1
|
Shetti D, Mallela VR, Ye W, Sharif M, Ambrozkiewicz F, Trailin A, Liška V, Hemminki K. Emerging role of circulating cell-free RNA as a non-invasive biomarker for hepatocellular carcinoma. Crit Rev Oncol Hematol 2024; 200:104391. [PMID: 38795877 DOI: 10.1016/j.critrevonc.2024.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe neoplastic disease associated with high morbidity and mortality rates. HCC is often detected at advanced stages leading to ineffective curative treatments. Recently, liquid biopsy has emerged as a non-invasive method to identify highly specific HCC biomarkers in bodily fluids such as blood, serum, urine, and saliva. Circulating cell-free nucleic acids (cfNAs), particularly cell-free DNA (cfDNA) and cell-free RNA (cfRNA), have become promising candidates for biomarkers in liquid biopsy applications. While cfDNA presented significant challenges, researchers have turned their attention to cfRNA, which can be efficiently identified through various methods and is considered a potential biomarker for cancer diagnosis and prognosis. This review primarily focuses on studies related to detecting various cfRNA in body fluids as biomarkers. The aim is to provide a summary of available information to assist researchers in their investigations and the development of new diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Dattatrya Shetti
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic.
| | - Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic
| | - Wenjing Ye
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic
| | - Mahyar Sharif
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University,Alej Svobody 1665/76, Pilsen 323 00, Czech Republic
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic; Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, Pilsen 323 00, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, Pilsen 323 00, Czech Republic; Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| |
Collapse
|
2
|
Rana M, Saini M, Das R, Gupta S, Joshi T, Mehta DK. Circulating MicroRNAs: Diagnostic Value as Biomarkers in the Detection of Non-alcoholic Fatty Liver Diseases and Hepatocellular Carcinoma. Microrna 2023; 12:99-113. [PMID: 37005546 DOI: 10.2174/2211536612666230330083146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 04/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a metabolic-related disorder, is the most common cause of chronic liver disease which, if left untreated, can progress from simple steatosis to advanced fibrosis and eventually cirrhosis or hepatocellular carcinoma, which is the leading cause of hepatic damage globally. Currently available diagnostic modalities for NAFLD and hepatocellular carcinoma are mostly invasive and of limited precision. A liver biopsy is the most widely used diagnostic tool for hepatic disease. But due to its invasive procedure, it is not practicable for mass screening. Thus, noninvasive biomarkers are needed to diagnose NAFLD and HCC, monitor disease progression, and determine treatment response. Various studies indicated that serum miRNAs could serve as noninvasive biomarkers for both NAFLD and HCC diagnosis because of their association with different histological features of the disease. Although microRNAs are promising and clinically useful biomarkers for hepatic diseases, larger standardization procedures and studies are still required.
Collapse
Affiliation(s)
- Minakshi Rana
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Manisha Saini
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Rina Das
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Sumeet Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Tanishq Joshi
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
3
|
Barrera-Saldaña HA, Fernández-Garza LE, Barrera-Barrera SA. Liquid biopsy in chronic liver disease. Ann Hepatol 2021; 20:100197. [PMID: 32444248 DOI: 10.1016/j.aohep.2020.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023]
Abstract
Chronic liver diseases account for a considerable toll of incapacities, suffering, deaths, and resources of the nation's health systems. They can be prevented, treated or even cured when the diagnosis is made on time. Traditional liver biopsy remains the gold standard to diagnose liver diseases, but it has several limitations. Liquid biopsy is emerging as a superior alternative to surgical biopsy given that it surpasses the limitations: it is more convenient, readily and repeatedly accessible, safe, cheap, and provides a more detailed molecular and cellular representation of the individual patient's disease. Progress in understanding the molecular and cellular bases of diseased tissues and organs that normally release cells and cellular components into the bloodstream is catapulting liquid biopsy as a source of biomarkers for diagnosis, prognosis, and prediction of therapeutic response, thus supporting the realization of the promises of precision medicine. The review aims to summarize the evidence of the usefulness of liquid biopsy in liver diseases, including the presence of different biomarkers as circulating epithelial cells, cell-free nucleic acids, specific species of DNA and RNA, and the content of extracellular vesicles.
Collapse
Affiliation(s)
- Hugo A Barrera-Saldaña
- Innbiogem SC at National Laboratory for Services of Research, Development, and Innovation for the Pharma and Biotech Industries (LANSEDI) of CONACyT Vitaxentrum group, Monterrey, N.L., Mexico; Center for Biotechnological Genomics of National Polytechnical Institute, Reynosa, Tamps., Mexico.
| | - Luis E Fernández-Garza
- Innbiogem SC at National Laboratory for Services of Research, Development, and Innovation for the Pharma and Biotech Industries (LANSEDI) of CONACyT Vitaxentrum group, Monterrey, N.L., Mexico
| | - Silvia A Barrera-Barrera
- Innbiogem SC at National Laboratory for Services of Research, Development, and Innovation for the Pharma and Biotech Industries (LANSEDI) of CONACyT Vitaxentrum group, Monterrey, N.L., Mexico; National Institute of Pediatrics, Mexico City, Mexico
| |
Collapse
|
4
|
Trevisan França de Lima L, Broszczak D, Zhang X, Bridle K, Crawford D, Punyadeera C. The use of minimally invasive biomarkers for the diagnosis and prognosis of hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2020; 1874:188451. [PMID: 33065194 DOI: 10.1016/j.bbcan.2020.188451] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related deaths worldwide. Despite advances in systemic therapies, patient survival remains low due to late diagnosis and frequent underlying liver diseases. HCC diagnosis generally relies on imaging and liver tissue biopsy. Liver biopsy presents limitations because it is invasive, potentially risky for patients and it frequently misrepresents tumour heterogeneity. Recently, liquid biopsy has emerged as a way to monitor cancer progression in a non-invasive manner. Tumours shed content into the bloodstream, such as circulating tumour cells (CTCs), circulating nucleic acids, extracellular vesicles and proteins, that can be isolated from biological fluids of patients with HCC. These biomarkers provide knowledge regarding the genetic landscape of tumours and might be used for diagnostic or prognostic purposes. In this review, we summarize recent literature on circulating biomarkers for HCC, namely CTCs, circulating tumour DNA (ctDNA), RNA, extracellular vesicles and proteins, and their clinical relevance in HCC.
Collapse
Affiliation(s)
- Lucas Trevisan França de Lima
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove Campus, QLD, Australia; Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Daniel Broszczak
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove Campus, QLD, Australia
| | - Xi Zhang
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove Campus, QLD, Australia
| | - Kim Bridle
- The University of Queensland, Faculty of Medicine, Herston, QLD, Australia; Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Darrell Crawford
- The University of Queensland, Faculty of Medicine, Herston, QLD, Australia; Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Chamindie Punyadeera
- Institute of Health & Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove Campus, QLD, Australia.
| |
Collapse
|
5
|
Classical and Deep Learning Paradigms for Detection and Validation of Key Genes of Risky Outcomes of HCV. ALGORITHMS 2020. [DOI: 10.3390/a13030073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) is one of the most dangerous viruses worldwide. It is the foremost cause of the hepatic cirrhosis, and hepatocellular carcinoma, HCC. Detecting new key genes that play a role in the growth of HCC in HCV patients using machine learning techniques paves the way for producing accurate antivirals. In this work, there are two phases: detecting the up/downregulated genes using classical univariate and multivariate feature selection methods, and validating the retrieved list of genes using Insilico classifiers. However, the classification algorithms in the medical domain frequently suffer from a deficiency of training cases. Therefore, a deep neural network approach is proposed here to validate the significance of the retrieved genes in classifying the HCV-infected samples from the disinfected ones. The validation model is based on the artificial generation of new examples from the retrieved genes’ expressions using sparse autoencoders. Subsequently, the generated genes’ expressions data are used to train conventional classifiers. Our results in the first phase yielded a better retrieval of significant genes using Principal Component Analysis (PCA), a multivariate approach. The retrieved list of genes using PCA had a higher number of HCC biomarkers compared to the ones retrieved from the univariate methods. In the second phase, the classification accuracy can reveal the relevance of the extracted key genes in classifying the HCV-infected and disinfected samples.
Collapse
|
6
|
Zhao H, Xie Z, Tang G, Wei S, Chen G. Knockdown of terminal differentiation induced ncRNA (TINCR) suppresses proliferation and invasion in hepatocellular carcinoma by targeting the miR-218-5p/DEAD-box helicase 5 (DDX5) axis. J Cell Physiol 2020; 235:6990-7002. [PMID: 31994189 DOI: 10.1002/jcp.29595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Terminal differentiation induced ncRNA (TINCR), a newly identified lncRNA, has been found to be associated with different human cancers including hepatocellular carcinoma (HCC). However, little is known regarding the pathological mechanisms of TINCR in HCC progression. In this study, we confirmed that TINCR expression was upregulated in HCC tumors and cell lines, and high TINCR expression was associated with larger tumor size, advanced tumor node metastasis stage, and poor prognosis. Functionally, knockdown of TINCR facilitated apoptosis and suppressed viability, colony formation and invasion in Huh7 and Hep3B cells. Mechanically, TINCR functioned as competing endogenous RNA (ceRNA) to regulate DEAD-box helicase 5 (DDX5) expression through sponging miR-218-5p. Moreover, the miR-218-5p expression was downregulated and DDX5 expression was upregulated in HCC tumors. The silencing of miR-218-5p or ectopic expression of DDX5 abated the tumor-suppressive effect of TINCR knockdown in vitro. Furthermore, si-TINCR-induced inactivation of AKT signaling was rescued by suppression of miR-218-5p or overexpression of DDX5. Also, the silencing of TINCR resulted in tumor growth inhibition in vivo. In summary, knockdown of TINCR suppressed HCC progression presumably by inactivation of AKT signaling through targeting the miR-218-5p/DDX5 axis, suggesting a novel TINCR/miR-218-5p/DDX5 pathway and therapy target for HCC.
Collapse
Affiliation(s)
- Huibo Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhantao Xie
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Gaofeng Tang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Sidong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Guoyong Chen
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Jiang Y, He J, Li Y, Guo Y, Tao H. The Diagnostic Value of MicroRNAs as a Biomarker for Hepatocellular Carcinoma: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5179048. [PMID: 31871941 PMCID: PMC6907051 DOI: 10.1155/2019/5179048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recently, the role of microRNAs (miRNAs) in diagnosing cancer has been attracted increasing attention. However, few miRNAs have been applied in clinical practice. The purpose of this study was to evaluate the diagnostic efficacy of miRNAs for hepatocellular carcinoma (HCC) at early stages clinically. METHODS A literature search was carried out using PubMed, Web of Science, and EMBASE databases. We explored the diagnostic value of miRNAs in distinguishing HCC from healthy individuals. The quality assessment was performed in Review Manager 5.3 software. The overall sensitivity and specificity and 95% confidence intervals (CIs) were obtained with random-effects models through Stata 14.0 software. And heterogeneity was assessed using Q test and I 2 statistics. Meta-regression and subgroup analyses were conducted based on the sample, nation, quality of studies, and miRNA profiling. The publication bias was evaluated through Deeks' funnel plot. RESULTS A total of 34 studies, involving in 2747 HCC patients and 2053 healthy individuals, met the inclusion criteria in the 33 included literature studies. In the summary receiver operating characteristic (sROC) curve, AUC was 0.92 (95% CI, 0.90-0.94), with 0.84 (95% CI, 0.79-0.88) sensitivity and 0.87 (95% CI, 0.83-0.90) specificity. There was no publication bias (P=0.48). CONCLUSION miRNAs in vivo can be acted as a potential diagnostic biomarker for HCC, which can facilitate the early diagnosis of HCC in clinical practice.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jimin He
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Yiqin Li
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hualin Tao
- Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Wang T, Zhang J, Tian J, Hu S, Wei R, Cui L. Low expression levels of plasma miR-141 are associated with susceptibility to gastric cancer. Oncol Lett 2019; 18:629-636. [PMID: 31289535 PMCID: PMC6546987 DOI: 10.3892/ol.2019.10390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) offer great potential as biomarkers for the early detection and prognosis of cancer, and the discovery of miRNAs associated with gastric cancer is required. In the present study, the differences in the plasma expression levels of miR-141 between patients with gastric cancer and healthy controls, and the role of miR-141 in gastric cancer cell oncogenesis were investigated. A follow-up study of 164 patients with gastric cancer who underwent tumor resection was conducted, and comparisons with healthy control subjects were drawn. To investigate the biological functions of miR-141, a series of in vitro and in vivo assays were conducted, including proliferation, wound-healing and Transwell assays, and a xenograft tumor model. The results demonstrated that miR-141 expression was significantly decreased in tumor tissues compared with in healthy tissues (P<0.05). Kaplan-Meier analysis revealed improved survival benefits with increased miR-141 expression (as determined using the log-rank test, P<0.001), and multivariate Cox regression analysis revealed that patients with decreased expression levels of miR-141 carried a greater risk of death (hazard ratio=2.352; 95% CI=1.379-4.012; P=0.002). The downregulation of miR-141 was also associated with WHO staging, particularly for lymph node and distant metastasis. Exogenous overexpression of miR-141 significantly inhibited the proliferative and migratory abilities of the gastric cancer cell line BGC-823. In vivo studies also demonstrated that exogenous overexpression of miR-141 in BGC-823 cells markedly reduced tumor growth in nude mice. The present study revealed that increased miR-141 expression may be a positive prognostic factor, which may be clinically beneficial in patients with gastric cancer.
Collapse
Affiliation(s)
- Tianxi Wang
- Department of Gastroenterology, Tianjin Nankai Hospital, Nankai, Tianjin 300100, P.R. China
| | - Jun Zhang
- Department of General Medicine, Tianjin Beichen Hospital, Tianjin, 300401, P.R. China
| | - Jingjing Tian
- Department of Gastroenterology, Tianjin Nankai Hospital, Nankai, Tianjin 300100, P.R. China
| | - Shasha Hu
- Department of Gastroenterology, Tianjin Nankai Hospital, Nankai, Tianjin 300100, P.R. China
| | - Rongna Wei
- Department of Gastroenterology, Tianjin Nankai Hospital, Nankai, Tianjin 300100, P.R. China
| | - Lihong Cui
- Department of Gastroenterology, Tianjin Nankai Hospital, Nankai, Tianjin 300100, P.R. China
| |
Collapse
|
9
|
Peng C, Ye Y, Wang Z, Guan L, Bao S, Li B, Li W. Circulating microRNAs for the diagnosis of hepatocellular carcinoma. Dig Liver Dis 2019; 51:621-631. [PMID: 30744930 DOI: 10.1016/j.dld.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
AIM There are no existing biomarkers that demonstrate very reliable performance in the diagnosis of hepatocellular carcinoma (HCC), especially in the early stage. Studies have shown that numerous aberrantly expressed circulating microRNAs (miRNAs) can be used as a diagnostic tool for HCC; however, these studies have produced inconsistent results. METHODS We performed a meta-analysis to summarize the diagnostic accuracy of circulating miRNAs, alpha-fetoprotein (AFP), and AFP combined with miRNAs in differentiating HCC patients from non-HCC controls, healthy controls and chronic liver disease controls. We also evaluated the diagnostic accuracy of circulating miRNAs for early-stage HCC. Furthermore, we systematically reviewed the diagnostic effectiveness of single miRNAs and individual miRNA panels. RESULTS Circulating miRNAs showed good diagnostic performance. Compared with single miRNAs, the diagnostic accuracy of miRNA panels was clearly better. The combination of AFP and miRNAs improved the diagnostic accuracy compared with the use of miRNAs or AFP alone. For early-stage HCC patients, circulating miRNAs exhibited relatively satisfactory diagnostic accuracy. CONCLUSIONS Circulating miRNAs can be used as an early diagnostic marker of HCC. The combination of miRNAs and AFP has great potential as a novel strategy for the diagnosis of HCC.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yanshuo Ye
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhanpeng Wang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lianyue Guan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Suriguga Bao
- Department of Hepatobiliary-Pancreatic Surgery, Inner Mongolia people's Hospital, Hohhot, China
| | - Bo Li
- Department of Epidemiology, School of Public Health of Jilin University, Changchun, China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Yu N, Yong S, Kim HK, Choi YL, Jung Y, Kim D, Seo J, Lee YE, Baek D, Lee J, Lee S, Lee JE, Kim J, Kim J, Lee S. Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor-normal samples in lung adenocarcinoma. Mol Oncol 2019; 13:1356-1368. [PMID: 30913346 PMCID: PMC6547618 DOI: 10.1002/1878-0261.12478] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/09/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
The roles of miRNAs in lung cancer have not yet been explored systematically at the genome scale despite their important regulatory functions. Here, we report an integrative analysis of miRNA and mRNA sequencing data for matched tumor–normal samples from 109 Korean female patients with non‐small‐cell lung adenocarcinoma (LUAD). We produced miRNA sequencing (miRNA‐Seq) and RNA‐Seq data for 48 patients and RNA‐Seq data for 61 additional patients. Subsequent differential expression analysis with stringent criteria yielded 44 miRNAs and 2322 genes. Integrative gene set analysis of the differentially expressed miRNAs and genes using miRNA–target information revealed several regulatory processes related to the cell cycle that were targeted by tumor suppressor miRNAs (TSmiR). We performed colony formation assays in A549 and NCI‐H460 cell lines to test the tumor‐suppressive activity of downregulated miRNAs in cancer and identified 7 novel TSmiRs (miR‐144‐5p, miR‐218‐1‐3p, miR‐223‐3p, miR‐27a‐5p, miR‐30a‐3p, miR‐30c‐2‐3p, miR‐338‐5p). Two miRNAs, miR‐30a‐3p and miR‐30c‐2‐3p, showed differential survival characteristics in the Tumor Cancer Genome Atlas (TCGA) LUAD patient cohort indicating their prognostic value. Finally, we identified a network cluster of miRNAs and target genes that could be responsible for cell cycle regulation. Our study not only provides a dataset of miRNA as well as mRNA sequencing from the matched tumor–normal samples, but also reports several novel TSmiRs that could potentially be developed into prognostic biomarkers or therapeutic RNA drugs.
Collapse
Affiliation(s)
- Namhee Yu
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Korea
| | - Seunghui Yong
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeonjoo Jung
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Korea
| | - Doyeon Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
| | - Jihae Seo
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Korea
| | - Ye Eun Lee
- Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Korea
| | - Daehyun Baek
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.,School of Biological Sciences, Seoul National University, Korea
| | - Jinseon Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Korea
| | - Jhingook Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sanghyuk Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.,Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul, Korea
| |
Collapse
|
11
|
Peng P, Chen T, Wang Q, Zhang Y, Zheng F, Huang S, Tang Y, Yang C, Ding W, Ren D, Huang Z, Guo Y. Decreased miR-218-5p Levels as a Serum Biomarker in Bone Metastasis of Prostate Cancer. Oncol Res Treat 2019; 42:165-185. [PMID: 30870834 DOI: 10.1159/000495473] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND miR-218-5p is an extensively studied microRNA (miRNA) in prostate cancer (PCa). However, the clinical significance and biological role of miR-218-5p in bone metastasis of PCa remain unclear. MATERIALS AND METHODS miR-218-5p expression was evaluated in 38 bone metastatic and 115 non-bone metastatic PCa tissues and serum samples. Clinical correlation of miR-218-5p expression with clinicopathological characteristics was analyzed. The biological roles of miR-218-5p in bone metastasis of PCa were investigated in vitro by invasion and migration assays. Bioinformatics analysis, real-time polymerase chain reaction, western blot, and luciferase reporter assay were applied to discern and examine the relationship between miR-218-5p and its potential targets. RESULTS miR-218-5p expression was reduced in bone metastatic PCa tissue and serum samples, which positively correlated with poor clinicopathological characteristics and bone metastasis-free survival in PCa patients. Upregulating miR-218-5p repressed PCa cell invasion and migration. Furthermore, miR-218-5p inhibited NF-κB signaling via simultaneously targeting TRAF1, TRAF2, and TRAF5, which suppressed the invasion and migration abilities of PCa cells. ROC curve analysis of miR-218-5p in the serum of PCa patients exhibited an area under the curve of 0.86 (95% confidence interval 0.80-0.92, p < 0.001). CONCLUSION Our findings indicate that miR-218-5p might represent a novel serum biomarker for bone metastasis of PCa.
Collapse
Affiliation(s)
- Peng Peng
- Department of Orthopedic Surgery, Zhuhai Second People's Hospital, Zhuhai, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Fifth Hospital Affiliated of Sun Yat-sen University, Zhuhai, China
| | - Qing Wang
- Department of Orthopedic Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Yixi Zhang
- Department of Ophthalmology, Zhuhai Second People's Hospital, Zhuhai, China
| | - Fangfang Zheng
- Department of Pediatrics, The Fifth Hospital Affiliated of Sun Yat-sen University, Zhuhai, China
| | - Shuai Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunxiao Yang
- Department of Clinical Cytogenetics, Suzhou Precision Medicine Scientific Ltd., Suzhou, China
| | - Wenqing Ding
- Department of Orthopedic Surgery, Zhuhai Second People's Hospital, Zhuhai, China
| | - Dong Ren
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongwen Huang
- Department of Orthopedic Surgery, The Fifth Hospital Affiliated of Sun Yat-sen University, Zhuhai, China,
| | - Yuanqing Guo
- Department of Orthopedic Surgery, The Fifth Hospital Affiliated of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
12
|
Ali LH, Higazi AM, Moness HM, Farag NM, Saad ZM, Moukareb HA, Soliman W, El Sagheer G, Abd El Hamid SR, Abdl Hamid H. Clinical significances and diagnostic utilities of both miR-215 and squamous cell carcinoma antigen-IgM versus alpha-fetoprotein in Egyptian patients with hepatitis C virus-induced hepatocellular carcinoma. Clin Exp Gastroenterol 2019; 12:51-66. [PMID: 30774409 PMCID: PMC6362918 DOI: 10.2147/ceg.s179832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. It has been widely established that the early detection of HCC enables more treatment options with improvements in prognosis and survival. Objectives The aim of this study was to assess the diagnostic accuracy of both circulating miR-215 and squamous cell carcinoma antigen-IgM (SCCA-IgM) as serum biomarkers for HCC by examining their diagnostic sensitivity, specificity, accuracy, and predictive values in hepatitis C virus (HCV)-induced HCC patients. Subjects and methods This study included 60 patients with HCV-related HCC. In addition, 60 patients with HCV-related liver cirrhosis (LC) and 60 apparently healthy subjects were involved, and served as diseased and healthy control groups, respectively. The relative expression levels of miR-215 were detected using quantitative real-time PCR. SCCA-IgM levels in serum were measured by enzyme immunoassay. We used receiver operating characteristic (ROC) curve to calculate the diagnostic accuracy against alpha-fetoprotein (AFP). Results Relative miR-215 expression levels increased the most in HCC patients compared to that in healthy or diseased controls (P<0.001). Serum concentration of SCCA-IgM was significantly higher in HCC group than that in the two control groups. We performed multivariate analysis using AFP level, focal lesion size, and portal vein thrombosis as independent variables. ROC curves showed that the optimum diagnostic miR-215 cutoff value for identifying HCC patients from cirrhotic ones was 417 (sensitivity, 97%; specificity, 91%) and for SCCA-IgM was 95 AU/mL (sensitivity, 92%; specificity, 98%). Moreover, the superiority of both miR-215 and SCCA-IgM to AFP is obvious in our study and this superiority is more evident in distinguishing HCC with AFP levels <200 ng/mL and HCC patients with small-sized focal lesions from cirrhotic patients. Conclusion Cell-free miR-215 and serum SCCA-IgM could be used for early diagnosis of HCC either each one as a single marker or with AFP complement measurement.
Collapse
Affiliation(s)
- Lamia H Ali
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt,
| | - Aliaa M Higazi
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt,
| | - Hend M Moness
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt,
| | - Naglaa M Farag
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Minia University, Minia, Egypt,
| | - Zienab M Saad
- Department of Tropical Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hamdy A Moukareb
- Department of Tropical Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Wael Soliman
- Department of Tropical Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ghada El Sagheer
- Department of Internal Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Haytham Abdl Hamid
- Department of Tropical Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
13
|
Wu Y, Tian S, Chen Y, Ji M, Qu Y, Hou P. miR-218 inhibits gastric tumorigenesis through regulating Bmi-1/Akt signaling pathway. Pathol Res Pract 2018; 215:243-250. [PMID: 30420101 DOI: 10.1016/j.prp.2018.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/14/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies indicated that miR-218 was deregulated in gastric cancer patients and correlated with tumor invasion and prognosis. The aim of this study was to clarify the effect of miR-218 on the malignant behavior of gastric cancer and its role in regulating Bmi-1/Akt signaling pathway. MATERIALS AND METHODS We used miR-218 mimic to transfect gastric cancer cell lines AGS and SGC-7901, and the overexpression efficiency was validated using qRT-PCR assay. MTT assay and Transwell chamber system were performed to detect the effect of miR-218 on cell proliferation, invasion and migration on gastric cancer. Western blot and qRT-PCR assay was used to test the role of miR-218 in regulating Bmi-1/Akt signaling pathway. RESULTS As shown in our research, ectopic expression of miR-218 in gastric cancer cells inhibits the proliferation, invasion and migration of gastric cancer cells. In addition, miR-218 re-expression inhibits the expression of Bmi-1 and its downstream target p-Akt473, as well as MMPs and EMT process. CONCLUSIONS miR-218 inhibits the proliferation, invasion and migration of gastric cancer cells through modulating EMT process and the expression of MMPs via Bmi-1/Akt signaling pathway.
Collapse
Affiliation(s)
- Yongxing Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Sijia Tian
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yijun Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yiping Qu
- Department of Radio-Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
14
|
MACC1 is post-transcriptionally regulated by miR-218 in colorectal cancer. Oncotarget 2018; 7:53443-53458. [PMID: 27462788 PMCID: PMC5288198 DOI: 10.18632/oncotarget.10803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Metastasis is a multistep molecular network process, which is lethal for more than 90% of the cancer patients. Understanding the regulatory functions of metastasis-inducing molecules is in high demand for improved therapeutic cancer approaches. Thus, we studied the post-transcriptional regulation of the crucial carcinogenic and metastasis-mediating molecule metastasis associated in colon cancer 1 (MACC1). In silico analysis revealed MACC1 as a potential target of miR-218, a tumor suppressor miRNA. Expression of these two molecules inversely correlated in colorectal cancer (CRC) cell lines. In a cohort of CRC patient tissues (n = 59), miR-218 is significantly downregulated and MACC1 is upregulated compared with normal mucosa. Luciferase reporter assays with a construct of the MACC1-3′-UTR harboring either the wild type or the mutated miR-218 seed sequence confirmed the specificity of the targeting. miR-218 inhibited significantly MACC1 protein expression, and consistently, MACC1-mediated migration, invasion and colony formation in CRC cells. Anti-miR-218 enhanced the MACC1-mediated migration, invasion and colony formation. Similar findings were observed in the gastric cancer cell line MKN-45. Further, we performed methylation-specific PCR of the SLIT2 and SLIT3 promoter, where miR-218 is encoded in intronic regions. The SLIT2 and SLIT3 promoters are hypermethylated in CRC cell lines. miR-218 and SLIT2 expressions correlated positively. Methyltransferase inhibitor 5-Azacytidine induced miR-218 expression and inhibited the expression of its target MACC1. We also determined that MACC1 has alternative polyadenylation (APA) sites, which results in different lengths of 3′-UTR variants in a CRC cell line. Taken together, miR-218 is post-transcriptionally inhibiting the MACC1 expression and its metastasis-inducing abilities.
Collapse
|
15
|
Prognostic value of microRNAs in hepatocellular carcinoma: a meta-analysis. Oncotarget 2017; 8:107237-107257. [PMID: 29291025 PMCID: PMC5739810 DOI: 10.18632/oncotarget.20883] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Background Numerous articles reported that dysregulated expression levels of miRNAs correlated with survival time of HCC patients. However, there has not been a comprehensive meta-analysis to evaluate the accurate prognostic value of miRNAs in HCC. Design Meta-analysis. Materials and Methods Studies, published in English, estimating expression levels of miRNAs with any survival curves in HCC were identified up until 15 April, 2017 by performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two independent authors. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS). Results 54 relevant articles about 16 miRNAs, with 6464 patients, were ultimately included. HCC patients with high expression of tissue miR-9 (HR = 2.35, 95% CI = 1.46–3.76), miR-21 (HR = 1.76, 95% CI = 1.29–2.41), miR-34c (HR = 1.64, 95% CI = 1.05–2.57), miR-155 (HR = 2.84, 95% CI = 1.46–5.51), miR-221 (HR = 1.76, 95% CI = 1.02–3.04) or low expression of tissue miR-22 (HR = 2.29, 95% CI = 1.63–3.21), miR-29c (HR = 1.35, 95% CI = 1.10–1.65), miR-34a (HR = 1.84, 95% CI = 1.30–2.59), miR-199a (HR = 2.78, 95% CI = 1.89–4.08), miR-200a (HR = 2.64, 95% CI = 1.86–3.77), miR-203 (HR = 2.20, 95% CI = 1.61–3.00) have significantly poor OS (P < 0.05). Likewise, HCC patients with high expression of blood miR-21 (HR = 1.73, 95% CI = 1.07–2.80), miR-192 (HR = 2.42, 95% CI = 1.15–5.10), miR-224 (HR = 1.56, 95% CI = 1.14–2.12) or low expression of blood miR-148a (HR = 2.26, 95% CI = 1.11–4.59) have significantly short OS (P < 0.05). Conclusions In conclusion, tissue miR-9, miR-21, miR-22, miR-29c, miR-34a, miR-34c, miR-155, miR-199a, miR-200a, miR-203, miR-221 and blood miR-21, miR-148a, miR-192, miR-224 demonstrate significantly prognostic value. Among them, tissue miR-9, miR-22, miR-155, miR-199a, miR-200a, miR-203 and blood miR-148a, miR-192 are potential prognostic candidates for predicting OS in HCC.
Collapse
|
16
|
Pant K, Venugopal SK. Circulating microRNAs: Possible role as non-invasive diagnostic biomarkers in liver disease. Clin Res Hepatol Gastroenterol 2017; 41:370-377. [PMID: 27956256 DOI: 10.1016/j.clinre.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Liver is the central organ for metabolism and the hepatocytes metabolize several drugs, hepatotoxins, alcohol, etc. Continuous exposure of the hepatocytes to these toxins result in various chronic diseases, such as alcoholic liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma. Although several diagnostic methods, such as serum markers, liver biopsy or imaging studies are currently available, most of these are either invasive or detect the disease at advanced stages. Hence, there is a need for new molecular markers that can be used for early detection of the disease. MicroRNAs (miRNAs) are naturally occurring, 20-22 nucleotide long, non-coding RNA molecules that regulate the gene expression at post-transcriptional levels, thereby modulating various biological functions. Their expression is deregulated under pathological conditions, and recent studies showed that they are secreted and can be detected in various body fluids. Since the cellular changes occur at earlier stages of the disease, detecting miRNAs in the body fluids could make them as potential novel biomarkers. Albeit, the difficulties in standardization procedures, cost and availability should be addressed before using them in the clinical arena. This review highlights the possible role of secreted miRNAs to use as early non-invasive diagnostic markers for liver disease.
Collapse
Affiliation(s)
- Kishor Pant
- Faculty of Life Science and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, 110021 New Delhi, India
| | - Senthil K Venugopal
- Faculty of Life Science and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, 110021 New Delhi, India.
| |
Collapse
|
17
|
Okajima W, Komatsu S, Ichikawa D, Miyamae M, Ohashi T, Imamura T, Kiuchi J, Nishibeppu K, Arita T, Konishi H, Shiozaki A, Morimura R, Ikoma H, Okamoto K, Otsuji E. Liquid biopsy in patients with hepatocellular carcinoma: Circulating tumor cells and cell-free nucleic acids. World J Gastroenterol 2017; 23:5650-5668. [PMID: 28883691 PMCID: PMC5569280 DOI: 10.3748/wjg.v23.i31.5650] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/09/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called “liquid biopsy” is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wataru Okajima
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mahito Miyamae
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Taisuke Imamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Keiji Nishibeppu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
18
|
Conickx G, Mestdagh P, Vandesompele J, Brusselle GG, Bracke KR. Reply: Direct Detection of Circulating MicroRNAs Unveiled the Absence of MicroRNA-218-5p in Smoker Subjects. Am J Respir Crit Care Med 2017; 196:533. [DOI: 10.1164/rccm.201701-0224le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Circulating miRNAs as novel diagnostic biomarkers in hepatocellular carcinoma detection: a meta-analysis based on 24 articles. Oncotarget 2017; 8:66402-66413. [PMID: 29029522 PMCID: PMC5630422 DOI: 10.18632/oncotarget.18949] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
The diagnostic value and suitability of circulating miRNAs for the detection of hepatocellular carcinoma have been inconsistent in the literature. A meta-analysis is used to systematically evaluate the diagnostic value of circulating miRNAs. Eligible studies were selected and the heterogeneity was assessed by subgroup analysis, meta-regression, and publication bias. After strictly and comprehensive screening, the source methods, internal reference and the cut-off values of the included miRNAs were first listed. Circulating miRNAs demonstrated a relatively good diagnostic value in hepatocellular carcinoma, In the subgroup analysis, diagnosis odds ratio showed a higher accuracy with multiple miRNAs than with a single miRNA as well as with serum types than plasma types. In addition, although miRNAs have many expression patterns, the high frequency expression miRNAs (miR-21, miR-199 and miR-122) might be more specific for the diagnosis of hepatocellular carcinoma.The sources of heterogeneity might be related to the number of miRNAs and the specimen types in meta-regression. Furthermore, it’s surprised that the pooled studies were first demonstrated publication bias (P < 0.05). In conclusion, multiple miRNAs in serum have a better diagnostic value, and the publication bias was stable. To validate the potential applicability of miRNAs in the diagnosis of hepatocellular carcinoma, more rigorous studies are needed to confirm these conclusions.
Collapse
|
20
|
Wang T, Xu L, Jia R, Wei J. MiR-218 suppresses the metastasis and EMT of HCC cells via targeting SERBP1. Acta Biochim Biophys Sin (Shanghai) 2017; 49:383-391. [PMID: 28369267 DOI: 10.1093/abbs/gmx017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 01/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide. Although many efforts for treating HCC have been made, the survival rate remains unsatisfied. Accumulating evidence indicates that microRNA-218 (miR-218) functions as a tumor suppressor and involves in many biological processes such as tumor initiation, development, and metastasis in certain types of human cancers. However, the potential function and underlying molecular mechanism of miR-218 in HCC still remains to be elucidated. Since HCC is a genetic disease, exploring the mechanisms of the pathogeny and integration are essential for the discovery of novel treatment targets for HCC. Therefore, the aim of the present study was to investigate the abnormal expression level of miR-218 in clinical HCC tissues and HCC cells, and to evaluate its function and underlying mechanisms in HCC. Our results revealed that miR-218 expression was significantly downregulated in HCC tissues and cell lines. Gain-of-function and loss-of-function assays indicated that forced expression of miR-218 in HCC cells inhibited cell migration/invasion and reversed epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET), while deletion of miR-218 promoted cell migration/invasion and contributed to the EMT phenotype formation. Bioinformatics analysis and luciferase reporter assay confirmed that serpine mRNA binding protein 1 (SERBP1) was a target gene of miR-218 and rescue assay further confirmed that SERBP1 involved in the function of miR-218 in HCC. All these results suggested that miR-218/SERBP1 signal pathway could inhibit the malignant phenotype formation and that targeting this pathway may be a potential novel way for HCC therapeutics.
Collapse
Affiliation(s)
- Ting Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Rongrong Jia
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Jue Wei
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| |
Collapse
|