1
|
Ulevicius J, Jasukaitiene A, Bartkeviciene A, Dambrauskas Z, Gulbinas A, Urboniene D, Paskauskas S. Dysregulation of Peripheral Blood Mononuclear Cells and Immune-Related Proteins during the Early Post-Operative Immune Response in Ovarian Cancer Patients. Cancers (Basel) 2023; 16:190. [PMID: 38201617 PMCID: PMC10778568 DOI: 10.3390/cancers16010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Surgical treatment is a cornerstone of ovarian cancer (OC) therapy and exerts a substantial influence on the immune system. Immune responses also play a pivotal and intricate role in OC progression. The aim of this study was to investigate the dynamics of immune-related protein expression and the activity of peripheral blood mononuclear cells (PBMCs) in OC patients, both before surgery and during the early postoperative phase. The study cohort comprised 23 OC patients and 20 non-cancer controls. A comprehensive analysis of PBMCs revealed significant pre-operative downregulation in the mRNA expression of multiple immune-related proteins, including interleukins, PD-1, PD-L1, and HO-1. This was followed by further dysregulation during the first 5 post-operative days. Although most serum interleukin concentrations showed only minor changes, a distinct increase in IL-6 and HO-1 levels was observed post-operatively. Reduced metabolic and phagocytic activity and increased production of reactive oxygen species (ROS) were observed on day 1 post-surgery. These findings suggest a shift towards immune tolerance during the early post-operative phase of OC, potentially creating a window for treatment. Further research into post-operative PBMC activity could lead to the development of new or improved treatment strategies for OC.
Collapse
Affiliation(s)
- Jonas Ulevicius
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania; (A.J.); (A.B.); (Z.D.); (A.G.)
| | - Aldona Jasukaitiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania; (A.J.); (A.B.); (Z.D.); (A.G.)
| | - Arenida Bartkeviciene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania; (A.J.); (A.B.); (Z.D.); (A.G.)
| | - Zilvinas Dambrauskas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania; (A.J.); (A.B.); (Z.D.); (A.G.)
| | - Antanas Gulbinas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania; (A.J.); (A.B.); (Z.D.); (A.G.)
| | - Daiva Urboniene
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania;
| | - Saulius Paskauskas
- Department of Obstetrics and Gynecology, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
2
|
Xu G, He Z, Liu Y. Arctigenin Suppresses the Proliferation and Metastasis, and Induces Apoptosis and Cycle Arrest of Osteosarcoma Cells by inhibiting HMOX1 Expression. Anticancer Agents Med Chem 2023; 23:2209-2216. [PMID: 37711016 DOI: 10.2174/1871520623666230913105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Osteosarcoma is the most common malignant bone tumor, with highly proliferative and metastatic properties. Previous studies have reported that arctigenin (Arc), a bioactive lignin compound, showed excellent anti-tumor activities in a variety of human cancers. However, its role in osteosarcoma has not been studied. OBJECTIVE We aimed to investigate the anti-tumor effects of Arc on osteosarcoma cell proliferation, migration, invasion, apoptosis, and cell cycle. METHODS Effects of Arc on osteosarcoma cell proliferation were detected by MTT and colony formation assay. Flow cytometry analysis was performed to assess the cell apoptosis and cycle arrest. Transwell assay was used to evaluate the capability of migration and invasion. qRT-PCR and Western blot were employed to determine the changes in mRNA and protein levels. RESULTS Arc could significantly suppress the proliferation, colony formation, and induce cell apoptosis and S phase cycle arrest of MG63 and U-2 OS cells in a dose-dependent manner. In addition, we also observed an inhibitory effect of Arc treatment on osteosarcoma cell invasion, migration, and epithelial-mesenchymal transition (EMT). HMOX1, encoding enzyme heme oxygenase-1, was predicted to be a candidate target of Arc using STITCH. Arc treatment significantly reduced the mRNA and protein levels of HMOX1. Furthermore, overexpression of HMOX1 could partly reverse the inhibitory effects of Arc on osteosarcoma cell malignant phenotypes. CONCLUSION Our results suggest that Arc inhibits the proliferation, metastasis and promotes cell apoptosis and cycle arrest of osteosarcoma cells by downregulating HMOX1 expression.
Collapse
Affiliation(s)
- Guosong Xu
- Department of Orthopedics, The First Hospital of Putian City, Putian, Fujian Province, China
| | - Zhensen He
- Department of Orthopedics, The First Hospital of Putian City, Putian, Fujian Province, China
| | - Yinping Liu
- Department of Orthopedics, The First Hospital of Putian City, Putian, Fujian Province, China
| |
Collapse
|
3
|
Predictive and prognostic effect of HO-1 expression in breast cancer patients undergoing neoadjuvant chemotherapy. Breast Cancer Res Treat 2022; 193:393-403. [PMID: 35304903 DOI: 10.1007/s10549-022-06565-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/22/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Heme oxygenase-1 (HO-1) has complex biological function, and is a candidate oncogene with a wide variety of deleterious functions in breast cancer. Here, we evaluated the relationship between expression of HO-1 protein with clinical response to neoadjuvant chemotherapy (NAC) in breast cancer patients. METHODS We used immunohistochemistry (IHC) to determine expression of HO-1 protein from core needle biopsy before NAC, then applied univariate and multivariate analyses to understand the relationship between HO-1 with pathological complete response (pCR) outcomes. Next, Kaplan-Meier and Log-rank tests were used to compare disease-free survival (DFS) and overall survival (OS), between groups, and Cox proportional hazards regression analysis applied for prognostic evaluation. RESULTS A total of 575 patients with locally advanced invasive breast cancer were included in the study, of which 111 (19.3%) achieved pCR after NAC. Results from multivariate analysis showed that high HO-1 expression was an independent predictor of low pCR rate (OR 0.254, 95% CI 0.026-0.643, p = 0.002). Moreover, results from survival analysis showed that high HO-1 expression was significantly associated with shorter DFS (HR 4.843, 95% CI 1.205-32.572, p = 0.026), but not with OS (HR 3.219, 95% CI 0.928-32.124, p = 0.071). Furthermore, HO-1 expression was significantly associated with lower pCR rate (OR 0.102, 95% CI 0.013-0.352), p = 0.001), poor DFS (HR 8.562, 95% CI 1.592-34.950, p = 0.009), and OS (HR 7.835, 95% CI 1.220-56.213, p = 0.023) of patients with triple-negative breast cancer (TNBC) patients. CONCLUSION Our results indicated that HO-1 expression is not only a biomarker for predicting pCR, but also a prognostic factor in breast cancer patients in a neoadjuvant setting, especially in TNBC subgroups.
Collapse
|
4
|
Expanding the armory for treating lymphoma: Targeting redox cellular status through thioredoxin reductase inhibition. Pharmacol Res 2022; 177:106134. [DOI: 10.1016/j.phrs.2022.106134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
|
5
|
Drumond-Bock AL, Bieniasz M. The role of distinct BRD4 isoforms and their contribution to high-grade serous ovarian carcinoma pathogenesis. Mol Cancer 2021; 20:145. [PMID: 34758842 PMCID: PMC8579545 DOI: 10.1186/s12943-021-01424-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive type of ovarian cancer, often diagnosed at advanced stages. Molecularly, HGSOC shows high degree of genomic instability associated with large number of genetic alterations. BRD4 is the 4th most amplified gene in HGSOC, which correlates with poor patients' prognosis. BRD4 is constitutively expressed and generates two proteins, BRD4 long (BRD4-L) and BRD4 short (BRD4-S). Both isoforms contain bromodomains that bind to lysine-acetylated histones. Amongst other functions, BRD4 participates in chromatin organization, acetylation of histones, transcriptional control and DNA damage repair. In cancer patients with amplified BRD4, the increased activity of BRD4 is associated with higher expression of oncogenes, such as MYC, NOTCH3 and NRG1. BRD4-driven oncogenes promote increased tumor cells proliferation, genetic instability, epithelial-mesenchymal transition, metastasis and chemoresistance. Ablation of BRD4 activity can be successfully achieved with bromodomain inhibitors (BETi) and degraders, and it has been applied in pre-clinical and clinical settings. Inhibition of BRD4 function has an effective anti-cancer effect, reducing tumor growth whether ablated by single agents or in combination with other drugs. When combined with standard chemotherapy, BETi are capable of sensitizing highly resistant ovarian cancer cell lines to platinum drugs. Despite the evidence that BRD4 amplification in ovarian cancer contributes to poor patient prognosis, little is known about the specific mechanisms by which BRD4 drives tumor progression. In addition, newly emerging data revealed that BRD4 isoforms exhibit contradicting functions in cancer. Therefore, it is paramount to expand studies elucidating distinct roles of BRD4-L and BRD4-S in HGSOC, which has important implications on development of therapeutic approaches targeting BRD4.
Collapse
Affiliation(s)
- Ana Luiza Drumond-Bock
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Magdalena Bieniasz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
6
|
Zhu Y, Wang L, Yu X, Jiang S, Wang X, Xing Y, Guo S, Liu Y, Liu J. Cr(VI) promotes tight joint and oxidative damage by activating the Nrf2/ROS/Notch1 axis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103640. [PMID: 33757840 DOI: 10.1016/j.etap.2021.103640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate whether Cr(VI) induced tight joint and oxidative damage in the small intestine, as mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2)/reactive oxygen species (ROS)/Notch1 axis crosstalk. Thirty-two ICR mice were obtained and subjected to Cr(VI) via intragastric administration daily for 5 days. Western blot (WB) analysis, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC) staining, and immunofluorescence (IF) staining were applied to detect small intestinal damage, Nrf2, Notch1, and respective downstream targets in this research. Results showed that Cr(VI) led to the tight joint and oxidative damage in the small intestine of mice. Nrf2 was stimulated, and Notch1 (Notch intracellular domain, NICD1) was activated to translocate into the nucleus and activate an antioxidant action. These findings were validated by WB analysis and IF staining. ROS levels increased as the Cr(VI) concentration increased. The colocalization analysis of Nrf2 and NICD1 implied that a crosstalk between Nrf2 and Notch1 existed. Therefore, this study indicated that the Nrf2/ROS/Notch1 axis crosstalk could aggravate the tight joint and oxidative damage in the small intestine after Cr(VI) treatment.
Collapse
Affiliation(s)
- Yiran Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Lumei Wang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, 266032, China
| | - Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Xiaozhou Wang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Yuxiao Xing
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Shuhua Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong, 271018, China.
| |
Collapse
|
7
|
Lu JJ, Abudukeyoumu A, Zhang X, Liu LB, Li MQ, Xie F. Heme oxygenase 1: a novel oncogene in multiple gynecological cancers. Int J Biol Sci 2021; 17:2252-2261. [PMID: 34239353 PMCID: PMC8241721 DOI: 10.7150/ijbs.61073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Heme oxygenase 1 (HO-1), also known as heat shock protein 32 (HSP32), is a stress-inducible enzyme. In the past, it was believed to participate in maintaining cell homeostasis, reducing oxidative stress damage and exerting anti-apoptotic effects. When exposed to noxious stimulation, the expression of HO-1 in the body will increase, antagonizing these oxidative stresses and protecting our bodies. Recently, many studies showed that HO-1 was also highly-expressed in multiple gynecological cancers (such as ovarian cancer, cervical cancer and endometrial cancer), suggesting that it should be closely related to cell proliferation, metastasis, immune regulation and angiogenesis as an oncogene. This review summarizes the different effects of HO-1 under normal and diseased conditions with a brief discussion of its implications on the diagnosis and treatment of gynecological cancers, aiming to provide a new clue for prevention and treatment of diseases.
Collapse
Affiliation(s)
- Jia-Jing Lu
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ayitila Abudukeyoumu
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Xing Zhang
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No.2 People's Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, 213003, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
8
|
Nitti M, Ivaldo C, Traverso N, Furfaro AL. Clinical Significance of Heme Oxygenase 1 in Tumor Progression. Antioxidants (Basel) 2021; 10:antiox10050789. [PMID: 34067625 PMCID: PMC8155918 DOI: 10.3390/antiox10050789] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase 1 (HO-1) plays a key role in cell adaptation to stressors through the antioxidant, antiapoptotic, and anti-inflammatory properties of its metabolic products. For these reasons, in cancer cells, HO-1 can favor aggressiveness and resistance to therapies, leading to poor prognosis/outcome. Genetic polymorphisms of HO-1 promoter have been associated with an increased risk of cancer progression and a high degree of therapy failure. Moreover, evidence from cancer biopsies highlights the possible correlation between HO-1 expression, pathological features, and clinical outcome. Indeed, high levels of HO-1 in tumor specimens often correlate with reduced survival rates. Furthermore, HO-1 modulation has been proposed in order to improve the efficacy of antitumor therapies. However, contrasting evidence on the role of HO-1 in tumor biology has been reported. This review focuses on the role of HO-1 as a promising biomarker of cancer progression; understanding the correlation between HO-1 and clinical data might guide the therapeutic choice and improve the outcome of patients in terms of prognosis and life quality.
Collapse
|
9
|
He X, Yao Q, Fan D, Duan L, You Y, Liang W, Zhou Z, Teng S, Liang Z, Hall DD, Song LS, Chen B. Cephalosporin antibiotics specifically and selectively target nasopharyngeal carcinoma through HMOX1-induced ferroptosis. Life Sci 2021; 277:119457. [PMID: 33831425 DOI: 10.1016/j.lfs.2021.119457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/21/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
AIMS Many antibiotics derived from mold metabolites have been found to possess anticarcinogenic properties. We aimed to investigate whether they may elicit anticancer activity, especially against nasopharyngeal carcinoma. MAIN METHODS The response of nasopharyngeal and other carcinoma cell lines to cephalosporin antibiotics was evaluated in vitro and in vivo. MTT and clonogenic colony formation assays assessed the viability and proliferation of cultured cells. Flow cytometry was used to assess cell cycle parameters and apoptotic markers. Tumor growth was determined using a xenograft model in vivo. Microarray and RT-qPCR expression analyses investigate differential gene expression. Mechanistic assessment of HMOX1 in cefotaxime-mediated ferroptosis was tested with Protoporphyrin IX zinc. KEY FINDINGS Cephalosporin antibiotics showed highly specific and selective anticancer activity on nasopharyngeal carcinoma CNE2 cells both in vitro and vivo with minimal toxicity. Cefotaxime sodium significantly regulated 11 anticancer relevant genes in CNE2 cells in a concentration-dependent manner. Pathway analyses indicate apoptotic and the ErbB-MAPK-p53 signaling pathways are significantly enriched. HMOX1 represents the top one ranked upregulated gene by COS and overlaps with 16 of 42 enriched apoptotic signaling pathways. Inhibition of HMOX1 significantly reduced the anticancer efficacy of cefotaxime in CNE2 cells. SIGNIFICANCE Our discovery is the first to highlight the off-label potential of cephalosporin antibiotics as a specific and selective anticancer drug for nasopharyngeal carcinoma. We mechanistically show that induction of ferroptosis through HMOX1 induction mediates cefotaxime anticancer activity. Our findings provide an alternative treatment for nasopharyngeal carcinoma by showing that existing cephalosporin antibiotics are specific and selective anticancer drugs.
Collapse
Affiliation(s)
- Xiaoqiong He
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China.
| | - Qian Yao
- Institute of Yunnan Cancer, the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dan Fan
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Ling Duan
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yutong You
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Wenjing Liang
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Zhangping Zhou
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Song Teng
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Zhuoxuan Liang
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Duane D Hall
- Department of Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Long-Sheng Song
- Department of Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Biyi Chen
- Department of Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
10
|
Zhang G, Li Y, Xu J, Xiong Z. Advances in the role of miRNAs in the occurrence and development of osteosarcoma. Open Med (Wars) 2020; 15:1003-1011. [PMID: 33336056 PMCID: PMC7718646 DOI: 10.1515/med-2020-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the skeletal system in the clinic. It mainly occurs in adolescent patients and the pathogenesis of the disease is very complicated. The distant metastasis may occur in the early stage, and the prognosis is poor. MicroRNAs (miRNAs) are non-coding RNAs of about 18–25 nt in length that are involved in post-transcriptional regulation of genes. miRNAs can regulate target gene expression by promoting the degradation of target mRNAs or inhibiting the translation process, thereby the proliferation of OS cells can be inhibited and the apoptosis can be promoted; in this way, miRNAs can affect the metabolism of OS cells and can also participate in the occurrence, invasion, metastasis, and recurrence of OS. Some miRNAs have already been found to be closely related to the prognosis of patients with OS. Unlike other reviews, this review summarizes the miRNA molecules closely related to the development, diagnosis, prognosis, and treatment of OS in recent years. The expression and influence of miRNA molecule on OS were discussed in detail, and the related research progress was summarized to provide a new research direction for early diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Guanyu Zhang
- Queen Mary college of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Yiran Li
- Queen Mary college of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Jiasheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfang Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China
| |
Collapse
|
11
|
Lu T, Tang J, Shrestha B, Heath BR, Hong L, Lei YL, Ljungman M, Neamati N. Up-regulation of hypoxia-inducible factor antisense as a novel approach to treat ovarian cancer. Theranostics 2020; 10:6959-6976. [PMID: 32550915 PMCID: PMC7295058 DOI: 10.7150/thno.41792] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is estimated to kill ~14,000 women in the United States in 2019. Current chemotherapies to treat OC initially show therapeutic efficacy but frequently drug resistance develops, at which point therapies with alternative targets are needed. Herein, we are describing a novel approach to sensitize these tumors to standard chemotherapies by increasing the transcription of hypoxia-inducible factor antisense. Methods: Genome-wide Bru-seq analysis was performed to fully capture the nascent transcriptional signature of OC cells treated with the gp130 inhibitor, SC144. In vitro and in vivo analysis, including characterization of hypoxia and select protein expression, combination with standard of care chemotherapy and antitumor efficacy were performed to assess the biological activity of SC144 on induction of hypoxia in OC cells. Results: Bru-seq analysis of OVCAR8 cells treated with SC144 shows upregulation of hypoxia related genes. In addition, transcription of hypoxia-inducible factor antisense (HIF1A-AS2) was induced that in turn reduced expression of HIF-1α and simultaneously increased expression of NDRG1. Furthermore, we observed decreased protein levels of EGFR, Met, c-Myc, cyclin D1, MMP-2, MMP-9 and TF, and phosphorylation of Src and P130-cas. SC144-induced alterations of HIF-1α and NDRG1 were also confirmed in prostate cancer cells. Ciclopirox olamine (CPX) induces a cellular transcriptional profile comparable to SC144, suggesting a similar cellular mechanism of action between these two compounds. In addition, SC144 sensitized OC cells to olaparib, carboplatin and cisplatin, and shows better in vivo efficacy than CPX. Conclusion: Induction of hypoxic stress responses through inhibition of gp130 represents a novel approach to design effective anticancer treatments in combination with standard-of-care chemotherapy in OC and the efficacy reported here strongly supports their clinical development.
Collapse
|
12
|
Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation. Int J Oncol 2020; 57:445-455. [PMID: 32626932 PMCID: PMC7307592 DOI: 10.3892/ijo.2020.5065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Curcumin displays anticancer properties; however, some issues with the drug delivery mode limit its therapeutic use. Although reformulation and derivatization of curcumin have improved its bioavailability, curcumin derivatives may not retain the same anticancer properties as the parent compound. The present study investigated the anticancer properties of two curcumin complexes, the iron‑curcumin [Fe(Cur)3] and boron‑curcumin [B(Cur)2] complexes, in the MDA‑MB‑231 breast cancer cell line. The cellular localization of curcumin, B(Cur)2 and Fe(Cur)3 was determined by fluorescence microscopy. Cell proliferation, migration and invasion were also analysed. Furthermore, apoptosis‑associated proteins were detected by using a proteome profiler array, and ion channel gene expression was analysed by reverse transcription‑quantitative PCR. The results demonstrated that the three compounds were localized in the perinuclear and cytoplasmic regions of the cell, and displayed cytotoxicity with IC50 values of 25, 35 and 8 µM for curcumin, B(Cur)2 and Fe(Cur)3, respectively. In addition, the three compounds inhibited cell invasion, whereas only curcumin and B(Cur)2 inhibited cell migration. Furthermore, cell exposure to curcumin resulted in an increase in the relative expression of the two key proapoptotic proteins, cytochrome c and cleaved caspase‑3, as well as the antiapoptotic protein haem oxygenase‑1. In addition, curcumin increased the expression levels of the voltage‑gated potassium channels Kv2.1 and Kv3.2. Similarly, the expression levels of the chloride channel bestrophin‑1 and the calcium channel coding gene calcium voltage‑gated channel auxiliary subunit γ4 were increased following exposure to curcumin. Taken together, these results indicated that Fe(Cur)3 and B(Cur)2 may display similar anticancer properties as curcumin, suggesting that chemical complexation may be considered as a strategy for improving the potency of curcumin in the treatment of breast cancer.
Collapse
|
13
|
Duvigneau JC, Esterbauer H, Kozlov AV. Role of Heme Oxygenase as a Modulator of Heme-Mediated Pathways. Antioxidants (Basel) 2019; 8:antiox8100475. [PMID: 31614577 PMCID: PMC6827082 DOI: 10.3390/antiox8100475] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
The heme oxygenase (HO) system is essential for heme and iron homeostasis and necessary for adaptation to cell stress. HO degrades heme to biliverdin (BV), carbon monoxide (CO) and ferrous iron. Although mostly beneficial, the HO reaction can also produce deleterious effects, predominantly attributed to excessive product formation. Underrated so far is, however, that HO may exert effects additionally via modulation of the cellular heme levels. Heme, besides being an often-quoted generator of oxidative stress, plays also an important role as a signaling molecule. Heme controls the anti-oxidative defense, circadian rhythms, activity of ion channels, glucose utilization, erythropoiesis, and macrophage function. This broad spectrum of effects depends on its interaction with proteins ranging from transcription factors to enzymes. In degrading heme, HO has the potential to exert effects also via modulation of heme-mediated pathways. In this review, we will discuss the multitude of pathways regulated by heme to enlarge the view on HO and its role in cell physiology. We will further highlight the contribution of HO to pathophysiology, which results from a dysregulated balance between heme and the degradation products formed by HO.
Collapse
Affiliation(s)
- J Catharina Duvigneau
- Institute for Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1210 Vienna, Austria.
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria.
- Laboratory of Navigational Redox Lipidomics, Department of Human Pathology, IM Sechenov Moscow State Medical University, 119992 Moscow, Russia.
| |
Collapse
|
14
|
Cesna V, Sukovas A, Jasukaitiene A, Silkuniene G, Paskauskas S, Dambrauskas Z, Gulbinas A. Stimulated upregulation of HO-1 is associated with inadequate response of gastric and ovarian cancer cell lines to hyperthermia and cisplatin treatment. Oncol Lett 2019; 18:1961-1968. [PMID: 31423266 DOI: 10.3892/ol.2019.10489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/21/2019] [Indexed: 01/18/2023] Open
Abstract
Heme oxygenase (HO)-1 is a heat shock protein induced by hyperthermia, responsible for cellular resistance to temperature. The aim of this in vitro study was to clarify the response of gastric and ovarian cancer cells to hyperthermic intraperitoneal chemotherapy, following the modulation of HO-1 expression. AGS and OVCAR-3 cells were treated with different temperature regimens, either alone or in combination with an IC50 dose of cisplatin for 1 h. Prior to treatment, HO-1 expression was silenced by short interfering RNA transfection. In OVCAR-3 cells, cisplatin increased HO-1 mRNA expression by 3.73-fold under normothermia and 2.4-fold under hyperthermia; furthermore, these factors similarly increased HO-1 protein expression levels. Exposure to cisplatin under hyperthermia reduced the viability of OVCAR-3 cells by 36% and HO-1-silencing enhanced this effect by 20%. HO-1-silencing under normothermia increased apoptotic rates in cisplatin-treated OVCAR-3 cells by 2.07-fold, and hyperthermia enhanced the effect by 3.09-fold. Semi-quantitative polymerase chain reaction (PCR) cell analysis indicated that exposure to cisplatin decreased the cell index under normothermia, and that hyperthermia boosted this effect in OVCAR-3. In AGS cells, only temperature increased cellular HO-1 levels. Silencing HO-1 in AGS cells at 37°C reduced viability by 16% and increased apoptotic rates 2.63-fold. Hyperthermia did not affect AGS viability; however, apoptosis was increased 6.84-fold. PCR analysis indicated no additional effects of hyperthermia on the AGS cell index. HO-1 is induced in cancer cells by different stressors in a variable manner. In tumors with highly inducible HO-1, prior silencing of this gene could improve the cellular response to hyperthermia and cisplatin.
Collapse
Affiliation(s)
- Vaidotas Cesna
- Department of Surgery, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Arturas Sukovas
- Department of Obstetrics and Gynaecology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Aldona Jasukaitiene
- Institute for Digestive Research, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Giedre Silkuniene
- Institute for Digestive Research, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Saulius Paskauskas
- Department of Obstetrics and Gynaecology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Zilvinas Dambrauskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Antanas Gulbinas
- Institute for Digestive Research, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
15
|
Zhang HS, Zhang ZG, Du GY, Sun HL, Liu HY, Zhou Z, Gou XM, Wu XH, Yu XY, Huang YH. Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis. J Cell Mol Med 2019; 23:3451-3463. [PMID: 30809937 PMCID: PMC6484400 DOI: 10.1111/jcmm.14241] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/07/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Abnormal metabolism of tumour cells is closely related to the occurrence and development of breast cancer, during which the expression of NF‐E2‐related factor 2 (Nrf2) is of great significance. Metastatic breast cancer is one of the most common causes of cancer death worldwide; however, the molecular mechanism underlying breast cancer metastasis remains unknown. In this study, we found that the overexpression of Nrf2 promoted proliferation and migration of breast cancers cells. Inhibition of Nrf2 and overexpression of Kelch‐like ECH‐associated protein 1 (Keap1) reduced the expression of glucose‐6‐phosphate dehydrogenase (G6PD) and transketolase of pentose phosphate pathway, and overexpression of Nrf2 and knockdown of Keap1 had opposite effects. Our results further showed that the overexpression of Nrf2 promoted the expression of G6PD and Hypoxia‐inducing factor 1α (HIF‐1α) in MCF‐7 and MDA‐MB‐231 cells. Overexpression of Nrf2 up‐regulated the expression of Notch1 via G6PD/HIF‐1α pathway. Notch signalling pathway affected the proliferation of breast cancer by affecting its downstream gene HES‐1, and regulated the migration of breast cancer cells by affecting the expression of EMT pathway. The results suggest that Nrf2 is a potential molecular target for the treatment of breast cancer and targeting Notch1 signalling pathway may provide a promising strategy for the treatment of Nrf2‐driven breast cancer metastasis.
Collapse
Affiliation(s)
- Hong-Sheng Zhang
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Zhong-Guo Zhang
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Guang-Yuan Du
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Hong-Liang Sun
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Hui-Yun Liu
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Zhen Zhou
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiao-Meng Gou
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Xi-Hao Wu
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiao-Ying Yu
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| | - Ying-Hui Huang
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|