Chen P, Jin Q, Yang M, Shangguan F, Fei M, Wang L, Liu Y, Liu N, Lu B. Artemisinin suppresses hepatocellular carcinoma cell growth, migration and invasion by targeting cellular bioenergetics and Hippo-YAP signaling. Arch Toxicol 2019; 93:3367-3383. [PMID: 31563988 DOI: 10.1007/s00204-019-02579-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023]
Abstract
The primary liver cancer (PLC) is one of the leading causes of cancer-related death worldwide. The predominant form of PLC is hepatocellular carcinoma (HCC), which accounts for about 85% of all PLC. Artemisinin (ART) was clinically used as anti-malarial agents. Recently, it was demonstrated to inhibit cell growth and migration in multiple cancer types. However, the molecular mechanism underlying these anti-cancer activity remains largely unknown. Herein, it is discovered that ART dramatically suppresses HCC cell growth in vitro through arresting cell cycle progression, and represses cell migration and invasion via regulating N-cadherin-Snail-E-cadherin axis. In addition, the disruption of cellular bioenergetics contributed to ART-caused cell growth, migration and invasion inhibition. Moreover, ART (100 mg/kg, intraperitoneally) substantially inhibits HCC xenograft growth in vivo. Importantly, Hippo-YAP signal transduction is remarkably inactivated in HCC cells upon ART administration. Collectively, these data reveal a novel mechanism of ART in regulating HCC cell growth, migration, and invasion, which indicates that ART could be considered as a potential drug for the treatment of HCC.
Collapse
Affiliation(s)
- Yujie Li
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China.,Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jing Lu
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Qin Chen
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shengnan Han
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Hua Shao
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Pingyi Chen
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Qiumei Jin
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Mingyue Yang
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Fugen Shangguan
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Mingming Fei
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Lu Wang
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China
| | - Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China. .,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Naxin Liu
- Department of Pancreatitis Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China. .,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
11
|
Wang J, Li H, Xia C, Yang X, Dai B, Tao K, Dou K. Downregulation of CENPK suppresses hepatocellular carcinoma malignant progression through regulating YAP1. Onco Targets Ther 2019; 12:869-882. [PMID: 30774374 PMCID: PMC6357898 DOI: 10.2147/ott.s190061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Several studies have found that centromere protein K (CENPK) is overexpressed in several tumour types and promotes tumor progression. However, there has been little research on the role of CENPK in the progression of hepatocellular carcinoma (HCC). Materials and methods The expression of CENPK in HCC tissues was quantified by Western blot and quantitative real-time PCR. Cells were transfected with lentiviral plasmids containing shRNA sequences targeting CENPK and YAP1 to silence the expression of CENPK and YAP1. Cell Counting Kit-8 assay, colony formation assay, wound healing assay, and transwell invasion assay were performed to evaluate cell growth, migration, and invasion of HCC cells. Tumorigenicity assay was used to detect the effect of CENPK on the growth of HCC cells. Western blot assay was performed to investigate the expression of epithelial-mesenchymal transition (EMT) markers and YAP1. Results Compared to that in adjacent non-tumor tissues, CENPK was aberrantly upregulated in HCC tumor tissues. Furthermore, CENPK knockdown significantly inhibited proliferation, migration, invasion, and EMT progression in HCC cells. Mechanistically, we identified that YAP1 was responsible for the tumor-suppressive effects of CENPK knockdown in the HCC cells. The inhibitory effects of CENPK silencing on cell proliferation, migration, invasion, and EMT were partially reversed by the restoration of YAP1 expression. Conclusion Our results suggested that the CENPK-YAP1-EMT axis plays a critical role in regulating HCC malignant progression, indicating the role of this axis as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China, ;
| | - Haimin Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China, ;
| | - Congcong Xia
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China, ;
| | - Xisheng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China, ;
| | - Bin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China, ;
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China, ;
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China, ;
| |
Collapse
|
12
|
Han LL, Yin XR, Zhang SQ. miR-103 promotes the metastasis and EMT of hepatocellular carcinoma by directly inhibiting LATS2. Int J Oncol 2018; 53:2433-2444. [PMID: 30272278 PMCID: PMC6203164 DOI: 10.3892/ijo.2018.4580] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/21/2018] [Indexed: 01/17/2023] Open
Abstract
Improving the long-term survival of patients with hepatocellular carcinoma (HCC) remains a challenge due to metastasis and recurrence. In this study, we demonstrate that the overexpression of miR-103 in HCC cells promotes epithelial-mesenchymal transition (EMT), and is associated with an enhanced metastasis and poor outcomes, as shown by western blot analysis and immunohistochemistry. Mechanistically, using reporter luciferase assay we reveal that the serine/threonine-protein kinase, large tumor suppressor kinase 2 (LATS2), a key component of the Hippo signaling pathway, is a direct target of miR-103 in HCC cells. Transwell assay, MTT assay and western blot analysis were performed to reveal that LATS2 can counteract the functional effects of miR-103 on HCC metastasis, growth and EMT. The analyses of clinical data indicated that a high expression of miR-103 correlated with a high expression of vimentin, but with a low expression of LATS2 and E-cadherin in HCC tissues. miR-103 also reduced yes-associated protein (YAP) phosphorylation. On the whole, the findings of this study suggest that miR-103 promotes HCC metastasis and EMT by directly inhibiting LATS2. Thus, targeting miR-103/LATS2 may prove to be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Li-Li Han
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiao-Ran Yin
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shu-Qun Zhang
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
13
|
Han Q, Kremerskothen J, Lin X, Zhang X, Rong X, Zhang D, Wang E. WWC3 inhibits epithelial-mesenchymal transition of lung cancer by activating Hippo-YAP signaling. Onco Targets Ther 2018; 11:2581-2591. [PMID: 29780251 PMCID: PMC5951220 DOI: 10.2147/ott.s162387] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Though we recently reported that the WWC3 inhibits the invasiveness and metastasis of lung cancer by activating the Hippo pathway, the impact and underlying mechanisms of this process still remain unclear. Methods To identify the role of WWC3 in epithelial-mesenchymal transition of lung cancer, we performed immunohistochemistry to detect the expression levels of WWC3 and EMT-related biomarker, and analyzed their correlations in a cohort of 127 patients with NSCLC. Wound healing assay and cell invasion assay were applied to explore cell invasive ability change after WWC3 knockdown. qRT-PCR and immunoblotting were performed to assess mRNA and protein levels of EMT-related biomarkers and the main molecules changes of Hippo signaling caused by WWC3. Immunoprecipition was to examine WWC3 and LATS1 interaction. Results WWC3 knockdown drives a pronounced shift from the epithelial to the mesenchymal phenotype in lung cancer cells. In addition, WWC3 ectopic expression in lung cancer cells attenuates mesenchymal markers and increases the epithelial markers expressions; however, WWC3-ΔWW plasmid abrogated these effects. WWC3 silencing by shRNA exerts the opposite effect. Furthermore, WWC3 levels were inversely correlated with the levels of EMT inducers (Snail and Slug) in lung cancer cells and specimens. Immunoblotting revealed that WWC3 wild-type upregulates large tumor suppressor (LATS1) and yes-associated protein (YAP) phosphorylation through its WW domain, hence activating Hippo pathway. Knockdown of YAP and LATS1, as well as the as the Verteporfin (VP) usage, could reverse this effect caused by WWC3 silencing. Conclusion These findings suggest that WWC3 works as a tumor suppressor to inhibit EMT process and confer its candidacy as a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Qiang Han
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Joachim Kremerskothen
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Xuyong Lin
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xuezhu Rong
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Di Zhang
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
14
|
Wang X, Wu B, Zhong Z. Downregulation of YAP inhibits proliferation, invasion and increases cisplatin sensitivity in human hepatocellular carcinoma cells. Oncol Lett 2018; 16:585-593. [PMID: 29928445 DOI: 10.3892/ol.2018.8633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/01/2018] [Indexed: 01/17/2023] Open
Abstract
Yes-associated protein (YAP) serves an essential role in tumorigenesis. However, the potential role and the molecular mechanism underlying the effect of YAP on hepatocellular carcinoma (HCC) cells have not been elucidated. In the current study, it was revealed that YAP expression was increased significantly in HCC cancer tissues and its overexpression was associated with tumor differentiation. The silencing of YAP by small interferring RNA led to the inhibition of HCC cell growth, which was associated with the promotion of apoptosis. The silencing of YAP also decreased the invasive potential of HCC cells and the activity of the phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) signaling pathway. Furthermore, silencing of YAP increased the chemosensitivity of HCC cells to cisplatin (CDDP) through inactivation of the PI3K/AKT signaling pathway. In vivo studies using PDTX model suggested a promotive role for YAP in the growth of HCC and knockdown of YAP increased the anti-tumor activity of CDDP. Taken together, these results revealed that YAP is overexpressed in HCC, and promotes proliferation, invasion and drug resistance of HCC cells. Inhibition of YAP, alone or in combination with traditional chemotherapy, may effectively combat HCC.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing Medical College, Jiaxing, Zhejiang 314000, P.R. China
| | - Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing Medical College, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing Medical College, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
15
|
Liu S, Miao R, Zhai M, Pang Q, Deng Y, Liu S, Qu K, Liu C, Zhang J. Effects and related mechanisms of serotonin on malignant biological behavior of hepatocellular carcinoma via regulation of Yap. Oncotarget 2018; 8:47412-47424. [PMID: 28537892 PMCID: PMC5564575 DOI: 10.18632/oncotarget.17658] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/17/2017] [Indexed: 01/17/2023] Open
Abstract
5-hydroxytryptamine (5-HT, serotonin) and Yes-associated protein (Yap), which act as a mitogen and an oncogene, respectively, play an important role in tumors. Here, we investigated whether 5-HT could affect the hepatocarcinogenic process via promoting the activation and expression of Yap, as well as the possible underlying molecular mechanisms. We found that 5-HT promoted hepatoma cell proliferation, invasion and metastasis via regulating Yap expression in vitro and in vivo, and Yap knockdown had opposite effects. Furthermore, 5-HT activated 5-HT2BR to promote Yap expression via upregulating the pERK level. Inhibitors of 5-HT2BR and ERK attenuated the overexpression of Yap and promotional effects of 5-HT in vitro and in vivo. As a result, 5-HT affected the malignant biological behavior of hepatoma cells via the 5-HT-5-HT2BR-pERK-Yap axis. Therefore, 5-HT and Yap may be prognostic predictors and potential therapeutic targets for HCC patients in the future.
Collapse
Affiliation(s)
- Sushun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Runchen Miao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mimi Zhai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qing Pang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sinan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Zhang M, Zhao Y, Zhang Y, Wang D, Gu S, Feng W, Peng W, Gong A, Xu M. LncRNA UCA1 promotes migration and invasion in pancreatic cancer cells via the Hippo pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1770-1782. [PMID: 29510195 DOI: 10.1016/j.bbadis.2018.03.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 01/24/2023]
Abstract
Although overexpression of the long non-coding RNA (lncRNA) UCA1 has been implicated in several human cancers, its biological function in pancreatic cancer remains to be clarified. In this study, we reported that UCA1 expression was significantly increased in pancreatic cancer tissues and correlated with clinicopathological features, tumor stage, and poorer patient outcome. We further showed that UCA1 promoted cell migration and invasion of pancreatic cancer cells. Importantly, we found that UCA1 overexpression inhibited YAP phosphorylation, and increased YAP expression. Mechanistically, UCA1 interacted with MOB1, Lats1, and YAP, forming shielding composites. Moreover, we demonstrated that UCA1 increased YAP nuclear localization and stabilization, and improved TEAD luciferase activity. In turn, YAP promotes UCA1 expression. Collectively, the present study provides insights into the mechanistic regulation of UCA1 promoting pancreatic cancer progression through the Hippo signaling pathway. UCA1 may serve as a candidate biomarker for poor prognosis and a target for new pancreatic cancer therapies.
Collapse
Affiliation(s)
- Meiting Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212013, China
| | - Yi Zhao
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu 233004, China
| | - Youli Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212013, China
| | - Dawei Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212013, China
| | - Shuming Gu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212013, China
| | - Wen Feng
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212013, China
| | - Wanxin Peng
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Yu S, Jing L, Yin XR, Wang MC, Chen YM, Guo Y, Nan KJ, Han LL. MiR-195 suppresses the metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by inhibiting YAP. Oncotarget 2017; 8:99757-99771. [PMID: 29245938 PMCID: PMC5725129 DOI: 10.18632/oncotarget.20909] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/08/2017] [Indexed: 01/17/2023] Open
Abstract
MiR-195, a novel cancer-related microRNA, was previously reported to play an important role in many malignancies. This study aimed to investigate the role of miR-195 mediated epithelial-mesenchymal transition (EMT) and the progression of hepatocellular carcinoma (HCC) as well as the underlying mechanisms. Our result demonstrated that miR-195 were significantly down regulated in HCC and its decreased expression is associated with poor clinical features of HCC patients. Oppositely, expression level of YAP was significantly higher in HCC tissues, and the level of YAP in metastatic tissues was significantly higher. We also found that a strong inversely association between low level expression of miR-195 and high level of YAP in HCC tissues. Notably, this study confirmed that miR-195, YAP and their combination were valuable predictors for the prognosis of HCC patients. We also explored that miR-195 inhibits HCC growth and metastatic capacity. Mechanistically, we confirm that miR-195 inhibits the migration, invasion and EMT of HCC cells by suppressing YAP. Lastly, we revealed YAP was not only the downstream of miR-195 in HCC, but also mediated the promoting effects of miR-195 on the metastasis and EMT of HCC cells. Taken together, miR-195 inhibits the metastasis and EMT in HCC by targeting YAP. MiR-195/YAP pathway may potentially act as novel biomarker and attractive therapeutic target in HCC.
Collapse
Affiliation(s)
- Shuo Yu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Li Jing
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Xiao-Ran Yin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Min-Cong Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Yi-Meng Chen
- Department of Engineering Research Center of Bio-diagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Ya Guo
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Ke-Jun Nan
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Li-Li Han
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| |
Collapse
|
18
|
Zhang Y, Yan S, Chen J, Gan C, Chen D, Li Y, Wen J, Kremerskothen J, Chen S, Zhang J, Cao Y. WWC2 is an independent prognostic factor and prevents invasion via Hippo signalling in hepatocellular carcinoma. J Cell Mol Med 2017; 21:3718-3729. [PMID: 28815883 PMCID: PMC5706493 DOI: 10.1111/jcmm.13281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/23/2017] [Indexed: 01/17/2023] Open
Abstract
WWC family proteins negatively regulate HEK293 cell proliferation and organ growth by suppressing the transcriptional activity of Yes‐associated protein (YAP), a major effector of the Hippo pathway. The function of the scaffolding protein WWC1 (also called KIBRA) has been intensively studied in cells and animal models. However, the expression and clinicopathologic significance of WWC2 in cancer are poorly characterized. This study aimed to clarify the biological function and mechanism of action of WWC2 in hepatocellular carcinoma (HCC). Retrospective analysis revealed WWC2 was significantly down‐regulated in 95 clinical HCC tissues compared to the paired adjacent non‐cancerous tissues. Moreover, loss of WWC2 expression was significantly associated with advanced clinicopathological features, including venous infiltration, larger tumour size and advanced TNM stage. Positive WWC2 expression was associated with significantly better 5‐year overall survival, and WWC2 was an independent prognostic factor for overall survival in HCC. Moreover, we confirmed WWC2 inhibits HCC cell invasive ability in vitro. Elevated YAP expression was also observed in the same cohort of HCC tissues. Pearson's correlation coefficient analysis indicated WWC2 expression correlated inversely with nuclear YAP protein expression in HCC. Mechanistically, we confirmed overexpression of WWC2 suppresses the invasive and metastatic potential of HCC cells by activating large tumour suppressor 1 and 2 kinases (LATS1/2), which in turn phosphorylates the transcriptional co‐activator YAP. Overall, this study indicates WWC2 functions as a tumour suppressor by negatively regulating the Hippo signalling pathway and may serve as a prognostic marker in HCC.
Collapse
Affiliation(s)
- Yijun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shumei Yan
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiewei Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Caixia Gan
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Li
- Department of Oncology, Tumor Angiogenesis and Microenvironment Laboratory (TAML), First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiahuai Wen
- Department of Breast Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Joachim Kremerskothen
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Shilu Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiangbo Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun Cao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
19
|
Li X, Liu Y, Zhang C, Niu Q, Wang H, Che C, Xie M, Zhou B, Xu Y, Zhang Q, Wu J, Tian Z. Stiehopus japonieus acidic mucopolysaccharide inhibits the proliferation of pancreatic cancer SW1990 cells through Hippo-YAP pathway. Oncotarget 2017; 8:16356-16366. [PMID: 28099921 PMCID: PMC5369968 DOI: 10.18632/oncotarget.14633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have indicated that stiehopus japonieus acidic mucopolysaccharide (SJAMP) could inhibit the proliferation of pancreatic cancer cell SW1990. However, the mechanism remains unclear. In our study, YAP expression was identified by immunohistochemistry and quantitative Real-time PCR from 45 pairs of human pancreatic ductal adenocarcinoma (PDAC) tissues and their adjacent non-tumor samples. We found that the YAP expression was associated with the histological differentiation degree, and negatively correlated with pancreatic cancer patients’ survival. More YAP localization in nuclear and enhanced expression of YAP mRNA in pancreatic cancer tissue was found in comparison with in the normal tissue. These results identify YAP acts as an amazing regulator in the pathogenesis of pancreatic cancer. After affected by SJAMP, YAP and TEAD1 were down regulated, while MST1 and pYAP were upregulated gradually with the prolong of effect time. SJAMP also improved YAP phosphorylation, nuclear-to-cytoplasmic translocation and inactivation. After successfully knocked-down by YAP siRNA, the inhibition of proliferation of SJAMP to cancer cells was attenuated. Interestingly, we indicated a down-regulation of that TEAD with SJAMP 4 mg/ml, 8 mg/ml for 24 h and with 8 mg/ml SJAMP for 24 h, 48 h even after YAP silencing. That might mean that the SJAMP has other targets, not only YAP, to downregulate TEAD. We proposed a hypothesis that Hippo-YAP pathway involved in carcinogenesis of pancreatic cancer and in the inhibition effect of SJAMP to the proliferation of pancreatic cancer cell, although maybe not the sole signaling pathway.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yi Liu
- Department of Gastroenterology, Shanxian Central Hospital, Heze 274000, China
| | - Cuiping Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qinghui Niu
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hui Wang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cong Che
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Man Xie
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bin Zhou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yonghong Xu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qi Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jun Wu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
20
|
Han S, Wang D, Tang G, Yang X, Jiao C, Yang R, Zhang Y, Huo L, Shao Z, Lu Z, Zhang J, Li X. Suppression of miR-16 promotes tumor growth and metastasis through reversely regulating YAP1 in human cholangiocarcinoma. Oncotarget 2017; 8:56635-56650. [PMID: 28915618 PMCID: PMC5593589 DOI: 10.18632/oncotarget.17832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/19/2017] [Indexed: 01/17/2023] Open
Abstract
Background & Aims Aberrant expression of microRNAs is associated with many cancers progression. Many studies have shown that miR-16 is down-regulated in many cancers. However, its role in cholangiocarcinoma (CCA) is unknown. Methods Quantitative real-time PCR (qRT-PCR) was developed to measure miR-16 expression in CCA tissues and cell lines. CCK-8, colony formation and transwell assays were used to reveal the role of miR-16 in CCA cell proliferation and malignant transformation in vitro. The loss-and-gain function was further validated by subcutaneous xenotransplantation and tail vein injection xenotransplantation model in vivo. Dual-luciferase reporter assay was performed to validate the relationship of miR-16 with YAP1. Results MiR-16 was notably downregulated in CCA tissues, which was associated with tumor size, metastasis, and TNM stage. Both in vitro and in vivo studies demonstrated that miR-16 could suppress proliferation, invasion and metastasis throughout the progression of CCA. We further identified YAP1 as a direct target gene of miR-16 and found that miR-16 could regulate CCA cell growth and invasion in a YAP1-dependent manner. In addition, YAP1 was markedly upregulated in CCA tissues, which was reversely correlated with miR-16 level in tissue samples. Besides, Down-regulation of miR-16 was remarkably associated with tumor progression and poor survival in CCA patients through a Kaplan–Meier survival analysis. Conclusions miR-16, as a novel tumor suppressor in CCA through directly targeting YAP1, might be a promising therapeutic target or prognosis biomarker for CCA.
Collapse
Affiliation(s)
- Sheng Han
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Dong Wang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Guohua Tang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Xinxiang Yang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Chenyu Jiao
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Renjie Yang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Yaodong Zhang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Liqun Huo
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Zicheng Shao
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Zefa Lu
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Jiawei Zhang
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Xiangcheng Li
- Liver Transplantation Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
21
|
Qiu S, Xia Z, Li Q, Ye D, Huang Q, Shen Z. Expression and clinical significance of YAP in laryngeal squamous cell carcinoma patients. Oncol Lett 2016; 13:1311-1314. [PMID: 28454253 DOI: 10.3892/ol.2016.5541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to investigate the expression levels of Yes-associated protein (YAP) in different grades of laryngeal squamous cell carcinoma (LSCC) tissues and vocal cord polyps tissues, and to investigate any correlations with clinical factors. The expression of YAP in 128 cases of LSCC and 10 cases of vocal cord polyps tissues was tested using immunohistochemistry. YAP was primarily present in the nucleus of LSCC and controls, whereas phosphorylated YAP expression was present in the cytoplasm. The results indicated that YAP expression was upregulated in LSCC samples compared with vocal cord polyps tissues. YAP expression was positively correlated with the malignant degree of LSCC (P<0.01) and a high level of YAP expression in LSCC tissues was correlated with pathological type, lymphatic metastasis and clinical stage. The present study provided evidence for the expression and localization of YAP in LSCC and vocal cord polyps tissues. Thus, YAP may be involved in the occurrence and development of LSCC as an oncogene.
Collapse
Affiliation(s)
- Shijie Qiu
- Department of Otorhinolaryngology (Head and Neck Surgery), Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Zhaoxia Xia
- Department of Otorhinolaryngology (Head and Neck Surgery), Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Qun Li
- Department of Otorhinolaryngology (Head and Neck Surgery), Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Dong Ye
- Department of Otorhinolaryngology (Head and Neck Surgery), Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Qi Huang
- Department of Otorhinolaryngology (Head and Neck Surgery), Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Zhisen Shen
- Department of Otorhinolaryngology (Head and Neck Surgery), Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|