1
|
Li J, Chen Q, Liu Z, Xu Y, Ji S. Predictive value of bowel dose-volume for severe radiation-induced lymphopenia and survival in cervical cancer. Front Immunol 2024; 15:1459206. [PMID: 39555075 PMCID: PMC11563826 DOI: 10.3389/fimmu.2024.1459206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Background Radiation-induced lymphopenia (RIL) is closely related to the prognosis of cervical cancer patients and may affect the efficacy of immune checkpoint inhibitors (ICIs). However, the factors influencing RIL are not very clear. In addition to bone marrow (BM) dose-volume, animal studies indicate radiation-induced bowel injury may be a more crucial factor. Further clarification of the correlation between RIL and bowel dose-volume is important for cervical cancer treatment. Methods Cervical cancer patients treated with postoperative radiotherapy or radical radiotherapy were eligible for this retrospective study. Clinical characteristics, dose parameters of bowel and BM, planning target volume (PTV) size, overall survival (OS) and progression-free survival (PFS) were recorded. The absolute lymphocyte count<0.5×109/L at radiotherapy end was defined as severe RIL (sRIL). Hazard ratio (HR) and 95% confidence interval (Cl)were estimated using Cox regression models. Survival curve was plotted using the Kaplan-Meier method. On this basis, the receiver operating characteristics (ROC) curve was used to calculate the area under the curve (AUC) for radiation parameters with sRIL as the state variable. Result A total of 118 cervical cancer patients were included in this study, with a median follow-up time of 57.6 months. In multivariable Cox regression analysis, international Federation of Gynecology and obstetrics (FIGO) stage (HR, 11.806; 95% CI, 3.256-42.809; p<0.001), concurrent chemotherapy (HR, 0.200; 95% CI, 0.054-0.748; p=0.017), sRIL after radiotherapy (HR, 6.009; 95% CI, 1.361-26.539; p=0.018), and pathological type (HR, 2.261; 95% CI, 1.043-4.901; p=0.039) were significantly correlated with OS. Patients with sRIL had significantly decreased OS (79.1% vs 94.1%; HR, 3.81; 95%CI, 1.46-9.92; p=0.023). In binary logistic regression analysis, sRIL was significantly correlated with bowel V45 (Odds radio (OR), 1.025; 95%CI, 1.007-1.044; p=0.007), BM V10 (OR, 0.987; 95%CI, 0.978-0.997; p=0.011), BM V20 (OR, 1.017; 95%CI, 1.002-1.031, p=0.027), and PTV size (OR, 0.998; 95%CI, 0.996-1.000; p=0.026). The ROC curve showed, bowel V45 (AUC=0.787, p<0.001) was the best indicator for predicting sRIL. Conclusion SRIL after radiotherapy could significantly predict decreased OS. In addition, sRIL is associated with higher bowel, BM dose-volume, PTV size, indicating that the bowel may be an important organ leading to an increased risk of sRIL.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Radiotherapy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qingqing Chen
- Department of Radiotherapy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhengcao Liu
- Department of Radiotherapy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yingying Xu
- Department of Radiotherapy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengjun Ji
- Department of Radiotherapy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
2
|
Takeda K, Umezawa R, Yamamoto T, Takahashi N, Suzuki Y, Kishida K, Omata S, Jingu K. Lymphopenia after palliative radiotherapy for vertebral metastases. JOURNAL OF RADIATION RESEARCH 2024; 65:523-531. [PMID: 38818633 PMCID: PMC11262856 DOI: 10.1093/jrr/rrae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Indexed: 06/01/2024]
Abstract
Lymphopenia is a well-known side effect of radiotherapy and has been shown to have a negative impact on patient outcomes. However, the extent of lymphopenia caused by palliative radiotherapy and its effect on patient prognosis has not been clarified. The aim of this study was to determine the incidence and severity of lymphopenia after palliative radiotherapy for vertebral metastases and to determine their effects on patients' survival outcomes. We conducted a retrospective analysis for patients who underwent palliative radiotherapy for vertebral metastases and could be followed up for 12 weeks. Lymphocyte counts were documented at baseline and throughout the 12-week period following the start of radiotherapy and their medians and interquartile ranges (IQRs) were recorded. Exploratory analyses were performed to identify predictive factors for lymphopenia and its impact on overall survival (OS). A total of 282 cases that met the inclusion criteria were analyzed. The median baseline lymphocyte count was 1.26 × 103/μl (IQR: 0.89-1.72 × 103/μl). Peak lymphopenia occurred at a median of 26 days (IQR: 15-45 days) with a median nadir of 0.52 × 103/μl (IQR: 0.31-0.81 × 103/μl). Long-term analysis of patients surviving for 1 year showed that lymphopenia persisted at 1 year after radiotherapy. The main irradiation site, radiation field length and pretreatment lymphocyte count were significantly related to grade 3 or higher lymphopenia. Lymphopenia was identified as a significant predictor of OS by multivariate Cox regression analysis. This study demonstrated the incidence of lymphopenia after palliative radiotherapy for vertebral metastases and its effect on patients' OS.
Collapse
Affiliation(s)
- Kazuya Takeda
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Miyagi Japan
- Department of Radiation Oncology, South Miyagi Medical Center, 38-1 Nishi, Ogawara, Shibata 989-1253, Miyagi, Japan
| | - Rei Umezawa
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Miyagi Japan
| | - Takaya Yamamoto
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Miyagi Japan
| | - Noriyoshi Takahashi
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Miyagi Japan
| | - Yu Suzuki
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Miyagi Japan
| | - Keita Kishida
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Miyagi Japan
| | - So Omata
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Miyagi Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Miyagi Japan
| |
Collapse
|
3
|
Pham TN, Coupey J, Toutain J, Candéias SM, Simonin G, Rousseau M, Touzani O, Thariat J, Valable S. Early effects of different brain radiotherapy modalities on circulating leucocyte subpopulations in rodents. Int J Radiat Biol 2024; 100:744-755. [PMID: 38466699 DOI: 10.1080/09553002.2024.2324471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024]
Abstract
PURPOSES Lymphopenia is extensively studied, but not circulating leucocyte subpopulations, which however have distinct roles in tumor tolerance. Proton therapy has been shown to have a lesser impact on the immune system than conventional X-ray radiotherapy through lower dose exposure to healthy tissues. We explored the differential effects of brain X-ray and proton irradiation on circulating leucocyte subpopulations. MATERIALS AND METHODS Leucocyte subpopulation counts from tumor-free mice were obtained 12 hours after 4 fractions of 2.5 Gy. The relationships between irradiation type (X-rays or protons), irradiated volume (whole-brain/hemi-brain) and dose rate (1 or 2 Gy/min) with circulating leucocyte subpopulations (T-CD4+, T-CD8+, B, and NK-cells, neutrophils, and monocytes) were investigated using linear regression and tree-based modeling approaches. Relationships between dose maps (brain, vessels, lymph nodes (LNs)) and leucocyte subpopulations were analyzed and applied to construct the blood dose model, assessing the hypothesis of a direct lymphocyte-killing effect in radiation-induced lymphopenia. RESULTS Radiation-induced lymphopenia occurred after X-ray but not proton brain irradiation in lymphoid subpopulations (T-CD4+, T-CD8+, B, and NK-cells). There was an increase in neutrophil counts following protons but not X-rays. Monocytes remained unchanged under both X-rays and protons. Besides irradiation type, irradiated volume and dose rate had a significant impact on NK-cell, neutrophil and monocyte levels but not T-CD4+, T-CD8+, and B-cells. The dose to the blood had a heterogeneous impact on leucocyte subpopulations: neutrophil counts remained stable with increasing dose to the blood, while lymphocyte counts decreased with increasing dose (T-CD8+-cells > T-CD4+-cells > B-cells > NK-cells). Direct cell-killing effect of the dose to the blood mildly contributed to radiation-induced lymphopenia. LN exposure significantly contributed to lymphopenia and partially explained the distinct impact of irradiation type on circulating lymphocytes. CONCLUSIONS Leucocyte subpopulations reacted differently to X-ray or proton brain irradiation. This difference could be partly explained by LN exposure to radiation dose. Further researches and analyses on other biological processes and interactions between leucocyte subpopulations are ongoing. The various mechanisms underlying leucocyte subpopulation changes under different irradiation modalities may have implications for the choice of radiotherapy modalities and their combination with immunotherapy in brain cancer treatment.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France - Normandie Université, France
| | - Julie Coupey
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| | - Jérôme Toutain
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| | - Serge M Candéias
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM-UMR5249, Grenoble, France
| | - Gaël Simonin
- CNRS, IPHC, UMR 7178, Strasbourg University, Strasbourg, France
| | - Marc Rousseau
- CNRS, IPHC, UMR 7178, Strasbourg University, Strasbourg, France
| | - Omar Touzani
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| | - Juliette Thariat
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France - Normandie Université, France
- Department of Radiation Oncology, Centre François Baclesse, Caen, Normandy, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| |
Collapse
|
4
|
Cao H, Yan H, Bai S, Gu B. Radiation-induced lymphopenia and the survival of women with cervical cancer: a meta-analysis. J OBSTET GYNAECOL 2023; 43:2194991. [PMID: 37205766 DOI: 10.1080/01443615.2023.2194991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 05/21/2023]
Abstract
The current systematic analysis and meta-analysis was aimed to evaluate the association between radiation-induced lymphopenia (RIL) and survival of women with cervical cancer (CC). PubMed, Embase, Web of Science, and Cochrane Library were searched for relevant cohort studies comparing survival between women with CC who developed versus not developed RIL after radiotherapy. We pooled the results using a random-effects model that incorporates heterogeneity. In the meta-analysis, 952 women with CC were included from eight cohort studies. Overall, 378 (39.7%) of them had RIL after radiotherapy. During a median follow-up duration of 41.8 months, pooled results showed that RIL was independently associated with poor overall survival (hazard ratio [HR]: 2.67, 95% confidence interval [CI]: 1.81 to 3.94, p < 0.001; I2 = 20%) and progression-free survival (HR: 2.17, 95% CI: 1.58 to 2.98, p < 0.001; I2 = 0%). Predefined subgroup analyses showed similar results in patients with grade 3-4 and grade 4 RIL, in patients with RIL diagnosed during or after the radiotherapy, and in studies with quality score of seven or eight points (p values for subgroup effect all < 0.05). In conclusion, women with RIL were associated with poor survival after radiotherapy for CC.
Collapse
Affiliation(s)
- Hongming Cao
- Department of Radiotherapy, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, China
| | - Haiyan Yan
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, China
| | - Shoumin Bai
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, China
| | - Baihui Gu
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, China
| |
Collapse
|
5
|
Qiu J, Lin H, Ke D, Yu Y, Xu J, Qiu H, Zheng Q, Li H, Zheng H, Liu L, Wang Z, Yao Q, Li J. Higher radiation dose on immune cells is associated with radiation-induced lymphopenia and worse prognosis in patients with locally advanced esophageal squamous cell carcinoma. Front Immunol 2023; 14:1066255. [PMID: 37223094 PMCID: PMC10200938 DOI: 10.3389/fimmu.2023.1066255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Abstract
Background To explore the effective dose to immune cells (EDIC) for better prognosis while avoiding radiation-induced lymphopenia (RIL) in patients with locally advanced esophageal squamous cell carcinoma (ESCC). Materials and methods Overall, 381 patients with locally advanced ESCC receiving definitive radiotherapy with or without chemotherapy (dRT ± CT) between 2014 and 2020 were included in this study. The EDIC model was calculated by radiation fraction number and mean doses to the heart, lung, and integral body. The correlation between EDIC and clinical outcomes was analyzed using Cox proportional hazards regression, and risk factors for RIL were determined by logistic regression analysis. Results The median EDIC was 4.38 Gy. Multivariate analysis revealed that low-EDIC significantly improved the OS of patients when compared with high-EDIC (HR = 1.614, P = 0.003) and PFS (HR = 1.401, P = 0.022). Moreover, high-EDIC was associated with a higher incidence of grade 4 RIL (OR = 2.053, P = 0.007) than low-EDIC. In addition, we identified body mass index (BMI), tumor thickness, and nodal stage as independent prognostic factors of OS and PFS, while BMI (OR = 0.576, P = 0.046) and weight loss (OR = 2.214, P = 0.005) as independent risk factors of grade 4 RIL. In subgroup analyses, the good group had better clinical outcomes than the remaining two groups (P< 0.001). Conclusion This study demonstrated that EDIC significantly correlates with poor clinical outcomes and severe RIL. Optimizing treatment plans to decrease the radiation doses to immune cells is critical for improving the outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhiping Wang
- *Correspondence: Zhiping Wang, ; Qiwei Yao, ; Jiancheng Li,
| | - Qiwei Yao
- *Correspondence: Zhiping Wang, ; Qiwei Yao, ; Jiancheng Li,
| | - Jiancheng Li
- *Correspondence: Zhiping Wang, ; Qiwei Yao, ; Jiancheng Li,
| |
Collapse
|
6
|
Pham TN, Coupey J, Candeias SM, Ivanova V, Valable S, Thariat J. Beyond lymphopenia, unraveling radiation-induced leucocyte subpopulation kinetics and mechanisms through modeling approaches. J Exp Clin Cancer Res 2023; 42:50. [PMID: 36814272 PMCID: PMC9945629 DOI: 10.1186/s13046-023-02621-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Leucocyte subpopulations in both lymphoid and myeloid lineages have a significant impact on antitumor immune response. While radiation-induced lymphopenia is being studied extensively, radiation effects on lymphoid and myeloid subtypes have been relatively less addressed. Interactions between leucocyte subpopulations, their specific radiation sensitivity and the specific kinetics of each subpopulation can be modeled based on both experimental data and knowledge of physiological leucocyte depletion, production, proliferation, maturation and homeostasis. Modeling approaches of the leucocyte kinetics that may be used to unravel mechanisms underlying radiation induced-leucopenia and prediction of changes in cell counts and compositions after irradiation are presented in this review. The approaches described open up new possibilities for determining the influence of irradiation parameters both on a single-time point of acute effects and the subsequent recovery of leukocyte subpopulations. Utilization of these approaches to model kinetic data in post-radiotherapy states may be a useful tool for further development of new treatment strategies or for the combination of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France ,grid.460771.30000 0004 1785 9671Laboratoire de Physique Corpusculaire UMR6534 IN2P3/ENSICAEN, Normandie Université, Caen, France
| | - Julie Coupey
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Serge M. Candeias
- grid.457348.90000 0004 0630 1517Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM-UMR5249, 38054 Grenoble, France
| | - Viktoriia Ivanova
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000, Caen, France.
| | - Juliette Thariat
- Laboratoire de Physique Corpusculaire UMR6534 IN2P3/ENSICAEN, Normandie Université, Caen, France. .,Department of Radiation Oncology, Centre François Baclesse, Caen, Normandy, France.
| |
Collapse
|
7
|
Influence of chemoradiation on the immune microenvironment of cervical cancer patients. Strahlenther Onkol 2023; 199:121-130. [PMID: 36251031 PMCID: PMC9876875 DOI: 10.1007/s00066-022-02007-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/04/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE Cervical cancer remains a leading cause of cancer death in women. While immunotherapy has shown great success in combating cancer, the value of immunotherapy in cervical cancer is still only beginning to be explored. Thus, we performed a prospective analysis of patient blood and tumor samples at the beginning and end of conventional chemoradiation to assess changes in the immune cell and immunoreceptor compartments, and investigate if and when the addition of immunotherapy could be beneficial. METHODS Patients with FIGO II-III cervical cancer receiving standard chemoradiation between January 2020 and December 2021 were included. We collected tumor and blood samples from patients before and at the end of therapy and analyzed immune cell composition and immune checkpoint receptor expression on both immune and tumor cells using multicolor flow cytometry. RESULTS In all, 34 patients were eligible in the study period; 22 could be included and analyzed in this study. We found that chemoradiation significantly reduces T cell numbers in both tumors and blood, but increases macrophage and neutrophil numbers in tumors. Furthermore, we found that the percentage of immune checkpoint receptor PD‑1 and TIGIT-expressing cells in tumors was significantly reduced at the end of therapy and that CD4 and CD8 memory T cell populations were altered by chemoradiation. In addition, we observed that while PD-L1 expression intensity was upregulated by chemoradiation on blood CD8 cells, PD-L1 expression frequency and the expression intensity of antigen-presenting molecule MHC‑I were significantly reduced on tumor cells. CONCLUSION Our data demonstrate that chemoradiation significantly alters the immune cell composition of human cervical tumors and the expression of immune checkpoint receptors on both lymphocytes and tumor cells. As our results reveal that the percentage of PD‑1+ CD8 cells in the tumor as well as the frequency of PD-L1-expressing tumor cells were reduced at the end of therapy, neoadjuvant or simultaneous anti-PD‑1 or anti-PD-L1 treatment might provide better treatment efficiency in upcoming clinical studies.
Collapse
|
8
|
Laurent PA, Morel D, Meziani L, Depil S, Deutsch E. Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors. Oncoimmunology 2022; 12:2158013. [PMID: 36567802 PMCID: PMC9788698 DOI: 10.1080/2162402x.2022.2158013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have demonstrated significant improvements in the treatment of refractory B-cell malignancies that previously showed limited survival. In contrast, early-phase clinical studies targeting solid tumors have been disappointing. This may be due to both a lack of specific and homogeneously expressed targets at the surface of tumor cells, as well as intrinsic properties of the solid tumor microenvironment that limit homing and activation of adoptive T cells. Faced with these antagonistic conditions, radiotherapy (RT) has the potential to change the overall tumor landscape, from depleting tumor cells to reshaping the tumor microenvironment. In this article, we describe the current landscape and discuss how RT may play a pivotal role for enhancing the efficacy of adoptive T-cell therapies in solid tumors. Indeed, by improving homing, expansion and activation of infused T cells while reducing tumor volume and heterogeneity, the use of RT could help the implementation of engineered T cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Pierre-Antoine Laurent
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | - Daphne Morel
- Drug Development Department (D.I.T.E.P), Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
| | - Lydia Meziani
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| | | | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus; UNICANCER, Villejuif, France
- INSERM U1030, Molecular Radiation Therapy and Therapeutic Innovation, Gustave Roussy Cancer Campus, University of Paris-Saclay, SIRIC SOCRATE, Villejuif, France
| |
Collapse
|
9
|
El Houat Y, Massard C, Quillien V, de Crevoisier R, Castelli J. Meta-analysis and Critical Review: Association Between Radio-induced Lymphopenia and Overall Survival in Solid Cancers. Adv Radiat Oncol 2022; 8:101038. [PMID: 36561078 PMCID: PMC9763695 DOI: 10.1016/j.adro.2022.101038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Immune system modulation, with the use of immune checkpoint inhibitors, has drastically changed the field of oncology. Strong preclinical data indicate that radiation therapy (RT) may enhance the response rate to such drugs via in situ vaccination, although these data do not consider immune radiotoxicity. This meta-analysis investigates whether radio-induced lymphopenia (RIL) is associated with overall survival (OS). Methods and Materials A systematic literature search and quantitative analysis were planned, conducted, and reported per the Preferred Reporting Items for Systematic Reviews and Meta-analyses and Quality of Reporting of Meta-analyses checklists. The literature from January 1990 to March 2021 was searched to identify clinical studies with OS data in patients treated with RT and presenting with lymphopenia. A random-effect model was employed for the meta-analysis. Heterogeneity was assessed using the I2 statistic. Publication bias was estimated using a P-curve analysis. Results A total of 56 studies with 13 223 patients and 11 types of cancers were selected. The mean follow-up time was 35.9 months. Over a third of patients had RIL (37.25%). After removing outlying studies (n = 14), the between-study heterogeneity variance was estimated at t2 = 0.018 (P = .01) with an I2 value of 36.0% (95% confidence interval, 6%-56%). The results showed that RIL was significantly associated with worse OS (hazard ratio: 1.70; 95% confidence interval, 1.55-1.86; P < .01; 95% prediction interval, 1.27-2.26). A subgroup analysis was performed based on the type of primary tumor, and a difference between the subgroups was found (P < .01). Based on the P-curve analysis, a significant evidential value was found, and no significant publication bias was identified among the studies. Conclusions RIL is a significant prognostic factor for mortality in virtually all solid cancers. Pooled-effect estimates indicate a significantly reduced risk of death in patients without RIL. Tailoring RT regimens to spare the immune system and updating dosimetric constraints for new organs at risk, such as major blood vessels, organs with rich blood supplies, bones, and all lymph node areas, may improve prognoses.
Collapse
|
10
|
Xu Z, Yang L, Yu H, Guo L. A machine learning model for grade 4 lymphopenia prediction during pelvic radiotherapy in patients with cervical cancer. Front Oncol 2022; 12:905222. [PMID: 36185193 PMCID: PMC9524190 DOI: 10.3389/fonc.2022.905222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background/purpose Severe lymphopenia during pelvic radiotherapy (RT) predicts poor survival in patients with cervical cancer. However, the risk of severe lymphopenia has not been well predicted. We developed a machine learning model using clinical and dosimetric information to predict grade 4 (G4) lymphopenia during pelvic RT in patients with cervical cancer. Methods This retrospective study included cervical cancer patients treated with definitive pelvic RT ± induction/concurrent chemotherapy. Clinical information and a set of dosimetric parameters of external beam radiotherapy plan were collected. G4 lymphopenia during RT, which was also referred to as G4 absolute lymphocyte count (ALC) nadir, was defined as ALC nadir <0.2 × 109 cells/L during RT according to Common Terminology Criteria for Adverse Events (CTCAE) v4.03. Elastic-net logistic regression models were constructed for the prediction of G4 lymphopenia during pelvic RT using a repeated cross-validation methodology. Results A total of 130 patients were eligible, and 43 (33.1%) patients had G4 lymphopenia during RT. On multivariable analysis, G4 ALC nadir was associated with poor overall survival (OS) [hazard ratio (HR), 3.91; 95% confidence interval (CI), 1.34–11.38, p = 0.01]. Seven significant factors [Eastern Cooperative Oncology Group (ECOG) performance score, pre-RT hemoglobin, pre-RT lymphocytes, concurrent chemotherapy, gross tumor volume of regional lymphadenopathy (GTV_N volume), body volume, and maximum dose of planning target volume receiving at least 55 Gy (PTV_5500 Dmax)] were obtained by elastic-net logistic regression models and were included in the final prediction model for G4 ALC nadir. The model’s predicting ability in test set was area under the curve (AUC) = 0.77 and accuracy = 0.76. A nomogram of the final predicting model was constructed. Conclusions This study developed and validated a comprehensive model integrating clinical and dosimetric parameters by machine learning method, which performed well in predicting G4 lymphopenia during pelvic RT for cervical cancer and will facilitate physicians to identify patients at high risk of G4 lymphopenia who might benefit from modified treatment approaches.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Clinical Oncology Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Translational Research on Recurrent/Metastatic Cancer, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Li Yang
- Clinical Oncology Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Translational Research on Recurrent/Metastatic Cancer, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Hao Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Linlang Guo, ; Hao Yu,
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Linlang Guo, ; Hao Yu,
| |
Collapse
|
11
|
de Oliveira MC, Krueger GF, Sganzerla JT, Gassen HT, Hernández PAG, Allgayer MDC, Miguens-Jr SAQ. Effect of Radiotherapy and Low-Level Laser Therapy on Circulating Blood Cells of Rats. J Lasers Med Sci 2021; 12:e45. [PMID: 34733768 DOI: 10.34172/jlms.2021.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022]
Abstract
Introduction: This study aimed to investigate the effect of low-level laser therapy (LLLT) on the blood cell count when applied to parotid glands of rats irradiated by volumetric modular arc therapy (VMAT). Methods: Thirty-two adult male Wistar rats were used in this study. Samples were randomly assigned to three groups: control group (CG, n = 8), immediate laser group (24 hours) (ILG, n=12), and late laser group (120 hours) (LLG, n=12). The two laser groups were previously subjected to VMAT radiotherapy in a single dose of 12 Gy. LLLT with an AsGaAl laser (660 nm, 100 mW) was applied at three points in the region of the parotid glands, right side, with the energy of 2 J per point (20s, 70 J/cm2) and a spot size of 0.0028 cm2 for 10 consecutive days. In the euthanasia, blood samples were obtained by cardiac puncture. The samples from each group were processed by an automatic method and analyzed for erythrogram, leukogram and platelet count values. The data were analyzed by ANOVA and each LLLT time point was analyzed in relation to the control group, with a significance level less than 0.05. Results: Groups using LLLT had higher red blood cell counts, being higher in the LLG (P = 0.000). The hematimetric indices MCV (P = 0.002) and MCH (P = 0.009) were lower than the control group, especially when compared to the group using LLLT 120h after radiotherapy (LLG). White blood cell counts were lower in the groups with radiotherapy and immediate use of LLLT (ILG) (P = 0.011), mainly at the expense of lymphocytes (P = 0.002). Conclusion: The results suggest a potential systemic effect of LLLT, especially on circulating red blood cell counts, regardless of their time of immediate or late use of radiotherapy.
Collapse
Affiliation(s)
| | - Gabriel Francisco Krueger
- Department of Oral Medicine, Graduate Program in Dentistry, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Juliana Tomaz Sganzerla
- Department of Oral Medicine, Graduate Program in Dentistry, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Humberto Thomazi Gassen
- Department of Oral Medicine, Graduate Program in Dentistry, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | | | | | | |
Collapse
|
12
|
Ebrahimi S, Lim G, Liu A, Lin SH, Ellsworth SG, Grassberger C, Mohan R, Cao W. Radiation-Induced Lymphopenia Risks of Photon Versus Proton Therapy for Esophageal Cancer Patients. Int J Part Ther 2021; 8:17-27. [PMID: 34722808 PMCID: PMC8489492 DOI: 10.14338/ijpt-20-00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/02/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose To assess possible differences in radiation-induced lymphocyte depletion for esophageal cancer patients being treated with the following 3 treatment modalities: intensity-modulated radiation therapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT). Methods and Materials We used 2 prediction models to estimate lymphocyte depletion based on dose distributions. Model I used a piecewise linear relationship between lymphocyte survival and voxel-by-voxel dose. Model II assumes that lymphocytes deplete exponentially as a function of total delivered dose. The models can be fitted using the weekly absolute lymphocyte counts measurements collected throughout treatment. We randomly selected 45 esophageal cancer patients treated with IMRT, PSPT, or IMPT at our institution (15 per modality) to demonstrate the fitness of the 2 models. A different group of 10 esophageal cancer patients who had received PSPT were included in this study of in silico simulations of multiple modalities. One IMRT and one IMPT plan were created, using our standards of practice for each modality, as competing plans to the existing PSPT plan for each patient. We fitted the models by PSPT plans used in treatment and predicted absolute lymphocyte counts for IMRT and IMPT plans. Results Model validation on each modality group of patients showed good agreement between measured and predicted absolute lymphocyte counts nadirs with mean squared errors from 0.003 to 0.023 among the modalities and models. In the simulation study of IMRT and IMPT on the 10 PSPT patients, the average predicted absolute lymphocyte count (ALC) nadirs were 0.27, 0.35, and 0.37 K/μL after IMRT, PSPT, and IMPT treatments using Model I, respectively, and 0.14, 0.22, and 0.33 K/μL using Model II. Conclusions Proton plans carried a lower predicted risk of lymphopenia after the treatment course than did photon plans. Moreover, IMPT plans outperformed PSPT in terms of predicted lymphocyte preservation.
Collapse
Affiliation(s)
- Saba Ebrahimi
- Department of Industrial Engineering, University of Houston, Houston, TX, USA
| | - Gino Lim
- Department of Industrial Engineering, University of Houston, Houston, TX, USA
| | - Amy Liu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Clemens Grassberger
- Departments of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenhua Cao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
The Influence of Severe Radiation-Induced Lymphopenia on Overall Survival in Solid Tumors: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys 2021; 111:936-948. [PMID: 34329738 DOI: 10.1016/j.ijrobp.2021.07.1695] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Emerging evidence suggests a detrimental prognostic association between radiation-induced lymphopenia (RIL) and pathologic response, progression-free survival, and overall survival (OS) in patients who undergo radiation therapy for cancer. The aim of this study was to systematically review and meta-analyze the prognostic impact of RIL on OS in patients with solid tumors. METHODS AND MATERIALS PubMed/MEDLINE and Embase were systematically searched. The analysis included intervention and prognostic studies that reported on the prognostic relationship between RIL and survival in patients with solid tumors. An overall pooled adjusted hazard ratio (aHR) was calculated using a random-effects model. Subgroup analyses for different patient-, tumor-, treatment-, and study-related characteristics were performed using meta-regression. RESULTS Pooling of 21 cohorts within 20 eligible studies demonstrated a statistically significant association between OS and grade ≥3 versus grade 0-2 RIL (n = 16; pooled aHR, 1.65; 95% confidence interval [CI], 1.43-1.90) and grade 4 RIL versus grade 0-3 (n = 5; aHR, 1.53; 95% CI, 1.24-1.90). Moderate heterogeneity among aHRs was observed, mostly attributable to overestimated aHRs in 7 studies likely subject to model-overfitting. Subgroup analysis showed significant prognostic impact of grade ≥3 RIL in 4 brain tumor (aHR, 1.63; 95% CI, 1.06-2.51), 4 lung cancer (aHR, 1.52; 95% CI, 1.01-2.29), and 3 pancreatic cancer (aHR, 1.92; 95% CI, 1.10-3.36) cohorts. CONCLUSIONS This meta-analysis demonstrates a significant detrimental prognostic association between grade ≥3 lymphopenia and OS in patients receiving radiation therapy for solid tumors. This finding appears consistent for tumors of the brain, thorax, and upper abdomen and provides an imperative to further elucidate the potential survival benefit of lymphopenia-mitigating strategies.
Collapse
|