1
|
Liu C, Li Q, Ma JX, Lu B, Criswell T, Zhang Y. Exosome-mediated renal protection: Halting the progression of fibrosis. Genes Dis 2024; 11:101117. [PMID: 39263535 PMCID: PMC11388648 DOI: 10.1016/j.gendis.2023.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2024] Open
Abstract
Renal fibrosis is a complex and multifactorial process that involves inflammation, cell proliferation, collagen, and fibronectin deposition in the kidney, ultimately leading to chronic kidney disease and even end-stage renal disease. The main goal of treatment is to slow down or halt the progression of fibrosis and to improve or preserve kidney function. Despite significant progress made in understanding the underlying mechanisms of renal fibrosis, current therapies have limited renal protection as the disease progresses. Exosomes derived from stem cells are a newer area of research for the treatment of renal fibrosis. Exosomes as nano-sized extracellular vesicles carry proteins, lipids, and nucleic acids, which can be taken up by local or distant cells, serving as mediators of intercellular communication and as drug delivery vehicles. Exosomes deliver molecules that reduce inflammation, renal fibrosis and extracellular matrix protein production, and promote tissue regeneration in animal models of kidney disease. Additionally, they have several advantages over stem cells, such as being non-immunogenic, having low risk of tumor formation, and being easier to produce and store. This review describes the use of natural and engineered exosomes containing therapeutic agents capable of mediating anti-inflammatory and anti-fibrotic processes during both acute kidney injury and chronic kidney disease. Exosome-based therapies will be compared with stem cell-based treatments for tissue regeneration, with a focus on renal protection. Finally, future directions and strategies for improving the therapeutic efficacy of exosomes are discussed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, United States
| | - Baisong Lu
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Tracy Criswell
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
2
|
Ten A, Kumeiko V, Farniev V, Gao H, Shevtsov M. Tumor Microenvironment Modulation by Cancer-Derived Extracellular Vesicles. Cells 2024; 13:682. [PMID: 38667297 PMCID: PMC11049026 DOI: 10.3390/cells13080682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in the process of tumorigenesis, regulating the growth, metabolism, proliferation, and invasion of cancer cells, as well as contributing to tumor resistance to the conventional chemoradiotherapies. Several types of cells with relatively stable phenotypes have been identified within the TME, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), neutrophils, and natural killer (NK) cells, which have been shown to modulate cancer cell proliferation, metastasis, and interaction with the immune system, thus promoting tumor heterogeneity. Growing evidence suggests that tumor-cell-derived extracellular vesicles (EVs), via the transfer of various molecules (e.g., RNA, proteins, peptides, and lipids), play a pivotal role in the transformation of normal cells in the TME into their tumor-associated protumorigenic counterparts. This review article focuses on the functions of EVs in the modulation of the TME with a view to how exosomes contribute to the transformation of normal cells, as well as their importance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vladislav Farniev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str., 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str., 22, 81675 Munich, Germany
| |
Collapse
|
3
|
Xie L, Zhang K, You B, Yin H, Zhang P, Shan Y, Gu Z, Zhang Q. Hypoxic nasopharyngeal carcinoma-derived exosomal miR-455 increases vascular permeability by targeting ZO-1 to promote metastasis. Mol Carcinog 2023; 62:803-819. [PMID: 36929868 DOI: 10.1002/mc.23525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Nasopharyngeal carcinoma (NPC), the most frequent reason for treatment failure in head and neck tumors, has the greatest incidence of distant metastases. Increased vascular permeability facilitates metastasis. Exosomal microRNAs (miRNAs) have been implicated in the development of the premetastatic niche and are emerging as prospective biomarkers in cancer patients. We discovered that a higher level of miR-455 was connected to a larger propensity for NPC metastasis based on deep sequencing and RT-qPCR. We found that hypoxia promoted NPC exosomes release and increased miR-455 expression in a way that was hypoxia-inducible factor 1-alpha (HIF-1α) dependent. Exosomes from NPC cells with high levels of miR-455 were found to specifically target zonula occludens 1 (ZO-1), increasing the permeability of endothelial monolayers in vitro vascular permeability and transendothelial invasion experiments. Additional in vivo studies showed that zebrafish with sustained miR-455-overexpressing NPC cell xenografts displayed increased tumor cell mass throughout the body. In vivo, zebrafish vascular tight junction integrity was disrupted by exosomes produced by NPC cells with elevated miR-455 expression. Mice-bearing xenografts further supported the finding that exosomes containing miR-455 might reduce ZO-1 expression in addition to promote NPC cell growth. These findings suggest that in a hypoxic microenvironment, exosomal miR-455 released by NPC cells enhances vascular permeability and promotes metastasis by targeting ZO-1. The HIF-1α-miR-455-ZO-1 signaling pathway may be a promising predictor and potential therapeutic target for NPC with metastasis.
Collapse
Affiliation(s)
- Lixiao Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Kaiwen Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Bo You
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Haimeng Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Panpan Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Shan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
4
|
Role of tumour-derived exosomes in metastasis. Biomed Pharmacother 2022; 147:112657. [DOI: 10.1016/j.biopha.2022.112657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
|
5
|
Visan KS, Lobb RJ, Wen SW, Bedo J, Lima LG, Krumeich S, Palma C, Ferguson K, Green B, Niland C, Cloonan N, Simpson PT, McCart Reed AE, Everitt SJ, MacManus MP, Hartel G, Salomon C, Lakhani SR, Fielding D, Möller A. Blood-Derived Extracellular Vesicle-Associated miR-3182 Detects Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14010257. [PMID: 35008424 PMCID: PMC8750562 DOI: 10.3390/cancers14010257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer-related death worldwide as patients are burdened with incredibly poor prognosis. Low survival rates are primarily attributed to lack of early detection and, therefore, timely therapeutic interventions. Late diagnosis is essentially caused by absent and non-specific symptoms, and compounded by inadequate diagnostic tools. We show here that a lung cancer biomarker, based on a simple blood test, might provide promising advantages for diagnostic assessment. Small extracellular vesicles (sEVs) are miniscule messengers that carry cancer biomarkers and are easily detected in the blood. We identify that the abundance of a specific micro-RNA, miR-3182, in these sEVs can be detected in the blood of lung cancer patients but not in controls with benign lung conditions. This demonstrates the potential use of miR-3182 as a biomarker for lung cancer diagnosis. Abstract With five-year survival rates as low as 3%, lung cancer is the most common cause of cancer-related mortality worldwide. The severity of the disease at presentation is accredited to the lack of early detection capacities, resulting in the reliance on low-throughput diagnostic measures, such as tissue biopsy and imaging. Interest in the development and use of liquid biopsies has risen, due to non-invasive sample collection, and the depth of information it can provide on a disease. Small extracellular vesicles (sEVs) as viable liquid biopsies are of particular interest due to their potential as cancer biomarkers. To validate the use of sEVs as cancer biomarkers, we characterised cancer sEVs using miRNA sequencing analysis. We found that miRNA-3182 was highly enriched in sEVs derived from the blood of patients with invasive breast carcinoma and NSCLC. The enrichment of sEV miR-3182 was confirmed in oncogenic, transformed lung cells in comparison to isogenic, untransformed lung cells. Most importantly, miR-3182 can successfully distinguish early-stage NSCLC patients from those with benign lung conditions. Therefore, miR-3182 provides potential to be used for the detection of NSCLC in blood samples, which could result in earlier therapy and thus improved outcomes and survival for patients.
Collapse
Affiliation(s)
- Kekoolani S. Visan
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.S.V.); (R.J.L.); (L.G.L.); (S.K.)
- School of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Richard J. Lobb
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.S.V.); (R.J.L.); (L.G.L.); (S.K.)
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shu Wen Wen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia;
| | - Justin Bedo
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Luize G. Lima
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.S.V.); (R.J.L.); (L.G.L.); (S.K.)
| | - Sophie Krumeich
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.S.V.); (R.J.L.); (L.G.L.); (S.K.)
| | - Carlos Palma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane QLD 4029, Australia; (C.P.); (C.S.)
| | - Kaltin Ferguson
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Ben Green
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Colleen Niland
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Nicole Cloonan
- Faculty of Science, University of Auckland, Auckland 1010, New Zealand;
| | - Peter T. Simpson
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Sarah J. Everitt
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (S.J.E.); (M.P.M.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael P. MacManus
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (S.J.E.); (M.P.M.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane QLD 4029, Australia; (C.P.); (C.S.)
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago 171177, Chile
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - David Fielding
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Department of Thoracic Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.S.V.); (R.J.L.); (L.G.L.); (S.K.)
- School of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Correspondence: ; Tel.: +61-7-3845-3950; Fax: +61-7-3362-0105
| |
Collapse
|
6
|
Mbugua SN, Njenga LW, Odhiambo RA, Wandiga SO, Onani MO. Beyond DNA-targeting in Cancer Chemotherapy. Emerging Frontiers - A Review. Curr Top Med Chem 2021; 21:28-47. [PMID: 32814532 DOI: 10.2174/1568026620666200819160213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Modern anti-cancer drugs target DNA specifically for rapid division of malignant cells. One downside of this approach is that they also target other rapidly dividing healthy cells, such as those involved in hair growth leading to serious toxic side effects and hair loss. Therefore, it would be better to develop novel agents that address cellular signaling mechanisms unique to cancerous cells, and new research is now focussing on such approaches. Although the classical chemotherapy area involving DNA as the set target continues to produce important findings, nevertheless, a distinctly discernible emerging trend is the divergence from the cisplatin operation model that uses the metal as the primary active center of the drug. Many successful anti-cancer drugs present are associated with elevated toxicity levels. Cancers also develop immunity against most therapies and the area of cancer research can, therefore, be seen as an area with a high unaddressed need. Hence, ongoing work into cancer pathogenesis is important to create accurate preclinical tests that can contribute to the development of innovative drugs to manage and treat cancer. Some of the emergent frontiers utilizing different approaches include nanoparticles delivery, use of quantum dots, metal complexes, tumor ablation, magnetic hypothermia and hyperthermia by use of Superparamagnetic Iron oxide Nanostructures, pathomics and radiomics, laser surgery and exosomes. This review summarizes these new approaches in good detail, giving critical views with necessary comparisons. It also delves into what they carry for the future, including their advantages and disadvantages.
Collapse
Affiliation(s)
- Simon N Mbugua
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Shem O Wandiga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Martin O Onani
- Organometallics and Nanomaterials, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| |
Collapse
|
7
|
Liu Y, Wang Y, Lv Q, Li X. Exosomes: From garbage bins to translational medicine. Int J Pharm 2020; 583:119333. [PMID: 32348800 DOI: 10.1016/j.ijpharm.2020.119333] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are lipid bilayer-enclosed vesicles of endosomal origin, which initially considered as garbage bins to dispose unwanted cellular components, but they are now emerged as an intercellular communication system involved in several physiological and pathological conditions. With the increasing understanding that the healthy patients release exosomes with distinct proteins and RNAs, exosomes have been exploited as biomarkers for disease diagnosis and prognosis. Owing to the intrinsic immunomodulatory in a tumor microenvironment, exosomes have also been vaccinated into patients against malignant diseases. Moreover, the nano-metered exosomes are relatively stable in extracellular fluids. Thus they appear attractive in delivering "cargo" to destined cells with enhanced efficiency. In this review, we outline the current knowledge in exosomal biogenesis and isolation. Furthermore, the biological activities of exosomes are also discussed with a focus on their potentials to be employed in translational medicine, especially as biomarkers, vaccines and therapeutic delivery system.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuzhu Wang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianzhou Lv
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Lin S, Yu Z, Chen D, Wang Z, Miao J, Li Q, Zhang D, Song J, Cui D. Progress in Microfluidics-Based Exosome Separation and Detection Technologies for Diagnostic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903916. [PMID: 31663295 DOI: 10.1002/smll.201903916] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/30/2019] [Indexed: 05/05/2023]
Abstract
Exosomes are secreted by most cell types and circulate in body fluids. Recent studies have revealed that exosomes play a significant role in intercellular communication and are closely associated with the pathogenesis of disease. Therefore, exosomes are considered promising biomarkers for disease diagnosis. However, exosomes are always mixed with other components of body fluids. Consequently, separation methods for exosomes that allow high-purity and high-throughput separation with a high recovery rate and detection techniques for exosomes that are rapid, highly sensitive, highly specific, and have a low detection limit are indispensable for diagnostic applications. For decades, many exosome separation and detection techniques have been developed to achieve the aforementioned goals. However, in most cases, these two techniques are performed separately, which increases operation complexity, time consumption, and cost. The emergence of microfluidics offers a promising way to integrate exosome separation and detection functions into a single chip. Herein, an overview of conventional and microfluidics-based techniques for exosome separation and detection is presented. Moreover, the advantages and drawbacks of these techniques are compared.
Collapse
Affiliation(s)
- Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zixian Yu
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jianmin Miao
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qichao Li
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daoyuan Zhang
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Song
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Zhang D, Li D, Shen L, Hu D, Tang B, Guo W, Wang Z, Zhang Z, Wei G, He D. Exosomes derived from Piwil2‑induced cancer stem cells transform fibroblasts into cancer‑associated fibroblasts. Oncol Rep 2020; 43:1125-1132. [PMID: 32323829 PMCID: PMC7057936 DOI: 10.3892/or.2020.7496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, several studies have demonstrated that cancer cell‑derived exosomes can facilitate tumor development and metastasis formation. However, the detailed function of exosomes released by cancer stem cells (CSCs) requires further investigation. The aim of the present study was to investigate the role of CSC‑derived exosomes in tumor development. For this purpose, Piwil2‑induced cancer stem cells (Piwil2‑iCSCs) were used as exosome‑generating cells, while fibroblasts (FBs) served as recipient cells. Exosomes were isolated by the ultracentrifugation of Piwil2‑iCSC‑conditioned medium and identified by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. To evaluate the effects of the exosomes on cell proliferation, migration and invasion, cell counting assay (CCK‑8), a wound healing assay and a Transwell assay were performed. Protein expression [matrix metalloproteinase (MMP)2, MMP9, α‑smooth muscle actin (α‑SMA) and vimentin and fibroblast‑activating protein (FAP)] was examined in FBs by western blot analysis. It was found that the Piwil2‑iCSC‑derived exosomes (Piwil2‑iCSC‑Exo) were oval or spherical, membrane‑coated vesicles with a uniform size (30‑100 nm in diameter). They are characterized by the surface expression of CD9, CD63, Hsp70 and Piwil2 proteins. Additional results from functional analyses revealed that Piwil2‑iCSC‑Exo enhanced the proliferative, migratory and invasive abilities of FBs, accompanied by the upregulated expression of MMP2 and MMP9. In addition, the increased expression of α‑SMA (P<0.05), vimentin (P<0.01 vs. control group, P<0.05 vs. PBS group) and FAP (P<0.001 vs. control group, P<0.01 vs. PBS group) following exposure to Piwil2‑iCSC‑Exo suggested that the exosomes induced FB transformation into cancer‑associated fibroblasts (CAFs). On the whole, the findings of this study demonstrate that Piwil2‑iCSC‑Exo induce the cancer‑associated phenotype in fibroblasts in vitro, suggesting that CSCs can promote tumor development through the modulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Dan Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Dian Li
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Dong Hu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Bo Tang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Wenhao Guo
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Zhang Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Zhaoxia Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
10
|
Bernardi S, Foroni C, Zanaglio C, Re F, Polverelli N, Turra A, Morello E, Farina M, Cattina F, Gandolfi L, Zollner T, Buttini EA, Malagola M, Russo D. Feasibility of tumor‑derived exosome enrichment in the onco‑hematology leukemic model of chronic myeloid leukemia. Int J Mol Med 2019; 44:2133-2144. [PMID: 31638195 PMCID: PMC6844640 DOI: 10.3892/ijmm.2019.4372] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/12/2019] [Indexed: 01/18/2023] Open
Abstract
Due to the discovery of their role in intra-cellular communications, exosomes, which carry information specific to the cell of origin, have garnered considerable attention in cancer research. Moreover, there is evidence to suggest the possibility of isolating different exosome sub-populations based on target antigens at the cell surface. Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the break-point cluster region-proto-oncogene 1 tyrosine-protein kinase (BCR-ABL1) fusion-gene, derived from the t (9;22) translocation. Tyrosine kinase inhibitors (TKIs) target BCR-ABL1 protein and induce major or deep molecular responses in the majority of patients. Despite the fact that several studies have demonstrated the persistence of leukemic cells in the bone marrow niche, even following treatment, TKIs prolong patient survival time and facilitate treatment-free remission. These characteristics render CML a plausible model for investigating the feasibility of tumor-derived exosome fraction enrichment. In the present study, patients in the chronic phase (CP) of CML were treated with TKIs, and the quantification of the BCR-ABL1 exosomal transcript was performed using digital PCR (dPCR). The possibility of tumor-derived exosomes enrichment was confirmed, and for the first time, to the best of our knowledge, the detection of the BCR-ABL1 transcript highlighted the presence of active leukemic cells in patients with CP-CML. According to these findings, tumor-derived exosomes may be considered a novel tool for the identification of active leukemic cells, and for the assessment of innovative monitoring focused on the biological functions of exosomes in CML.
Collapse
Affiliation(s)
- Simona Bernardi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Chiara Foroni
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Camilla Zanaglio
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Federica Re
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Nicola Polverelli
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Alessandro Turra
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Enrico Morello
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Mirko Farina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Federica Cattina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Lisa Gandolfi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Tatiana Zollner
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Eugenia Accorsi Buttini
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Michele Malagola
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Domenico Russo
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| |
Collapse
|
11
|
Long S, Long S, He H, Chen G. MicroRNA-765 is pregulated in multiple myeloma and serves an oncogenic role by directly targeting SOX6. Exp Ther Med 2019; 17:4741-4747. [PMID: 31105792 DOI: 10.3892/etm.2019.7473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence has revealed that microRNAs (miRNAs) are closely associated with multiple myeloma (MM) pathogenesis and progression. Therefore, an in-depth understanding of the biological functions of miRNAs in MM may be helpful for the identification of promising therapeutic techniques for patients with MM. miRNA-765 (miR-765) has been reported to be dysregulated in many types of human cancer. However, the expression pattern, specific roles and underlying mechanisms of miR-765 in MM remain largely unknown. In the present study, plasma miR-765 significantly increased in patients with MM and cell lines. The downregulation of miR-765 in MM cells attenuated proliferation and promoted apoptosis. Bioinformatics analysis predicted that SRY-Box 6 (SOX6) was a putative target of miR-765. This was experimentally verified using a luciferase reporter assay, reverse transcription-quantitative PCR and western blot analysis. Furthermore, plasma SOX6 was downregulated in patients with MM and the downregulation of SOX6 was inversely correlated with that of miR-765 expression. Furthermore, SOX6 knockdown markedly abrogated the effects of miR-765 underexpression on cell proliferation and apoptosis in MM. The current study demonstrated that miR-765 serves an oncogenic role in MM progression by directly targeting SOX6, suggesting that miR-765 may be a potential therapeutic target for MM prevention and treatment.
Collapse
Affiliation(s)
- Shifeng Long
- Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Hematology, The Affiliated Hospital of Jinggangshan University, Ji'an, Jiangxi 343000, P.R. China
| | - Shengping Long
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, Ji'an, Jiangxi 343000, P.R. China
| | - Honglei He
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, Ji'an, Jiangxi 343000, P.R. China
| | - Guoan Chen
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Spugnini EP, Logozzi M, Di Raimo R, Mizzoni D, Fais S. A Role of Tumor-Released Exosomes in Paracrine Dissemination and Metastasis. Int J Mol Sci 2018; 19:E3968. [PMID: 30544664 PMCID: PMC6321583 DOI: 10.3390/ijms19123968] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Metastatic diffusion is thought to be a multi-step phenomenon involving the release of cells from the primary tumor and their diffusion through the body. Currently, several hypotheses have been put forward in order to explain the origin of cancer metastasis, including epithelial⁻mesenchymal transition, mutagenesis of stem cells, and a facilitating role of macrophages, involving, for example, transformation or fusion hybridization with neoplastic cells. In this paradigm, tumor-secreted extracellular vesicles (EVs), such as exosomes, play a pivotal role in cell communications, delivering a plethora of biomolecules including proteins, lipids, and nucleic acids. For their natural role in shuttling molecules, EVs have been newly considered a part of the metastatic cascade. They have a prominent role in preparing the so-called "tumor niches" in target organs. However, recent evidence has pointed out an even more interesting role of tumor EVs, consisting in their ability to induce malignant transformation in resident mesenchymal stem cells. All in all, in this review, we discuss the multiple involvements of EVs in the metastatic cascade, and how we can exploit and manipulate EVs in order to reduce the metastatic spread of malignant tumors.
Collapse
Affiliation(s)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|