1
|
Toledano-Fonseca M, Gómez-España MA, Élez E, Grávalos C, García-Alfonso P, Rodríguez R, Losa F, Alés Díaz I, Graña B, Valladares-Ayerbes M, García-Ortiz MV, Polo E, Salgado M, Rivera F, Safont MJ, Salud A, Ruiz-Casado A, Tabernero JM, Riesco MC, Rodríguez-Ariza A, Aranda E. A signature of circulating microRNAs predicts the response to treatment with FOLFIRI plus aflibercept in metastatic colorectal cancer patients. Biomed Pharmacother 2023; 159:114272. [PMID: 36706629 DOI: 10.1016/j.biopha.2023.114272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The benefit of adding the antiangiogenic drug aflibercept to FOLFIRI regime in metastatic colorectal cancer (CRC) patients resistant to or progressive on an oxaliplatin-based therapy has been previously demonstrated. However, the absence of validated biomarkers to predict greater outcomes is a major challenge encountered when using antiangiogenic therapies. In this study we investigated profiles of circulating microRNAs (miRNAs) to build predictive models of response to treatment and survival. Plasma was obtained from 98 metastatic CRC patients enrolled in a clinical phase II trial before receiving FOLFIRI plus aflibercept treatment, and the circulating levels of 754 individual miRNAs were quantified using real-time PCR. A distinct signature of circulating miRNAs differentiated responder from non-responder patients. Remarkably, most of these miRNAs were found to target genes that are involved in angiogenic processes. Accordingly, some of these miRNAs had predictive value and entered in predictive models of response to therapy, progression of disease, and survival of patients treated with FOLFIRI plus aflibercept. Among these miRNAs, circulating levels of hsa-miR-33b-5p efficiently discriminated between responder and non-responder patients and predicted the risk of disease progression. Moreover, the combination of circulating VEGF-A and miR-33b-5p levels improved clinical stratification of metastatic CRC patients who were to receive FOLFIRI plus aflibercept treatment. In conclusion, our study supports circulating miRNAs as valuable biomarkers for predicting better outcomes in metastatic CRC patients treated with FOLFIRI plus aflibercept.
Collapse
Affiliation(s)
- M Toledano-Fonseca
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Instituto de Salud Carlos III, E28029 Madrid, Spain.
| | - M A Gómez-España
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; Department of Medical Oncology, Reina Sofía University Hospital, E14004 Córdoba, Spain.
| | - E Élez
- Department of Medical Oncology, Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119, 08035 Barcelona, Spain.
| | - C Grávalos
- Department of Medical Oncology, H. Universitario 12 de Octubre, Instituto de Investigación i+12, Avenida de Córdoba, S/N, 28041 Madrid, Spain.
| | - P García-Alfonso
- Department of Medical Oncology, H. Gregorio Marañón, Calle del Doctor Esquerdo, 46, 28007 Madrid, Spain.
| | - R Rodríguez
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; Department of Medical Oncology, Reina Sofía University Hospital, E14004 Córdoba, Spain.
| | - F Losa
- Department of Medical Oncology, ICO-CSI. H. Sant Joan Despí - Moisés Broggi, Carrer d'Oriol Martorell, 12, 08970 Sant Joan Despí, Barcelona, Spain.
| | - I Alés Díaz
- Department of Medical Oncology, Unidad de Gestión Clínica Intercentros de Oncología Médica. Hospitales Universitarios Regional y Virgen de la Victoria. IBIMA, Campus de Teatinos, S/N, 29010 Málaga, Spain.
| | - B Graña
- Department of Medical Oncology, C. H. Universitario, Lugar, Xubias de Arriba, 84, 15006 A Coruña, Spain.
| | - M Valladares-Ayerbes
- Department of Medical Oncology, H. Virgen del Rocío, IBIS, Av. Manuel Siurot s/n, 41013 Sevilla, Spain.
| | - M V García-Ortiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Instituto de Salud Carlos III, E28029 Madrid, Spain.
| | - E Polo
- Department of Medical Oncology, H. Miguel Servet, Paseo Isabel la Católica, 1-3, 50009 Zaragoza, Spain.
| | - M Salgado
- Department of Medical Oncology, C. H. Universitario de Ourense, Calle Ramón Puga Noguerol, 54, 32005 Orense, Spain.
| | - F Rivera
- Department of Medical Oncology, H. Universitario Marqués de Valdecilla, IDIVAL, Avenida de Valdecilla, 25, 39008 Santander, Spain.
| | - M J Safont
- Department of Medical Oncology, H. General Universitario, CIBERONC, Universidad de Valencia, Avenida de les Tres Creus, 2, 46014 Valencia, Spain.
| | - A Salud
- Department of Medical Oncology, H. Universitario Arnau de Vilanova, Avenida Alcalde Rovira Roure, 80, 25198 Lérida, Spain.
| | - A Ruiz-Casado
- Department of Medical Oncology, H. Puerta de Hierro Majadahonda, Calle Joaquín Rodrigo, 1, 28222 Majadahonda, Spain.
| | - J M Tabernero
- Department of Medical Oncology, Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119, 08035 Barcelona, Spain.
| | - M C Riesco
- Department of Medical Oncology, H. Universitario 12 de Octubre, Instituto de Investigación i+12, Avenida de Córdoba, S/N, 28041 Madrid, Spain.
| | - A Rodríguez-Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Instituto de Salud Carlos III, E28029 Madrid, Spain; Department of Medical Oncology, Reina Sofía University Hospital, E14004 Córdoba, Spain.
| | - E Aranda
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; Cancer Network Biomedical Research Center (CIBERONC), Instituto de Salud Carlos III, E28029 Madrid, Spain; Department of Medical Oncology, Reina Sofía University Hospital, E14004 Córdoba, Spain; Department of Medicine, Faculty of Medicine, University of Córdoba, E14004 Córdoba, Spain.
| | | |
Collapse
|
2
|
Zhang W, Jiang B, Zhu H, Cheng A, Li C, Huang H, Li X, Kuang Y. miR-33b in human cancer: Mechanistic and clinical perspectives. Biomed Pharmacother 2023; 161:114432. [PMID: 36841026 DOI: 10.1016/j.biopha.2023.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The microRNAs (miRNAs), an extensive class of small noncoding RNAs (∼22 nucleotides), have been shown to have critical functions in various biological processes during development. miR-33b (or hsa-miR-33b) is down-regulated in cancer of multiple systems. Notably, at least 27 protein-coding genes can be targeted by miR-33b. miR-33b regulates the cell cycle, cell proliferation, various metabolism pathways, epithelial-mesenchymal transition (EMT), cancer cell invasion and migration, etc. In prostate cancer, Cullin 4B (CUL4B) can be recruited to the promoter to inhibit the expression of miR-33b. In gastric cancer, the hypermethylation of the CpG island regulated the expression of miR-33b. Besides, miR-33b could be negatively regulated by 7 competing-endogenous RNAs (ceRNAs), which are all long non-coding RNAs (lncRNAs). There are at least 4 signaling pathways, including NF-κB, MAP8, Notch1, and Wnt/β-catenin signaling pathways, which could be regulated partially by miR-33b. Additionally, low expression of miR-33b was associated with clinicopathology and prognosis in cancer patients. In addition, the aberrant expression of miR-33b was connected with the resistance of cancer cells to 5 anticancer drugs (cisplatin, docetaxel, bortezomib, paclitaxel, and daunorubicin). Importantly, our work systematically summarizes the aberrant expression of miR-33b in various neoplastic diseases and the effect of its downregulation on the biological behavior of cancer cells. Furthermore, this review focuses on recent advances in understanding the molecular regulation mechanisms of miR-33b. Moreso, the relationship between the miR-33b expression levels and the clinicopathological data and prognosis of tumor patients was summarized for the first time. Overall, we suggest that the current studies of miR-33b are insufficient but provide potential hints and direction for future miR-33b-related research.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Bincan Jiang
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan Province 410205, China
| | - Ailan Cheng
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, China
| | - Can Li
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Haoxuan Huang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China
| | - Xuewen Li
- Changsha Kexin Cancer Hospital, Changsha, Hunan Province 410205, China
| | - Yirui Kuang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
3
|
Dos Santos IL, Penna KGBD, Dos Santos Carneiro MA, Libera LSD, Ramos JEP, Saddi VA. Tissue micro-RNAs associated with colorectal cancer prognosis: a systematic review. Mol Biol Rep 2021; 48:1853-1867. [PMID: 33598796 DOI: 10.1007/s11033-020-06075-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC) is a multifactorial disease commonly diagnosed worldwide, with high mortality rates. Several studies demonstrate important associations between differential expression of micro-RNAs (miRs) and the prognosis of CRC. The present study aimed to identify differentially expressed tissue miRs associated with prognostic factors in CRC patients, through a systematic review of the Literature. Using the PubMed database, Cochrane Library and Web of Science, studies published in English evaluating miRs differentially expressed in tumor tissue and significantly associated with the prognostic aspects of CRC were selected. All the included studies used RT-PCR (Taqman or SYBR Green) for miR expression analysis and the period of publication was from 2009 to 2018. A total of 115 articles accomplished the inclusion criteria and were included in the review. The studies investigated the expression of 100 different miRs associated with prognostic aspects in colorectal cancer patients. The most frequent oncogenic miRs investigated were miR-21, miR-181a, miR-182, miR-183, miR-210 and miR-224 and the hyperexpression of these miRs was associated with distant metastasis, lymph node metastasis and worse survival in patients with CRC. The most frequent tumor suppressor miRs were miR-126, miR-199b and miR-22 and the hypoexpression of these miRs was associated with distant metastasis, worse prognosis and a higher risk of disease relapse (worse disease-free survival). Specific tissue miRs are shown to be promising prognostic biomarkers in patients with CRC, given their strong association with the prognostic aspects of these tumors, however, new studies are necessary to establish the sensibility and specificity of the individual miRs in order to use them in clinical practice.
Collapse
Affiliation(s)
- Igor Lopes Dos Santos
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil.
| | - Karlla Greick Batista Dias Penna
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| | | | | | - Jéssica Enocencio Porto Ramos
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| | - Vera Aparecida Saddi
- Programa de Mestrado em Ciências Ambientais e Saúde da Pontifícia Universidade Católica de Goiás, Laboratório de Genética e Biodiversidade, Escola de Ciências Médicas, Farmacêuticas e Biomédicas da Pontifícia Universidade Católica de Goiás, Área IV, Praça Universitária, 1440, Setor Leste Universitário, Goiânia, GO, 74605-010, Brazil
| |
Collapse
|
4
|
Cai R, Lu Q, Wang D. Construction and prognostic analysis of miRNA-mRNA regulatory network in liver metastasis from colorectal cancer. World J Surg Oncol 2021; 19:7. [PMID: 33397428 PMCID: PMC7784011 DOI: 10.1186/s12957-020-02107-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers in the world, and liver metastasis is the leading cause of colorectal cancer-related deaths. However, the mechanism of liver metastasis in CRC has not been clearly elucidated. Methods Three datasets from the Gene Expression Omnibus (GEO) database were analyzed to obtain differentially expressed genes (DEGs), which were subjected to functional enrichment analysis and protein-protein interaction analysis. Subsequently, mRNA-miRNA network was constructed, and the associated DEGs and DEMs were performed for prognostic analysis. Finally, we did infiltration analysis of growth arrest specific 1 (GAS1)-associated immune cells. Results We obtained 325 DEGs and 9 differentially expressed miRNAs (DEMs) between primary CRC and liver metastases. Enrichment analysis and protein-protein interactions (PPI) further revealed the involvement of DEGs in the formation of the inflammatory microenvironment and epithelial-mesenchymal transition (EMT) during the liver metastases process in CRC. Survival analysis demonstrated that low-expressed GAS1 as well as low-expressed hsa-miR-33b-5p was a favorable prognostic indicator of overall survival. Further exploration of GAS1 revealed that its expression was interrelated with the infiltration of immune cells in tumor tissues. Conclusions In summary, DEGs, DEMs, and their interactions found in liver metastasis of CRC may provide a basis for further understanding of the mechanism of CRC metastasis.
Collapse
Affiliation(s)
- Ruyun Cai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Qian Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Da Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
5
|
Pattanayak B, Garrido-Cano I, Adam-Artigues A, Tormo E, Pineda B, Cabello P, Alonso E, Bermejo B, Hernando C, Martínez MT, Rovira A, Albanell J, Rojo F, Burgués O, Cejalvo JM, Lluch A, Eroles P. MicroRNA-33b Suppresses Epithelial-Mesenchymal Transition Repressing the MYC-EZH2 Pathway in HER2+ Breast Carcinoma. Front Oncol 2020; 10:1661. [PMID: 33014831 PMCID: PMC7511588 DOI: 10.3389/fonc.2020.01661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Downregulation of miR-33b has been documented in many types of cancers and is being involved in proliferation, migration, and epithelial–mesenchymal transition (EMT). Furthermore, the enhancer of zeste homolog 2-gene (EZH2) is a master regulator of controlling the stem cell differentiation and the cell proliferation processes. We aim to evaluate the implication of miR-33b in the EMT pathway in HER2+ breast cancer (BC) and to analyze the role of EZH2 in this process as well as the interaction between them. miR-33b is downregulated in HER2+ BC cells vs healthy controls, where EZH2 has an opposite expression in vitro and in patients’ samples. The upregulation of miR-33b suppressed proliferation, induced apoptosis, reduced invasion, migration and regulated EMT by an increase of E-cadherin and a decrease of ß-catenin and vimentin. The silencing of EZH2 mimicked the impact of miR-33b overexpression. Furthermore, the inhibition of miR-33b induces cell proliferation, invasion, migration, EMT, and EZH2 expression in non-tumorigenic cells. Importantly, the Kaplan–Meier analysis showed a significant association between high miR-33b expression and better overall survival. These results suggest miR-33b as a suppressive miRNA that could inhibit tumor metastasis and invasion in HER2+ BC partly by impeding EMT through the repression of the MYC–EZH2 loop.
Collapse
Affiliation(s)
| | | | | | - Eduardo Tormo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain
| | - Begoña Pineda
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Physiology, University of Valencia, Valencia, Spain
| | - Paula Cabello
- Biomedical Research Institute, INCLIVA, Valencia, Spain
| | - Elisa Alonso
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Hospital Clinico de Valencia, Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - María Teresa Martínez
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Ana Rovira
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar, Centro de Investigación Biomédica en Red de Cáncer, Barcelona, Spain
| | - Joan Albanell
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.,Department of Medical Oncology, Hospital del Mar, Centro de Investigación Biomédica en Red de Cáncer, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Federico Rojo
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Octavio Burgués
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Pathology, Hospital Clinico de Valencia, Valencia, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Ana Lluch
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,Department of Physiology, University of Valencia, Valencia, Spain.,Department of Oncology, Hospital Clinico de Valencia, Valencia, Spain
| | - Pilar Eroles
- Biomedical Research Institute, INCLIVA, Valencia, Spain.,Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III Madrid, Spain.,COST action CA15204, Brussels, Belgium
| |
Collapse
|
6
|
Wang H, Lin X, Liu E, Jian Z, Ou Y. MicroRNA-33b regulates hepatocellular carcinoma cell proliferation, apoptosis, and mobility via targeting Fli-1-mediated Notch1 pathway. J Cell Physiol 2020; 235:7635-7644. [PMID: 32239672 DOI: 10.1002/jcp.29673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) have been confirmed to play pivotal roles in hepatocellular carcinoma (HCC) carcinogenesis. However, the underlying function of microRNA-33b (miR-33b) in HCC remains unclear. Here, we found that miR-33b level was significantly reduced in both HCC tissues and tumor cell lines. Further, luciferase reporter assay and western blot analysis confirmed that Friend leukemia virus integration 1 (Fli-1) was a direct target of miR-33b. Overexpression of miR-33b dramatically suppressed HCC tumor cell proliferation and cell mobility, but facilitated tumor cell apoptosis in vitro. Besides, restoration of Fli-1 partially attenuated miR-33b-mediated inhibition of cell growth and metastasis via activating Notch1 signaling and its downstream effectors. Our findings demonstrate the important role of miR-33b/Fli-1 axis in HCC progression and provide novel therapeutic candidates for HCC clinical treatment.
Collapse
Affiliation(s)
- Huiling Wang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingtao Lin
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Entao Liu
- Weilun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingliang Ou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Huang G, Lai Y, Pan X, Zhou L, Quan J, Zhao L, Li Z, Lin C, Wang J, Li H, Yuan H, Yang Y, Lai Y, Ni L. Tumor suppressor miR-33b-5p regulates cellular function and acts a prognostic biomarker in RCC. Am J Transl Res 2020; 12:3346-3360. [PMID: 32774704 PMCID: PMC7407706 DOI: pmid/32774704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 06/19/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a renal parenchyma neoplasm with a 30% recurrence rate even when treated properly. MicroRNAs are noncoding small RNAs that are involved in cellular communication and may participate in cancer development. This study aimed to explore the relationship between miR-33b-5p expression and RCC progression and prognosis. METHOD RT-qPCR, CCK-8 assay, wound scratch assay, transwell assay and flow cytometry assay were used to evaluate the expression and function of miR-33b-5p in RCC. Additionally, RCC samples and survival data from The Cancer Genome Atlas were used to analyze the prognostic functions of miR-33b-5p. RESULTS miR-33b-5p expression in RCC tissues and cell lines (786-O, ACHN) were found to be significantly downregulated, compared with normal tissues and cell lines (P<0.001). The miR-33b-5p mimic transfected cells showed a slower proliferation rate (P<0.01), while its invasion ability decreased by 38.16% (786-O, P<0.001) and 49.19% (ACHN, P<0.05), compared with the negative control (NC). The migration ability of both RCC lines were found to be as follows: miR-33b-5p inhibitor > NC or NC inhibitor > miR-33b-5p mimic. Additionally, TCGA and RCC samples reveal that low miR-33b-5p expression is related to poor survival outcomes (univariate analysis, P=0.029; multivariate analysis, P=0.024; Kaplan-Meier survival curves, P=0.014). Target genes prediction suggests that miR-33b-5p performs its tumor-suppressive effects and prognostic role through targeting TBX15, SLC12A5, and PTGFRN. CONCLUSIONS miR-33b-5p may function as a tumor-suppressive regulator and prognostic biomarker in RCC.
Collapse
Affiliation(s)
- Guocheng Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Yulin Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Department of Urology, People’s Hospital of LonghuaShenzhen, Guangdong 518109, P. R. China
| | - Xiang Pan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Anhui Medical UniversityHefei 230032, Anhui, P. R. China
| | - Liang Zhou
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Jing Quan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Anhui Medical UniversityHefei 230032, Anhui, P. R. China
| | - Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Anhui Medical UniversityHefei 230032, Anhui, P. R. China
| | - Zuwei Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Canbin Lin
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Hang Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Haichao Yuan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Yu Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| | - Liangchao Ni
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, P. R. China
- Shantou University Medical CollegeShantou 515041, Guangdong, P. R. China
| |
Collapse
|
8
|
Liu Y, Lei P, Qiao H, Sun K, Lu X, Bao F, Yu R, Lian C, Li Y, Chen W, Xue F. MicroRNA-33b regulates sensitivity to daunorubicin in acute myelocytic leukemia by regulating eukaryotic translation initiation factor 5A-2. J Cell Biochem 2020; 121:385-393. [PMID: 31222822 DOI: 10.1002/jcb.29192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/07/2019] [Indexed: 01/02/2023]
Abstract
In this study, we aimed to study the effect of miR-33b in regulating sensitivity to daunorubicin (DNR) in acute myelocytic leukemia (AML). We used quantitative real-time polymerase chain reaction and Cell Counting Kit-8 assay to detect the level of miR-33b and cell viability. Cell apoptosis and the expression of eIF5A-2 and MCL-1 protein were detected by flow cytometry analysis and Western Blot analysis, respectively. MiR-33b mimic increased sensitivity of AML cells against DNR, while miR-33b inhibitor had the opposite effect. Furthermore, the results showed that the eIF5A-2 gene was a direct target of miR-33b, and miR-33b regulated eIF5A-2 mRNA and protein expression. Silencing of eIF5A-2 by RNA interference increased the sensitivity of AML cells against DNR. We also found that MCL-1 contributed to the regulation of DNR sensitivity, which was dependent on downregulation of eIF5A-2. Finally, knockdown of eIF5A-2 eliminated the effects of miRNA-33b mimic or inhibitor on DNR sensitivity. These findings indicate that miR-33b maybe as a new therapeutic target in AML cells.
Collapse
Affiliation(s)
- Yanhui Liu
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Pingchong Lei
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Hong Qiao
- The Department of Oncology, Baoying Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu, China
| | - Kai Sun
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xiling Lu
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Fengchang Bao
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Runhong Yu
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Cheng Lian
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Yao Li
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Zhai S, Zhao L, Lin T, Wang W. Downregulation of miR-33b promotes non-small cell lung cancer cell growth through reprogramming glucose metabolism miR-33b regulates non-small cell lung cancer cell growth. J Cell Biochem 2019; 120:6651-6660. [PMID: 30368888 PMCID: PMC6587718 DOI: 10.1002/jcb.27961] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Glucose metabolism is a common target for cancer regulation and microRNAs (miRNAs) are important regulators of this process. Here we aim to investigate a tumor-suppressing miRNA, miR-33b, in regulating the glucose metabolism of non-small cell lung cancer (NSCLC). In our study, quantitative real-time polymerase chain reaction (qRT-PCR) showed that miR-33b was downregulated in NSCLC tissues and cell lines, which was correlated with increased cell proliferation and colony formation. Overexpression of miR-33b through miR-33b mimics transfection suppressed NSCLC proliferation, colony formation, and induced cell-cycle arrest and apoptosis. Meanwhile, miR-33b overexpression inhibited glucose metabolism in NSCLC cells. Luciferase reporter assay confirmed that miR-33b directly binds to the 3'-untranslated region of lactate dehydrogenase A (LDHA). qRT-PCR and Western blot analysis showed that miR-33b downregulated the expression of LDHA. Moreover, introducing LDHA mRNA into cells over-expressing miR-33b attenuated the inhibitory effect of miR-33b on the growth and glucose metabolism in NSCLC cells. Taken together, these results confirm that miR-33b is an anti-oncogenic miRNA, which inhibits NSCLC cell growth by targeting LDHA through reprogramming glucose metabolism.
Collapse
Affiliation(s)
- Shengping Zhai
- Department of RespiratoryYantai Yuhuangding Hospital Affiliated to Qingdao UniversityYantaiShandongChina
| | - Lingyan Zhao
- Department of RespiratoryYantai Yuhuangding Hospital Affiliated to Qingdao UniversityYantaiShandongChina
| | - Tiantian Lin
- Department of RespiratoryYantai Yuhuangding Hospital Affiliated to Qingdao UniversityYantaiShandongChina
| | - Wei Wang
- Department of Thoracic SurgeryYantai Yuhuangding Hospital Affiliated to Qingdao UniversityYantaiShandongChina
| |
Collapse
|
10
|
Li T, Gao X, Han L, Yu J, Li H. Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis. World J Surg Oncol 2018; 16:114. [PMID: 29921304 PMCID: PMC6009060 DOI: 10.1186/s12957-018-1409-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer (GC) is a prevalent malignant cancer of digestive system. To identify key genes in GC, mRNA microarray GSE27342, GSE29272, and GSE33335 were downloaded from GEO database. Methods Differentially expressed genes (DEGs) were obtained using GEO2R. DAVID database was used to analyze function and pathways enrichment of DEGs. Protein-protein interaction (PPI) network was established by STRING and visualized by Cytoscape software. Then, the influence of hub genes on overall survival (OS) was performed by the Kaplan-Meier plotter online tool. Module analysis of the PPI network was performed using MCODE. Additionally, potential stem loop miRNAs of hub genes were predicted by miRecords and screened by TCGA dataset. Transcription factors (TFs) of hub genes were detected by NetworkAnalyst. Results In total, 67 DEGs were identified; upregulated DEGs were mainly enriched in biological process (BP) related to angiogenesis and extracellular matrix organization and the downregulated DEGs were mainly enriched in BP related to ion transport and response to bacterium. KEGG pathways analysis showed that the upregulated DEGs were enriched in ECM-receptor interaction and the downregulated DEGs were enriched in gastric acid secretion. A PPI network of DEGs was constructed, consisting of 43 nodes and 87 edges. Twelve genes were considered as hub genes owing to high degrees in the network. Hsa-miR-29c, hsa-miR-30c, hsa-miR-335, hsa-miR-33b, and hsa-miR-101 might play a crucial role in hub genes regulation. In addition, the transcription factors-hub genes pairs were displayed with 182 edges and 102 nodes. The high expression of 7 out of 12 hub genes was associated with worse OS, including COL4A1, VCAN, THBS2, TIMP1, COL1A2, SERPINH1, and COL6A3. Conclusions The miRNA and TFs regulation network of hub genes in GC may promote understanding of the molecular mechanisms underlying the development of gastric cancer and provide potential targets for GC diagnosis and treatment. Electronic supplementary material The online version of this article (10.1186/s12957-018-1409-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Xujie Gao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China. .,National Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
11
|
Gao S, Zhao ZY, Wu R, Zhang Y, Zhang ZY. Prognostic value of microRNAs in colorectal cancer: a meta-analysis. Cancer Manag Res 2018; 10:907-929. [PMID: 29750053 PMCID: PMC5935085 DOI: 10.2147/cmar.s157493] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Numerous studies have shown that miRNA levels are closely related to the survival time of patients with colon, rectal, or colorectal cancer (CRC). However, the outcomes of different investigations have been inconsistent. Accordingly, a meta-analysis was conducted to study associations among the three types of cancers. Materials and methods Studies published in English that estimated the expression levels of miRNAs with survival curves in CRC were identified until May 20, 2017 by online searches in PubMed, Embase, Web of Science, and the Cochrane Library by two independent authors. Pooled HRs with 95% CIs were used to estimate the correlation between miRNA expression and overall survival. Results A total of 63 relevant articles regarding 13 different miRNAs, with 10,254 patients were ultimately included. CRC patients with high expression of blood miR141 (HR 2.52, 95% CI 1.68-3.77), tissue miR21 (HR 1.31, 95% CI 1.12-1.53), miR181a (HR 1.52, 95% CI 1.26-1.83), or miR224 (HR 2.12, 95% CI 1.04-4.34), or low expression of tissue miR126 (HR 1.55, 95% CI 1.24-1.93) had significantly poor overall survival (P<0.05). Conclusion In general, blood miR141 and tissue miR21, miR181a, miR224, and miR126 had significant prognostic value. Among these, blood miR141 and tissue miR224 were strong biomarkers of prognosis for CRC.
Collapse
Affiliation(s)
- Song Gao
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Zhi-Ying Zhao
- School of Computer Science and Engineering, Northeastern University, Shenyang
| | - Rong Wu
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| | - Yue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen-Yong Zhang
- Second Department of Clinical Oncology, Shengjing Hospital of China Medical University
| |
Collapse
|
12
|
Moridikia A, Mirzaei H, Sahebkar A, Salimian J. MicroRNAs: Potential candidates for diagnosis and treatment of colorectal cancer. J Cell Physiol 2017; 233:901-913. [PMID: 28092102 DOI: 10.1002/jcp.25801] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is known as the third common cancer worldwide and an important public health problem in different populations. Several genetics and environmental risk factors are involved in the development and progression of CRC including chromosomal abnormalities, epigenetic alterations, and unhealthy lifestyle. Identification of risk factors and biomarkers could lead to a better understanding of molecular pathways involved in CRC pathogenesis. MicroRNAs (miRNAs) are important regulatory molecules which could affect a variety of cellular and molecular targets in CRC. A large number of studies have indicated deregulations of some known tissue-specific miRNAs, for example, miR-21, miR-9, miR-155, miR-17, miR-19, let-7, and miR-24 as well as circulating miRNAs, for example, miR-181b, miR-21, miR-183, let-7g, miR-17, and miR-126, in patients with CRC. In the current review, we focus on the findings of preclinical and clinical studies performed on tissue-specific and circulating miRNAs as diagnostic biomarkers and therapeutic targets for the detection of patients at various stages of CRC.
Collapse
Affiliation(s)
- Abdullah Moridikia
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|