1
|
Salceda-Rivera V, Ortiz-Lazareno PC, Hernández-Flores G, Vazquez-Urrutia JR, Meza-Arroyo J, Pardo-Zepeda M, Romo-Rubio H, Barba-Barba C, Sánchez-Zubieta F, Barrón-Gallardo CA, Gonzalez-Ramella O, Bravo-Cuellar A. Very early remission and increased apoptosis with the use of Pentoxifylline in children with acute lymphoblastic leukemia. Front Oncol 2024; 14:1401262. [PMID: 39421449 PMCID: PMC11484046 DOI: 10.3389/fonc.2024.1401262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Despite the improvement in survival in acute lymphoblastic leukemia (ALL), there are still cases with evasion of chemotherapy-induced apoptosis. The IKK/NF-κB signaling pathway contributes to antiapoptotic gene expression. Pentoxifylline (PTX) inhibits IkB phosphorylation, blocking NF-κB and antiapoptotic activity. Methods We conducted a randomized, double-blind clinical trial on pediatric ALL patients undergoing induction therapy, assigning them to PTX or placebo group. Bone marrow aspirates were obtained on days 1, 8, 15, and 22. Apoptosis was assessed using Annexin-V/propidium iodide. Results Results indicated that the PTX group exhibited higher apoptosis on day-8 (41.3% vs. 19.4%, p =0.029) and day-15 (35.0% vs. 14.2%, p <0.01). On day-8, the PTX group displayed an MRD of 0.25% vs. 18.2% (p <0.01) in placebo group; on day-15, the PTX group demonstrated an MRD of 0.09% vs. 1.4% (p =0.02). Patients achieving an MRD <0.01% on day-8 demonstrated a 3-year Overall Survival (OS) of 81.6% vs. 58.3% (p =0.03); on day-15, patients with MRD <0.01% had a 3-year OS of 77.9% vs. 54.5% (p =0.03). The PTX group achieved an MRD of <0.01% earlier on days-8 and 15, along with a higher apoptosis rate, indicating a more favorable therapeutic response. In the entire cohort, patients achieving MRD <0.01% on day-8 or 15 displayed superior OS. Conclusion Our study demonstrates that PTX enhances apoptosis and reduces MRD in pediatric acute lymphoblastic leukemia patients. Clinical trial registration https://clinicaltrials.gov/, identifier NCT02451774.
Collapse
Affiliation(s)
- Violeta Salceda-Rivera
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Pablo C. Ortiz-Lazareno
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Georgina Hernández-Flores
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
| | - Jorge R. Vazquez-Urrutia
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Centro Universitario de Ciencias de la Salud, School of Medicine, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Jesus Meza-Arroyo
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Monzerrat Pardo-Zepeda
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Hugo Romo-Rubio
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Cesar Barba-Barba
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Fernando Sánchez-Zubieta
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
- Departamento de Clinicas de Reproduccion Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Carlos Alfredo Barrón-Gallardo
- Departamento Académico de Disciplinas Especializantes de Ciencias de la Salud, Universidad Autonoma de Guadalajara, Zapopan, JAL, Mexico
| | - Oscar Gonzalez-Ramella
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
- Centro Universitario de Ciencias de la Salud, School of Medicine, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Alejandro Bravo-Cuellar
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, JAL, Mexico
| |
Collapse
|
2
|
Cruz-Lozano JR, Hernández-Flores G, Ortiz-Lazareno PC, Palafox-Mariscal LA, Vázquez-Ibarra KC, González-Martínez KL, Villaseñor-García MM, Bravo-Cuellar A. Improvement of Docetaxel Efficacy through Simultaneous Blockade of Transcription Factors NF-κB and STAT-3 Using Pentoxifylline and Stattic in Prostate Cancer Cells. Curr Issues Mol Biol 2024; 46:10140-10159. [PMID: 39329957 PMCID: PMC11431379 DOI: 10.3390/cimb46090605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Prostate cancer (PCa) is a common and deadly disease in men. It is often diagnosed at advanced stages, at which point patients are treated mainly with docetaxel (DTX), which is effective but limited by resistance and side effects. Overactivation of the transcription factors NF-κB and STAT-3 plays a critical role in the development, progression, and chemoresistance of PCa. In this regard, the blockade of NF-κB with pentoxifylline (PTX) or STAT-3 with Stattic (STT) is known to increase the sensitivity of tumor cells to chemotherapy in both in vitro and in vivo models. We investigated whether simultaneous blockade with PTX and STT increases the efficacy of the DTX treatment in inducing apoptosis in metastatic castration-resistant PCa DU-145 cells. Our results showed that the combination of PTX + STT led to higher levels of apoptosis, regardless of whether or not DTX was present in the treatment. Determining caspases and ΔΨm indicates that the intrinsic caspase pathway of apoptosis is principally favored. In addition, this combination inhibited proliferation and colony formation and arrested the cell cycle in the G1 phase. These results indicate that the combination of the PTX + STAT-3 inhibitor could potentiate DTX effectively, opening the possibility of effective treatments in PCa.
Collapse
Affiliation(s)
- José Roberto Cruz-Lozano
- Doctoral Program in Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico;
- Immunology Division, Western Biomedical Research Center, Mexican Institute of Social Security, Guadalajara 44340, Mexico; (G.H.-F.); (P.C.O.-L.); (L.A.P.-M.); (K.C.V.-I.); (K.L.G.-M.)
| | - Georgina Hernández-Flores
- Immunology Division, Western Biomedical Research Center, Mexican Institute of Social Security, Guadalajara 44340, Mexico; (G.H.-F.); (P.C.O.-L.); (L.A.P.-M.); (K.C.V.-I.); (K.L.G.-M.)
| | - Pablo Cesar Ortiz-Lazareno
- Immunology Division, Western Biomedical Research Center, Mexican Institute of Social Security, Guadalajara 44340, Mexico; (G.H.-F.); (P.C.O.-L.); (L.A.P.-M.); (K.C.V.-I.); (K.L.G.-M.)
| | - Luis Arturo Palafox-Mariscal
- Immunology Division, Western Biomedical Research Center, Mexican Institute of Social Security, Guadalajara 44340, Mexico; (G.H.-F.); (P.C.O.-L.); (L.A.P.-M.); (K.C.V.-I.); (K.L.G.-M.)
| | - Katia Carolina Vázquez-Ibarra
- Immunology Division, Western Biomedical Research Center, Mexican Institute of Social Security, Guadalajara 44340, Mexico; (G.H.-F.); (P.C.O.-L.); (L.A.P.-M.); (K.C.V.-I.); (K.L.G.-M.)
| | - Karen Lilith González-Martínez
- Immunology Division, Western Biomedical Research Center, Mexican Institute of Social Security, Guadalajara 44340, Mexico; (G.H.-F.); (P.C.O.-L.); (L.A.P.-M.); (K.C.V.-I.); (K.L.G.-M.)
| | - María Martha Villaseñor-García
- Immunology Division, Western Biomedical Research Center, Mexican Institute of Social Security, Guadalajara 44340, Mexico; (G.H.-F.); (P.C.O.-L.); (L.A.P.-M.); (K.C.V.-I.); (K.L.G.-M.)
- Department of Pharmacobiology, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico
| | - Alejandro Bravo-Cuellar
- Immunology Division, Western Biomedical Research Center, Mexican Institute of Social Security, Guadalajara 44340, Mexico; (G.H.-F.); (P.C.O.-L.); (L.A.P.-M.); (K.C.V.-I.); (K.L.G.-M.)
- Department of Health Sciences, University Center of Los Altos, University of Guadalajara, Guadalajara 47620, Mexico
| |
Collapse
|
3
|
Palafox-Mariscal LA, Ortiz-Lazareno PC, Jave-Suárez LF, Aguilar-Lemarroy A, Villaseñor-García MM, Cruz-Lozano JR, González-Martínez KL, Méndez-Clemente AS, Bravo-Cuellar A, Hernández-Flores G. Pentoxifylline Inhibits TNF-α/TGF-β1-Induced Epithelial-Mesenchymal Transition via Suppressing the NF-κB Pathway and SERPINE1 Expression in CaSki Cells. Int J Mol Sci 2023; 24:10592. [PMID: 37445768 DOI: 10.3390/ijms241310592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 07/15/2023] Open
Abstract
Cervical cancer (CC) is one of the most common and deadly types of female cancer worldwide. Late diagnosis in CC increases the risk of tumor cells spreading to distant organs (metastasis). The epithelial-mesenchymal transition (EMT) is a fundamental process of cancer metastasis. Inflammation can lead to tumor progression, EMT induction, and metastasis. The inflammatory microenvironment is a potent inducer of EMT; inflammatory cytokines such as Tumor Necrosis Factor-alpha (TNF-α) and Transforming growth factor-beta (TGF-β1) activate transcriptional factors such as STAT3, Snail, Smad, and the Nuclear Factor kappa light-chain-enhancer of activated beta cells (NF-κΒ), which drive EMT. Anti-inflammatory compounds may be an option in the disruption of EMT. PenToXifylline (PTX) possesses potent anti-inflammatory effects by inhibiting NF-κB activity. In addition, PTX exerts an anti-fibrotic effect by decreasing Smad2/3/4. We hypothesize that PTX could exert anti-EMT effects. CaSki human cervical tumor cells were exposed to TNF-α 10 ng/mL and TGF-β1 alone or in combination for 5 days. Our results revealed that TNF-α and TGF-β1 induced N-cadherin and Vimentin, confirming the induction of EMT. Furthermore, the combination of cytokines synergized the expression of mesenchymal proteins, enhanced IκBα and p65 phosphorylation, and upregulated Serpin family E member 1 (SERPINE1) mRNA. PTX pretreatment prior to the addition of TNF-α and TGF-β1 significantly reduced N-cadherin and Vimentin levels. To our knowledge, this is the first time that this effect of PTX has been reported. Additionally, PTX reduced the phosphorylation of IκB-α and p65 and significantly decreased SERPINE1 expression, cell proliferation, migration, and invasion. In conclusion, PTX may counteract EMT in cervical cancer cells by decreasing the NF-κB and SERPINE1.
Collapse
Affiliation(s)
- Luis Arturo Palafox-Mariscal
- Doctoral Program in Biomedical Sciences Orientation Immunology, University Center for Health Science (CUCS), University of Guadalajara (UdeG), 44340 Guadalajara, Jalisco, Mexico
- Immunology Division, Biomedical Research Center West (CIBO), Mexican Social Security Institute, 44340 Guadalajara, Jalisco, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- Immunology Division, Biomedical Research Center West (CIBO), Mexican Social Security Institute, 44340 Guadalajara, Jalisco, Mexico
| | - Luis Felipe Jave-Suárez
- Immunology Division, Biomedical Research Center West (CIBO), Mexican Social Security Institute, 44340 Guadalajara, Jalisco, Mexico
| | - Adriana Aguilar-Lemarroy
- Immunology Division, Biomedical Research Center West (CIBO), Mexican Social Security Institute, 44340 Guadalajara, Jalisco, Mexico
| | - María Martha Villaseñor-García
- Immunology Division, Biomedical Research Center West (CIBO), Mexican Social Security Institute, 44340 Guadalajara, Jalisco, Mexico
- Department of Pharmacobiology, University Center for Exact Sciences and Engineering (CUCEI), University of Guadalajara (UdeG), 44340 Guadalajara, Jalisco, Mexico
| | - José Roberto Cruz-Lozano
- Doctoral Program in Biomedical Sciences Orientation Immunology, University Center for Health Science (CUCS), University of Guadalajara (UdeG), 44340 Guadalajara, Jalisco, Mexico
- Immunology Division, Biomedical Research Center West (CIBO), Mexican Social Security Institute, 44340 Guadalajara, Jalisco, Mexico
| | - Karen Lilith González-Martínez
- Immunology Division, Biomedical Research Center West (CIBO), Mexican Social Security Institute, 44340 Guadalajara, Jalisco, Mexico
- Doctoral Program in Molecular Biology in Medicine, University Center for Health Science (CUCS), University of Guadalajara (UdeG), 44340 Guadalajara, Jalisco, Mexico
| | | | - Alejandro Bravo-Cuellar
- Immunology Division, Biomedical Research Center West (CIBO), Mexican Social Security Institute, 44340 Guadalajara, Jalisco, Mexico
- Department of Health Sciences, Los Altos University Center (CUALtos), University of Guadalajara (UdeG), 47620 Tepatitlan de Morelos, Jalisco, Mexico
| | - Georgina Hernández-Flores
- Immunology Division, Biomedical Research Center West (CIBO), Mexican Social Security Institute, 44340 Guadalajara, Jalisco, Mexico
| |
Collapse
|
4
|
Cruz-Gálvez CC, Ordaz-Favila JC, Villar-Calvo VM, Cancino-Marentes ME, Bosch-Canto V. Retinoblastoma: Review and new insights. Front Oncol 2022; 12:963780. [PMID: 36408154 PMCID: PMC9670800 DOI: 10.3389/fonc.2022.963780] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma (Rb), the most frequent malignant intraocular tumor in childhood, is caused by mutations in the retinoblastoma gene (RB1) situated on chromosome 13q14.2. The incidence of retinoblastoma is approximately 1 in 17,000 live births with approximately 8,000 new cases diagnosed each year worldwide. Rb is the prototypical hereditary cancer in humans. Autosomal dominant inheritance is seen in 30-40% of cases whereas the non-inherited sporadic type accounts for the remaining 60-70%. Rb arises due to inactivation of both alleles of the Rb tumor suppressor gene, which results in a defective Rb protein (pRB) with subsequent cell cycle impairment and uncontrolled cell proliferation. Patients with Rb have survival rates higher than 95-98% in industrialized countries but mortality remains high in developing countries. For example, the mortality rate in Africa is 70%. In all cases of intraocular and extraocular retinoblastoma, there is a need for new therapies that are more effective and carry less risk of toxicity. The Bruckner test is a practical and easy test for the detection of Rb, this test consists of assessing the fundus reflex through the pupil (red reflex) in both eyes simultaneously with a bright coaxial light produced with the direct ophthalmoscope. Rb can be detected by the Bruckner test showing a pupil that shines white or “Leukocoria”. Although the diagnosis of Rb remains essentially clinical, the newly identified biomarkers could contribute to early molecular detection, timely detection of micrometastases and establish new therapeutic options for Rb.
Collapse
Affiliation(s)
- Claudia Carolina Cruz-Gálvez
- Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan Carlos Ordaz-Favila
- Pediatric Ophthalmology, Instituto Nacional de Pediatría, Universidad Autónoma de México, México City, Mexico
| | | | | | - Vanessa Bosch-Canto
- Pediatric Ophthalmology, Instituto Nacional de Pediatría, Universidad Autónoma de México, México City, Mexico
- *Correspondence: Vanessa Bosch-Canto,
| |
Collapse
|
5
|
Cancino-Marentes ME, Hernández-Flores G, Ortiz-Lazareno PC, Villaseñor-García MM, Orozco-Alonso E, Sierra-Díaz E, Solís-Martínez RA, Cruz-Gálvez CC, Bravo-Cuellar A. Sensitizing the cytotoxic action of Docetaxel induced by Pentoxifylline in a PC3 prostate cancer cell line. BMC Urol 2021; 21:38. [PMID: 33711972 PMCID: PMC7953714 DOI: 10.1186/s12894-021-00807-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prostate cancer is one of the most frequently diagnosed types of cancers worldwide. In its initial period, the tumor is hormone-sensitive, but in advanced states, it evolves into a metastatic castration-resistant tumor. In this state, chemotherapy with taxanes such as Docetaxel (DTX) comprises the first line of treatment. However, the response is poor due to chemoresistance and toxicity. On the other hand, Pentoxifylline (PTX) is an unspecific inhibitor of phosphodiesterases; experimental, and clinically it has been described as sensitizing tumor cells to chemotherapy, increasing apoptosis and decreasing senescence. We study whether the PTX sensitizes prostate cancer cells to DTX for greater effectiveness. METHODS PC3 human prostate cancer cells were treated in vitro at different doses and times with PTX, DTX, or their combination. Viability was determined by the WST-1 assay by spectrophotometry, cell cycle progression, apoptosis, generic caspase activation and senescence by flow cytometry, DNA fragmentation and caspases-3, -8, and -9 activity by ELISA. RESULTS We found that PTX in PC3 human prostate cancer cells induces significant apoptosis per se and increases that generated by DTX, while at the same time it reduces the senescence caused by the chemotherapy and increases caspases-3,-8, and -9 activity in PTX + DTX-treated cells. Both treatments blocked the PC3 cell in the G1 phase. CONCLUSIONS Our results show that PTX sensitizes prostate tumor cells to apoptosis induced by DTX. Taken together, the results support the concept of chemotherapy with rational molecular bases.
Collapse
Affiliation(s)
- Martha E Cancino-Marentes
- Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Georgina Hernández-Flores
- División de Inmunología, Centro de Investigación Biomédica de Occidente del IMSS, Sierra Mojada 800, Col. Independencia, CP 44340, Guadalajara, Jalisco, México
| | - Pablo Cesar Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente del IMSS, Sierra Mojada 800, Col. Independencia, CP 44340, Guadalajara, Jalisco, México
| | - María Martha Villaseñor-García
- División de Inmunología, Centro de Investigación Biomédica de Occidente del IMSS, Sierra Mojada 800, Col. Independencia, CP 44340, Guadalajara, Jalisco, México
| | - Eduardo Orozco-Alonso
- División de Inmunología, Centro de Investigación Biomédica de Occidente del IMSS, Sierra Mojada 800, Col. Independencia, CP 44340, Guadalajara, Jalisco, México
| | - Erick Sierra-Díaz
- Servicio de Urología, Hospital de Especialidades, CMNO-IMSS, Guadalajara, Jalisco, México
| | - Raúl Antonio Solís-Martínez
- División de Inmunología, Centro de Investigación Biomédica de Occidente del IMSS, Sierra Mojada 800, Col. Independencia, CP 44340, Guadalajara, Jalisco, México
| | - Claudia Carolina Cruz-Gálvez
- Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Alejandro Bravo-Cuellar
- División de Inmunología, Centro de Investigación Biomédica de Occidente del IMSS, Sierra Mojada 800, Col. Independencia, CP 44340, Guadalajara, Jalisco, México. .,Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México.
| |
Collapse
|
6
|
Madera-Sandoval RL, Tóvári J, Lövey J, Ranđelović I, Jiménez-Orozco A, Hernández-Chávez VG, Reyes-Maldonado E, Vega-López A. Combination of pentoxifylline and α-galactosylceramide with radiotherapy promotes necro-apoptosis and leukocyte infiltration and reduces the mitosis rate in murine melanoma. Acta Histochem 2019; 121:680-689. [PMID: 31213291 DOI: 10.1016/j.acthis.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
Abstract
Despite the success for the treatment of melanoma such as targeted molecular therapy, the use of such treatments are expensive For this reason, this study was carried out to explore the anti-cancer properties of available drugs that are able to modify the melanoma prognosis. The study was conducted in two phases: Evaluation of pharmacological effects of pentoxifylline (PTX) administered above (60 mg/kg) which is the therapeutic dose that is aimed at reducing the side-effect of radiotherapy, and of α- galactosylceramide (GalCer) administered at 100 μg/kg, as well as their combination using a murine model (BDF1 mice) of melanoma cell line (B16-F1, ATCC). For the radiotherapy phase, 9 Gy was applied in the tumor area, before (3 days), during (30 min) and after (3 days) the PTX + GalCer treatment. In both study phases, the mitosis rate, leukocyte infiltration and necro-apoptosis were assessed using histological and immunohistochemical approach and tumor volume evaluation as biomarkers. All treatments showed good prognosis results estimated as reduction of mitosis rate (PTX + GalCer after radiotherapy and GalCer), increased leukocyte infiltrate (PTX + GalCer after radiotherapy and GalCer) and necro-apoptosis augmentation (PTX + GalCer after radiotherapy and radiotherapy control). Nevertheless, a lower development of tumor volume was found in GalCer treatment. In this way, it is possible to suggest that the integrated treatment with immuno-stimulators such as GalCer, plus drug used for peripheral vascular disease (PTX) after radiotherapy is probably an alternative for controlling aggressive melanoma in murine model.
Collapse
Affiliation(s)
- Ruth L Madera-Sandoval
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City, CP 07320, Mexico
| | - József Tóvári
- National Institute of Oncology, Department of Experimental Pharmacology, Budapest, Hungary
| | - József Lövey
- National Institute of Oncology, Center of Radiotherapy, Budapest, Hungary
| | - Ivan Ranđelović
- National Institute of Oncology, Department of Experimental Pharmacology, Budapest, Hungary
| | - Alejandro Jiménez-Orozco
- Universidad Nacional Autónoma de México, Facultad de Medicina, Laboratorio de Farmacología Celular y Molecular, Mexico City, Mexico
| | - Victor G Hernández-Chávez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hematopatología. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City, CP 11340, Mexico
| | - Elba Reyes-Maldonado
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hematopatología. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City, CP 11340, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City, CP 07320, Mexico.
| |
Collapse
|
7
|
Cruz-Galvez CC, Ortiz-Lazareno PC, Pedraza-Brindis EJ, Villasenor-Garcia MM, Reyes-Uribe E, Bravo-Hernandez A, Solis-Martinez RA, Cancino-Marentes M, Rodriguez-Padilla C, Bravo-Cuellar A, Hernandez-Flores G. Pentoxifylline Enhances the Apoptotic Effect of Carboplatin in Y79 Retinoblastoma Cells. In Vivo 2019; 33:401-412. [PMID: 30804118 DOI: 10.21873/invivo.11487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Retinoblastoma (RB) is the most common primary intraocular malignancy. Carboplatin (CPt) is a DNA damage-inducing agent that is widely used for the treatment of RB. Unfortunately, this drug also activates the transcription factor nuclear factor-kappa B (NF-ĸB), leading to promotion of tumor survival. Pentoxifylline (PTX) is a drug that inhibits the phosphorylation of I kappa B-alpha (IĸBα) in serines 32 and 36, and this disrupts NF-ĸB activity that promotes tumor survival. The goal of this study was to evaluate the effect of the PTX on the antitumor activity of CPt. MATERIALS AND METHODS Y79 RB cells were treated with CPt, PTX, or both. Cell viability, apoptosis, loss of mitochondrial membrane potential, the activity of caspase-9, -8, and -3, cytochrome c release, cell-cycle progression, p53, and phosphorylation of IĸBα, and pro- and anti-apoptotic genes were evaluated. RESULTS Both drugs significantly affected the viability of the Y79 RB cells in a time- and dose-dependent manner. The PTX+CPt combination exhibited the highest rate of apoptosis, a decrease in cell viability and significant caspase activation, as well as loss of mitochondrial membrane potential, release of cytochrome c, and increased p53 protein levels. Cells treated with PTX alone displayed decreased I kappa B-alpha phosphorylation, compared to the CPt treated group. In addition, the PTX+CPt combination treatment induced up-regulation of the proapoptotic genes Bax, Bad, Bak, and caspases- 3, -8, and -9, compared to the CPt and PTX individual treated groups. CONCLUSION PTX induces apoptosis per se and increases the CPt-induced apoptosis, augmenting its antitumor effectiveness.
Collapse
Affiliation(s)
- Claudia Carolina Cruz-Galvez
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico.,Doctoral Program in Pharmacology, Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Eliza Julia Pedraza-Brindis
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Maria Martha Villasenor-Garcia
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Emmanuel Reyes-Uribe
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico.,University Center of the Cienega (CUCIENEGA), University of Guadalajara, Ocotlan, Mexico
| | | | - Raul Antonio Solis-Martinez
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Martha Cancino-Marentes
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico.,Doctoral Program in Pharmacology, Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Mexico
| | - Cristina Rodriguez-Padilla
- Department of Immunology and Virology, College of Biomedical Science, Autonomous University of Nuevo León (UANL), San Nicolás de los Garza, Mexico
| | - Alejandro Bravo-Cuellar
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico .,Department of Health Science, University Center of the Altos (CUALTOS), University of Guadalajara, Tepatitlan de Morelos, Mexico
| | - Georgina Hernandez-Flores
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| |
Collapse
|
8
|
Kuttikrishnan S, Siveen KS, Prabhu KS, Khan AQ, Akhtar S, Mateo JM, Merhi M, Taha R, Omri HE, Mraiche F, Dermime S, Uddin S. Sanguinarine suppresses growth and induces apoptosis in childhood acute lymphoblastic leukemia. Leuk Lymphoma 2018; 60:782-794. [PMID: 30187808 DOI: 10.1080/10428194.2018.1494270] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sanguinarine (Sang), a plant-derived compound isolated from the roots of Sanguinaria canadensis was evaluated for its potential pro-apoptotic effects in precursor B acute lymphoblastic leukemia (Pre-ALL) cell lines. Treatment of 697, REH, RS4;11, and SupB15 cell lines with Sang exhibited significant inhibition of cell viability via induction of apoptotic cell death. Sang-mediated apoptosis was found to be associated with the increased expression of proapoptotic bax with concomitant decrease of Bcl-2 expression leading to depolarization of mitochondria membrane resulting in loss of mitochondrial membrane potential (MMP). The reduced MMP caused the leakage in mitochondrial membrane and release of cytochrome c into the cytosol. The cytochrome c then mediates the activation of caspase-cascade and subsequently PARP cleavage. Furthermore, pretreatment with z-VAD-FMK, a pan-caspase inhibitor, abrogated Sang-induced inhibition of cell viability, induction of apoptosis. Sang treatment also reduced the phosphorylation of AKT and suppressed the expression of a number of anti-apoptotic genes such as cIAP1, cIAP2, and XIAP. Sang mediates its anti-cancer activity by generation of reactive oxygen species (ROS) due to depletion of glutathione level in leukemic cell lines. Pretreatment of these cells with N-acetyl cysteine (NAC) prevented Sang-induced depletion of glutathione level and mitochondrial-caspase-induced apoptosis. Finally, Sang treatment of Pre-ALL cell suppressed colony formation ability of these cells suggesting Sang has an anti-leukemic potential. Altogether, our data suggest that Sang is an efficient inducer of intrinsic apoptotic cell death via generation of ROS and exhibition of anti-leukemic effect in Pre-ALL cells raises the possibility to develop Sang as a therapeutic modality for the treatment and management of Pre-ALL.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- a Translational Research Institute , Academic Health System, Hamad Medical Corporation , Doha , Qatar
| | - Kodappully S Siveen
- a Translational Research Institute , Academic Health System, Hamad Medical Corporation , Doha , Qatar
| | - Kirti S Prabhu
- a Translational Research Institute , Academic Health System, Hamad Medical Corporation , Doha , Qatar
| | - Abdul Quaiyoom Khan
- a Translational Research Institute , Academic Health System, Hamad Medical Corporation , Doha , Qatar
| | - Sabah Akhtar
- a Translational Research Institute , Academic Health System, Hamad Medical Corporation , Doha , Qatar
| | - Jericha M Mateo
- a Translational Research Institute , Academic Health System, Hamad Medical Corporation , Doha , Qatar
| | - Maysaloun Merhi
- b National Centre for Cancer Care and Research , Hamad Medical Corporation , Doha , Qatar
| | - Ruba Taha
- b National Centre for Cancer Care and Research , Hamad Medical Corporation , Doha , Qatar
| | - Halima El Omri
- b National Centre for Cancer Care and Research , Hamad Medical Corporation , Doha , Qatar
| | | | - Said Dermime
- b National Centre for Cancer Care and Research , Hamad Medical Corporation , Doha , Qatar
| | - Shahab Uddin
- a Translational Research Institute , Academic Health System, Hamad Medical Corporation , Doha , Qatar
| |
Collapse
|
9
|
Pentoxifylline Added to Steroid Window Treatment Phase Modified Apoptotic Gene Expression in Pediatric Patients With Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2018; 40:360-367. [PMID: 29683943 DOI: 10.1097/mph.0000000000001152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pentoxifylline is a xanthine that possesses antitumor properties and that can induce higher apoptosis in the leukemic cells of pediatric patients with acute lymphoblastic leukemia (ALL) during treatment with prednisone. We conducted a phase 1 pilot, controlled, randomized trial to evaluate the gene expression modified by pentoxifylline during the steroid window of induction to remission phase in patients newly diagnosed with ALL. Experimental and control treatments induced broad changes in the gene expression profile. Patients who received just prednisone upregulated 377 and downregulated 344 genes, in contrast with patients treated with the experimental treatment (combination of prednisone and pentoxifylline), who demonstrated upregulation of 1319 and downregulation of 1594 genes. The most important genes modified in this pathway are those with proapoptotic activity, the majority of these overexpressed. Thus, the addition of pentoxifylline to the treatment with prednisone during steroid window in patients with ALL modified the gene expression profile and changed different signal pathways of the leukemic cell. The combination of both drugs represents a therapeutic alternative for potentiating antileukemic therapy.
Collapse
|