1
|
Scampa M, Martineau J, Boet S, Pignel R, Kalbermatten DF, Oranges CM. Hyperbaric oxygen therapy outcomes in post-irradiated patient undergoing microvascular breast reconstruction: A preliminary retrospective comparative study. JPRAS Open 2024; 42:1-9. [PMID: 39279849 PMCID: PMC11399798 DOI: 10.1016/j.jpra.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/28/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Radiotherapy is a challenge in autologous breast reconstruction because of its impact on cutaneous and vascular systems. Hyperbaric oxygen therapy (HBOT) is a recognized treatment of radiation-related complications. We aimed to assess the impact of perioperative HBOT on irradiated breast microvascular reconstructive outcomes. Method We reviewed the medical charts of patients who received radiotherapy and then underwent secondary free autologous breast reconstruction at our institution. Data on demographics, HBOT protocol, intervention characteristics and post-operative complications were collected. Outcomes of the irradiated patients were then compared between the HBOT and non-HBOT groups. Results Fourteen patients were included (11 unilateral and 2 bilateral deep inferior epigastric artery perforator flaps and 1 free transverse rectus abdominis muscle flap). Seven patients received HBOT and 7 did not. In the non-HBOT group, there were 1 Clavien-Dindo grade II, 1 Clavien-Dindo grade IIIa and 2 Clavien-Dindo grade IIIb post-operative complications. In the HBOT group, there were 3 Clavien-Dindo grade I, 1 Clavien-Dindo grade IIIa and 2 Clavien-Dindo grade IIIb post-operative complications. The mean operative time was 452.3 minutes (SD ±62.4 minutes) for unilateral cases without HBOT and 457.8 minutes (SD ±102.1 minutes) with HBOT (p=0.913). Mean ischaemia time per flap without HBOT was 109.4 minutes (SD ±51.8 minutes) versus 80.1 minutes (SD ±37.7 minutes) in the HBOT group (p=0.249). Conclusion This study provides insights into the potential of HBOT treatment in preparing patients with irradiated breast cancer for secondary autologous reconstruction.
Collapse
Affiliation(s)
- Matteo Scampa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Geneva University Hospitals, Geneva University, 1205, Geneva, Switzerland
| | - Jérôme Martineau
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Geneva University Hospitals, Geneva University, 1205, Geneva, Switzerland
| | - Sylvain Boet
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205, Geneva, Switzerland
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON, K1H 8L6, Canada
- Ottawa Hospital Research Institute, Clinical Epidemiology Program, Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON, K1H 8L6, Canada
- Institut du Savoir Montfort, Ottawa, ON, K1K 0T2, Canada
| | - Rodrigue Pignel
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205, Geneva, Switzerland
| | - Daniel F Kalbermatten
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Geneva University Hospitals, Geneva University, 1205, Geneva, Switzerland
| | - Carlo M Oranges
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Geneva University Hospitals, Geneva University, 1205, Geneva, Switzerland
| |
Collapse
|
2
|
Bhatia M, Suliman H, Ahmed R, Kostadinov D, Singhal T. Radiation Proctitis: A Review of Pathophysiology and Treatment Strategies. Cureus 2024; 16:e70581. [PMID: 39483948 PMCID: PMC11525059 DOI: 10.7759/cureus.70581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Radiotherapy (RT) has become an integral part of cancer treatment worldwide; it aims to arrest the uncontrolled growth of tumor cells by using high-energy rays. Radiation proctitis is a known clinical manifestation after the RT regime for pelvic malignancies. Radiation proctitis can have a variable presentation, and there are a lot of patient-related factors that can affect the eventual outcome. In most instances, it is self-limiting; however, it can become chronic in some cases and can affect the quality of life. Many treatment options are recommended, but there has been no consensus on the treatment protocols for managing this known clinical condition. We have tried to briefly describe its pathogenesis, important factors affecting the outcome, and available treatment strategies.
Collapse
Affiliation(s)
- Mohit Bhatia
- Colorectal and General Surgery, Princess Royal University Hospital, King's College Hospital NHS Foundation Trust, London, GBR
| | - Hadeel Suliman
- Colorectal and General Surgery, Princess Royal University Hospital, King's College Hospital NHS Foundation Trust, London, GBR
| | - Rizwan Ahmed
- General Surgery, Princess Royal University Hospital, King's College Hospital NHS Foundation Trust, London, GBR
| | - Danko Kostadinov
- Colorectal and General Surgery, Princess Royal University Hospital, King's College Hospital NHS Foundation Trust, London, GBR
| | - Tarun Singhal
- Colorectal and General Surgery, Princess Royal University Hospital, King's College Hospital NHS Foundation Trust, London, GBR
| |
Collapse
|
3
|
Ladwa R, Fogarty G, Chen P, Grewal G, McCormack C, Mar V, Kerob D, Khosrotehrani K. Management of Skin Toxicities in Cancer Treatment: An Australian/New Zealand Perspective. Cancers (Basel) 2024; 16:2526. [PMID: 39061166 PMCID: PMC11274446 DOI: 10.3390/cancers16142526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer systemic therapeutics and radiotherapy are often associated with dermatological toxicities that may reduce patients' quality of life and impact their course of cancer treatment. These toxicities cover a wide range of conditions that can be complex to manage with increasing severity. This review provides details on twelve common dermatological toxicities encountered during cancer treatment and offers measures for their prevention and management, particularly in the Australian/New Zealand context where skincare requirements may differ to other regions due to higher cumulative sun damage caused by high ambient ultraviolet (UV) light exposure. Given the frequency of these dermatological toxicities, a proactive phase is envisaged where patients can actively try to prevent skin toxicities.
Collapse
Affiliation(s)
- Rahul Ladwa
- Princess Alexandra Hospital, Ipswich Road, Woolloongabba, QLD 4102, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - Gerald Fogarty
- Icon Cancer Centre Revesby, Revesby, NSW 2212, Australia
| | - Peggy Chen
- Peggy Chen Skin Cancer and Mohs Surgery, New Plymouth 4310, New Zealand
- Te Whatu Ora Health New Zealand Taranaki, Westtown, New Plymouth 4310, New Zealand
| | - Gurpreet Grewal
- McGrath Foundation Breast Care Nurse, Alfred Health, Cancer Services, Melbourne, VIC 3127, Australia
| | - Chris McCormack
- Department Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Victoria Mar
- Victorian Melanoma Service, Alfred Health, Melbourne, VIC 3004, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3800, Australia
| | | | - Kiarash Khosrotehrani
- Dermatology Research Centre, Experimental Dermatology Group, Frazer Institute, The University of Queensland, Woolloongabba, QLD 4072, Australia
- Department of Dermatology, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
4
|
Liu J, An W, Zhao Q, Liu Z, Jiang Y, Li H, Wang D. Hyperbaric oxygen enhances X-ray induced ferroptosis in oral squamous cell carcinoma cells. Oral Dis 2024; 30:116-127. [PMID: 36495316 DOI: 10.1111/odi.14461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the combined effect of X-ray radiation (IR) and hyperbaric oxygen (HBO) on oral squamous cell carcinoma (OSCC) cells and to explore the possible molecular mechanism. METHODS The OSCC cells were treated with or without IR, together with or without HBO co-exposure. Cells were transfected with specific plasmids using Lipofectamine 2000. The cell varieties, apoptosis markers, and ferroptosis markers were determined by using appropriate method. OSCC xenograft mice model was categorized into several subgroups according to the specific treatement. GPX4 expressions were determined by immunohistochemistry (IHC) in OSCC tissues and were tested by ELISA in serums from OSCC patients. RESULTS The co-exposure of IR and HBO significantly strengthened the cytotoxicity of IR on SCC15-S cells in ferroptosis-dependent manner. The regulated GPX4/ferroptosis mediated the HBO function on re-sensitizing the radio-resistant OSCC cells to IR. In xenograft mice, co-exposure of IR and HBO can significantly reduce the tumor under IR activation compared with IR alone. Clinical data indicated that high GPX4 levels were associated with poor chemo-radiotherapy outcome. CONCLUSIONS HBO could re-sensitize radio-resistant OSCC cells through GPX4/ferroptosis regulation. These results provide a potential therapeutic strategy for clinical radio-resistance.
Collapse
Affiliation(s)
- Jia Liu
- Stomatology center, Shanxi Provincial People's hospital, Taiyuan, China
| | - Wei An
- Stomatology center, Shanxi Provincial People's hospital, Taiyuan, China
| | - Qian Zhao
- Stomatology center, Shanxi Provincial People's hospital, Taiyuan, China
| | - Zhen Liu
- The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Ying Jiang
- The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Huiqing Li
- Department of Anesthesiology, Shandong Provincial Third Hospital, Jinan, China
| | - Di Wang
- The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Hu A, Zhou W, Qiu R, Wei S, Wu Z, Zhang H, Li J. Computational model of radiation oxygen effect with Monte Carlo simulation: effects of antioxidants and peroxyl radicals. Int J Radiat Biol 2024; 100:595-608. [PMID: 38166197 DOI: 10.1080/09553002.2023.2295292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2024]
Abstract
PURPOSE Oxygen plays a crucial role in radiation biology. Antioxidants and peroxyl radicals affect the oxygen effect greatly. This study aims to establish a computational model of the oxygen effect and explore the effect attributed to antioxidants and peroxyl radicals. MATERIALS AND METHODS Oxygen-related reactions are added to our track-structure Monte Carlo code NASIC, including oxygen fixation, chemical repair by antioxidants and damage migration from base-derived peroxyl radicals. Then the code is used to simulate the DNA damage under various oxygen, antioxidant and damage migration rate conditions. The oxygen enhancement ratio(OER) is calculated quantifying by the number of double-strand breaks for each condition. The roles of antioxidants and peroxyl radicals are examined by manipulating the relevant parameters. RESULTS AND CONCLUSIONS Our results indicate that antioxidants are capable of rapidly restoring DNA radicals through chemical reactions, which compete with natural and oxygen fixation processes. Additionally, antioxidants can react with peroxyl radicals derived from bases, thereby preventing the damage from migrating to DNA strands. By quantitatively accounting for the impact of peroxyl radicals and antioxidants on the OER curves, our study establishes a more precise and comprehensive model of the radiation oxygen effect.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Wanyi Zhou
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Shuoyang Wei
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Zhen Wu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Nuctech Company Limited, Beijing, China
| | - Hui Zhang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, China
| |
Collapse
|
6
|
Yuen CM, Tsai HP, Tseng TT, Tseng YL, Lieu AS, Kwan AL, Chang AYW. Hyperbaric Oxygen Therapy Adjuvant Chemotherapy and Radiotherapy through Inhibiting Stemness in Glioblastoma. Curr Issues Mol Biol 2023; 45:8309-8320. [PMID: 37886967 PMCID: PMC10605823 DOI: 10.3390/cimb45100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor in adults. Despite the advances in GBM treatment, outcomes remain poor, with a 2-year survival rate of less than 5%. Hyperbaric oxygen (HBO) therapy is an intermittent, high-concentration, short-term oxygen therapy used to increase cellular oxygen content. In this study, we evaluated the effects of HBO therapy, alone or combined with other treatment modalities, on GBM in vitro and in vivo. In the in vitro analysis, we used a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to assess the effects of HBO therapy alone, a colony formation assay to analyze the effects of HBO therapy combined with radiotherapy and with temozolomide (TMZ), and a neurosphere assay to assess GBM stemness. In the in vivo analysis, we used immunohistochemical staining and in vivo bioluminescence imaging to assess GBM stemness and the therapeutic effect of HBO therapy alone or combined with TMZ or radiotherapy, respectively. HBO therapy did not affect GBM cell viability, but it did reduce the analyzed tumors' ability to form cancer stem cells. In addition, HBO therapy increased GBM sensitivity to TMZ and radiotherapy both in vitro and in vivo. HBO therapy did not enhance tumor growth and exhibited adjuvant effects to chemotherapy and radiotherapy through inhibiting GBM stemness. In conclusion, HBO therapy shows promise as an adjuvant treatment for GBM by reducing cancer stem cell formation and enhancing sensitivity to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Chun-Man Yuen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan;
- Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
| | - Tzu-Ting Tseng
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
| | - Yu-Lung Tseng
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 333, Taiwan;
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22904, USA
| | - Alice Y. W. Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Cheng-Hsing Campus, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
7
|
Alpuim Costa D, Gonçalves-Nobre JG, Sampaio-Alves M, Guerra N, Arana Ribeiro J, Espiney Amaro C. Hyperbaric oxygen therapy as a complementary treatment in neuroblastoma - a narrative review. Front Oncol 2023; 13:1254322. [PMID: 37823059 PMCID: PMC10562625 DOI: 10.3389/fonc.2023.1254322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Neuroblastoma is the most frequently diagnosed cancer during the first year of life. This neoplasm originates from neural crest cells derived from the sympathetic nervous system, adrenal medulla, or paraspinal ganglia. The clinical presentation can vary from an asymptomatic mass to symptoms resulting from local invasion and/or spread of distant disease spread. The natural history of neuroblastoma is highly variable, ranging from relatively indolent biological behavior to a high-risk clinical phenotype with a dismal prognosis. Age, stage, and biological features are important prognostic risk stratification and treatment assignment prognostic factors. The multimodal therapy approach includes myeloablative chemotherapy, radiotherapy, immunotherapy, and aggressive surgical resection. Hyperbaric oxygen therapy (HBOT) has been proposed as a complementary measure to overcome tumor hypoxia, which is considered one of the hallmarks of this cancer treatment resistance. This article aims to review the relevant literature on the neuroblastoma pathophysiology, clinical presentation, and different biological and genetic profiles, and to discuss its management, focusing on HBOT.
Collapse
Affiliation(s)
- Diogo Alpuim Costa
- Hematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica (CMSH), Portuguese Navy, Lisbon, Portugal
- Medical Oncology Department, Hospital de Cascais Dr. José de Almeida, Alcabideche, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas da Universidade NOVA de Lisboa, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - J. Guilherme Gonçalves-Nobre
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Hospital Garcia de Orta (HGO), E.P.E., Almada, Portugal
- Instituto de Saúde Ambiental (ISAMB), Faculty of Medicine, University of Lisbon, Lisboa, Portugal
- Instituto de Medicina Preventiva & Saúde Pública (IMP&SP), Faculty of Medicine, University of Lisbon, Lisboa, Portugal
- PTSurg – Portuguese Surgical Research Collaborative, Lisboa, Portugal PTSurg – Portuguese Surgical Research Collaborative, Lisbon, Portugal
| | - Mafalda Sampaio-Alves
- PTSurg – Portuguese Surgical Research Collaborative, Lisboa, Portugal PTSurg – Portuguese Surgical Research Collaborative, Lisbon, Portugal
- Faculty of Medicine, University of Porto, Oporto, Portugal
| | - Nuno Guerra
- Centro de Medicina Subaquática e Hiperbárica (CMSH), Portuguese Navy, Lisbon, Portugal
| | | | - Carla Espiney Amaro
- Centro de Medicina Subaquática e Hiperbárica (CMSH), Portuguese Navy, Lisbon, Portugal
| |
Collapse
|
8
|
Wang P, Wang XY, Man CF, Gong DD, Fan Y. Advances in hyperbaric oxygen to promote immunotherapy through modulation of the tumor microenvironment. Front Oncol 2023; 13:1200619. [PMID: 37790761 PMCID: PMC10543083 DOI: 10.3389/fonc.2023.1200619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Hyperbaric oxygen therapy is a relatively safe treatment method that has been used for a long time in the clinic. It has been proven that it can enhance the sensitivity of radiotherapy and photodynamic therapy for cancer. However, there are few studies on hyperbaric oxygen and immunotherapy. In this article, we summarize that hyperbaric oxygen therapy regulates the tumor microenvironment through various pathways such as improving tumor hypoxia, targeting hypoxia-inducing factors, and generating reactive oxygen species. The change in the tumor microenvironment ultimately affects the curative effect of immunotherapy. Therefore, hyperbaric oxygen can influence immunotherapy by regulating the tumor microenvironment, providing a direction for the future development of immunotherapy.
Collapse
Affiliation(s)
- Pei Wang
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Chang-Feng Man
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dan-Dan Gong
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Fan
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
9
|
Moreira Monteiro A, Alpuim Costa D, Mareco V, Espiney Amaro C. The effectiveness of hyperbaric oxygen therapy for managing radiation-induced proctitis - results of a 10-year retrospective cohort study. Front Oncol 2023; 13:1235237. [PMID: 37637048 PMCID: PMC10450915 DOI: 10.3389/fonc.2023.1235237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Despite modern radiotherapy (RT) techniques, radiation-induced proctitis (RIP) remains a significant complication of RT for pelvic organ malignancies. Over the last decades, an enormous therapeutic armamentarium has been considered in RIP, including hyperbaric oxygen therapy (HBOT). However, the evidence regarding the impact of HBOT on RIP is conflicting. This study aims to evaluate the effectiveness and safety of HBOT in the treatment of RIP. Methods Ten-year (2013-2023) retrospective analysis of all consecutive patients with RIP treated with HBOT at Centro de Medicina Subaquática e Hiperbárica (CMSH) (Armed Forces Hospital - Lisbon, Portugal). Patients were exposed to 100% oxygen at 2.5 ATA, in a multiplace first-class hyperbaric chamber, for 70-min periods, once daily, five times per week. Fisher's exact test was performed using SPSS (version 23.0); p<0.05 was accepted as statistically significant. Results Of a total of 151 patients with RIP, 88 were included in the final analysis, of whom 38.6% evidenced other concurrent radiation-induced soft tissue lesions. The most reported primary pelvic tumor treated with RT was prostate cancer (77.3%), followed by cervical cancer (10.2%). Hematochezia was the most observed clinical manifestation (86.4%). After a median of 60 HBOT sessions (interquartile range [IQR]: 40-87.5), 62.5% and 31.8% of patients achieved a clinical complete and partial response, respectively, with a hematochezia resolution rate of 93.7% (complete or partial). While partial and complete responses require fewer than 70 sessions of HBOT in terms of overall RIP symptoms (p=0.069), isolated hematochezia tends to require at least 70 sessions (p=0.075). Individuals with at least two concurrent late radiation tissue injuries were associated with a complete response to HBOT (p=0.029). Only about 5.7% of patients did not respond to the treatment. Eighteen patients (20.5%) developed reversible ear barotrauma. The number of HBOT sessions was a predictor of HBOT side effects (odds ratio: 1.010; 95% confidence interval, 1.000-1.020; p=0.047). Conclusion The HBOT proved to be an effective and safe treatment for RIP refractory to medical and/or endoscopic treatments. This real-world evidence study adds value to published data on the management of RIP with HBOT.
Collapse
Affiliation(s)
| | - Diogo Alpuim Costa
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica (CMSH), Armed Forces Hospital, Lisbon, Portugal
- Medical Oncology Department, Hospital de Cascais Dr. José de Almeida, Alcabideche, Portugal
- Hematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
| | - Virgínia Mareco
- Radiotherapy Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Carla Espiney Amaro
- Centro de Medicina Subaquática e Hiperbárica (CMSH), Armed Forces Hospital, Lisbon, Portugal
| |
Collapse
|
10
|
Parkins KM, Krishnamachary B, Jacob D, Kakkad SM, Solaiyappan M, Mishra A, Mironchik Y, Penet MF, McMahon MT, Knopf P, Pichler BJ, Nimmagadda S, Bhujwalla ZM. PET/MRI and Bioluminescent Imaging Identify Hypoxia as a Cause of Programmed Cell Death Ligand 1 Image Heterogeneity. Radiol Imaging Cancer 2023; 5:e220138. [PMID: 37389448 PMCID: PMC10413302 DOI: 10.1148/rycan.220138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023]
Abstract
Purpose To examine the association between hypoxia and programmed cell death ligand 1 (PD-L1) expression using bioluminescence imaging (BLI) and PET/MRI in a syngeneic mouse model of triple-negative breast cancer (TNBC). Materials and Methods PET/MRI and optical imaging were used to determine the role of hypoxia in altering PD-L1 expression using a syngeneic TNBC model engineered to express luciferase under hypoxia. Results Imaging showed a close spatial association between areas of hypoxia and increased PD-L1 expression in the syngeneic murine (4T1) tumor model. Mouse and human TNBC cells exposed to hypoxia exhibited a significant increase in PD-L1 expression, consistent with the in vivo imaging data. The role of hypoxia in increasing PD-L1 expression was further confirmed by using The Cancer Genome Atlas analyses of different human TNBCs. Conclusion These results have identified the potential role of hypoxia in contributing to PD-L1 heterogeneity in tumors by increasing cancer cell PD-L1 expression. Keywords: Hypoxia, PD-L1, Triple-Negative Breast Cancer, PET/MRI, Bioluminescence Imaging Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
| | | | - Desmond Jacob
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Samata M. Kakkad
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Meiyappan Solaiyappan
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Akhilesh Mishra
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Yelena Mironchik
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Marie-France Penet
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Michael T. McMahon
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Philipp Knopf
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Bernd J. Pichler
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Sridhar Nimmagadda
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| | - Zaver M. Bhujwalla
- From the Russell H. Morgan Department of Radiology and Radiological
Science (K.M.P., B.K., D.J., S.M.K., M.S., A.M., Y.M., M.F.P., M.T.M., S.N.,
Z.M.B.), Sidney Kimmel Comprehensive Cancer Center (M.F.P., S.N., Z.M.B.), and
Department of Radiation Oncology and Molecular Radiation Sciences (Z.M.B.), The
Johns Hopkins University School of Medicine, 720 Rutland Ave, Rm 208C Traylor
Building, Baltimore, MD 21205; The F.M. Kirby Research Center for Functional
Brain Imaging, Kennedy Krieger Institute, Baltimore, Md (M.T.M.); and Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy,
Eberhard Karls University Tuebingen, Tuebingen, Germany (P.K., B.J.P.)
| |
Collapse
|
11
|
Zu Y, Wang Z, Yao H, Yan L. Oxygen-generating biocatalytic nanomaterials for tumor hypoxia relief in cancer radiotherapy. J Mater Chem B 2023; 11:3071-3088. [PMID: 36920849 DOI: 10.1039/d2tb02751h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Radiotherapy (RT), the most commonly used treatment method in clinics, shows unique advantages such as strong penetration, high energy intensity, and low systemic side effects. However, in vivo tumor hypoxia seriously hinders the therapeutic effect of RT. Hypoxia is a common characteristic of locally advanced solid tumor microenvironments, which leads to the proliferation, invasion and metastasis of tumor cells. In addition, oxygen consumption during RT will further aggravate tumor hypoxia, causing a variety of adverse side effects. In recent years, various biocatalytic nanomaterials (BCNs) have been explored to regulate and reverse tumor hypoxia microenvironments during RT. In this review, the most recent efforts toward developing oxygen-generating BCNs in relieving tumor hypoxia in RT are focused upon. The classification, engineering nanocatalytical activity of oxygen-generating BCNs and combined therapy based on these BCNs are systematically introduced and discussed. The challenges and prospects of these oxygen-generating BCNs in RT applications are also summarized.
Collapse
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Ziyu Wang
- College of Medical and Biological lnformation Engineering, Northeastern University, Shenyang 110170, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Qiu ZK, Zhang MZ, Zhang WC, Li ZJ, Si LB, Long X, Yu NZ, Wang XJ. Role of HIF-1α in pathogenic mechanisms of keloids. J Cosmet Dermatol 2023; 22:1436-1448. [PMID: 36718786 DOI: 10.1111/jocd.15601] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUDS AND OBJECTIVE Keloids are defined as overrepairing products that develop after skin lesions. Keloids are characterized by the proliferation of fibroblasts and the overaccumulation of extracellular matrix components (mainly collagen), leading to a locally hypoxic microenvironment. Hence, this article was aimed to review hypoxia in pathogenesis of keloids. METHODS We reviewed and summarized the relevant published studies. RESULTS Hypoxia results in the accumulation of hypoxia-inducible factor 1α (HIF-1α) in keloids, contributing to overactivation of the fibrotic signaling pathway, epithelial-mesenchymal transition, and changes in metabolism, eventually leading to aggravated fibrosis, infiltrative growth, and radiotherapy resistance. CONCLUSION It is, therefore, essential to understand the role of HIF-1α in the pathogenic mechanisms of keloids in order to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Zi-Kai Qiu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Zi Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Chao Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Jin Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lou-Bin Si
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Jun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical college Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Wang X, He X, Liu C, Zhao W, Yuan X, Li R. Progress and perspectives of platinum nanozyme in cancer therapy. Front Chem 2022; 10:1092747. [DOI: 10.3389/fchem.2022.1092747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Malignant tumors, one of the worst-case scenarios within human health problems, are now posing an increasing threat to the well-being of the global population. At present, the treatment of malignant tumors mainly includes surgery, radiotherapy, chemotherapy, immunotherapy, etc. Radiotherapy and chemotherapy are often applied to inoperable tumors, and some other tumors after surgery as important adjuvant therapies. Nonetheless, both radiotherapy and chemotherapy have a series of side effects, such as radiation-induced lung injury, and chemotherapy-induced bone marrow suppression. In addition, the positioning accuracy of radiotherapy and chemotherapy is not assured and satisfactory, and the possibility of tumor cells not being sensitive to radiation and chemotherapy drugs is also problematic. Nanozymes are nanomaterials that display natural enzyme activities, and their applications to tumor therapy have made great progress recently. The most studied one, platinum nanozyme, has been shown to possess a significant correlation with radiotherapy sensitization of tumors as well as photodynamic therapy. However, there are still several issues that limited the usage of platinum-based nanozymes in vivo. In this review, we briefly summarize the representative studies regarding platinum nanozymes, and especially emphasize on the current challenges and the directions of future development for platinum nanozymes therapy.
Collapse
|
14
|
Kim LN, Rubenstein RN, Chu JJ, Allen RJ, Mehrara BJ, Nelson JA. Noninvasive Systemic Modalities for Prevention of Head and Neck Radiation-Associated Soft Tissue Injury: A Narrative Review. J Reconstr Microsurg 2022; 38:621-629. [PMID: 35213927 PMCID: PMC9402815 DOI: 10.1055/s-0042-1742731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Radiation-associated soft tissue injury is a potentially devastating complication for head and neck cancer patients. The damage can range from minor sequelae such as xerostomia, which requires frequent daily maintenance, to destructive degenerative processes such as osteoradionecrosis, which can contribute to flap failure and delay or reverse oral rehabilitation. Despite the need for effective radioprotectants, the literature remains sparse, primarily focused on interventions beyond the surgeon's control, such as maintenance of good oral hygiene or modulation of radiation dose. METHODS This narrative review aggregates and explores noninvasive, systemic treatment modalities for prevention or amelioration of radiation-associated soft tissue injury. RESULTS We highlighted nine modalities with the most clinical potential, which include amifostine, melatonin, palifermin, hyperbaric oxygen therapy, photobiomodulation, pentoxifylline-tocopherol-clodronate, pravastatin, transforming growth factor-β modulators, and deferoxamine, and reviewed the benefits and limitations of each modality. Unfortunately, none of these modalities are supported by strong evidence for prophylaxis against radiation-associated soft tissue injury. CONCLUSION While we cannot endorse any of these nine modalities for immediate clinical use, they may prove fruitful areas for further investigation.
Collapse
Affiliation(s)
- Leslie N. Kim
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robyn N. Rubenstein
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacqueline J. Chu
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J. Allen
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J. Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonas A. Nelson
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
15
|
Conti A. Editorial: Impact of radiotherapy and radiosurgery on neuro-oncology. Front Oncol 2022; 12:978709. [PMID: 35957873 PMCID: PMC9360765 DOI: 10.3389/fonc.2022.978709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
|
16
|
Alpuim Costa D, Sampaio-Alves M, Netto E, Fernandez G, Oliveira E, Teixeira A, Daniel PM, Bernardo GS, Amaro C. Hyperbaric Oxygen Therapy as a Complementary Treatment in Glioblastoma-A Scoping Review. Front Neurol 2022; 13:886603. [PMID: 35847231 PMCID: PMC9283648 DOI: 10.3389/fneur.2022.886603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults. The mainstay of management for GBM is surgical resection, radiation (RT), and chemotherapy (CT). Even with optimized multimodal treatment, GBM has a high recurrence and poor survival rates ranging from 12 to 24 months in most patients. Recently, relevant advances in understanding GBM pathophysiology have opened new avenues for therapies for recurrent and newly diagnosed diseases. GBM's hypoxic microenvironment has been shown to be highly associated with aggressive biology and resistance to RT and CT. Hyperbaric oxygen therapy (HBOT) may increase anticancer therapy sensitivity by increasing oxygen tension within the hypoxic regions of the neoplastic tissue. Previous data have investigated HBOT in combination with cytostatic compounds, with an improvement of neoplastic tissue oxygenation, inhibition of HIF-1α activity, and a significant reduction in the proliferation of GBM cells. The biological effect of ionizing radiation has been reported to be higher when it is delivered under well-oxygenated rather than anoxic conditions. Several hypoxia-targeting strategies reported that HBOT showed the most significant effect that could potentially improve RT outcomes, with higher response rates and survival and no serious adverse events. However, further prospective and randomized studies are necessary to validate HBOT's effectiveness in the 'real world' GBM clinical practice.
Collapse
Affiliation(s)
- Diogo Alpuim Costa
- Haematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Centro Hiperbárico de Cascais, Cascais, Portugal
| | - Mafalda Sampaio-Alves
- Faculty of Medicine, University of Porto, Oporto, Portugal
- PTSurg – Portuguese Surgical Research Collaborative, Lisbon, Portugal
| | - Eduardo Netto
- Radioncology Department, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), E.P.E., Lisbon, Portugal
| | | | - Edson Oliveira
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Neurosurgery Department, Cluster CUF Descobertas, Lisbon, Portugal
| | - Andreia Teixeira
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
| | - Pedro Modas Daniel
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
| | - Guilherme Silva Bernardo
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Urology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
| | - Carla Amaro
- Centro de Medicina Subaquática e Hiperbárica, Azinhaga dos Ulmeiros, Lisbon, Portugal
- Otorhinolaryngology Department, CUF Descobertas, Lisbon, Portugal
| |
Collapse
|
17
|
Three-Dimensional Conformal Radiotherapy Combined with Gemcitabine and Docetaxel in the Treatment of Advanced Bladder Cancer and Its Effects on Inflammatory Factors and Immune Function. JOURNAL OF ONCOLOGY 2022; 2022:9347218. [PMID: 35466316 PMCID: PMC9023190 DOI: 10.1155/2022/9347218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
Objective. To assess the efficacy of three-dimensional conformal radiotherapy (3D-CRT) combined with GT chemotherapy (gemcitabine+docetaxel) in the treatment of advanced bladder cancer and its influence on inflammatory factors and immune function. Methods. A total of 42 elderly patients with advanced bladder cancer who were admitted to our hospital from January 2019 to January 2020 were included and assigned to the GT group (21 cases) receiving GT chemotherapy and combination group (21 cases) given 3D-CRT combined with GT chemotherapy. The clinical efficacy, immune function, inflammatory factors, tumor markers, urinary angiogenesis molecules before and after treatment, 1-year survival rate, 2-year survival rate, and incidence of adverse reactions of the two groups were compared. SPSS 22.0 statistical software was used for data processing and analysis. Results. The combination group had 5 cases of CR, 12 cases of PR, 3 cases of SD, and 1 case of PD, with an ORR of 80.95% (17/21), which was remarkably higher than the ORR of 57.14% (12/21) in the GT group which had 3 cases of CR, 9 cases of PR, 5 cases of SD, and 4 cases of PD (
). The 1-year survival rate of the combination group was 76.19% (16/21), and the 2-year survival rate was 47.62% (10/21), which were higher than the 1-year survival rate of 47.62% (10/21) and 2-year survival rate of 19.05% (4/21) in the GT group (
). The two groups presented similar results in terms of adverse reactions rate (
). After treatment, the combination group obtained significantly lower levels of urinary bladder cancer antigen (UBC), nuclear matrix protein-22 (NMP-22), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) than the GT group (
). The CD3+, CD4+, and CD4+/CD8+ levels of the two groups of patients were lower than those before treatment (
), but no statistical difference was observed between the two groups after treatment (
). The levels of interleukin-6 (IL-6) and interferon-γ (IFN-γ) of the two groups witnessed a decline after treatment, with lower results in the combination group as compared to the control group (
). Before treatment, no significant difference in the Generic Quality of Life Inventory-74 (GQOLI-74) score between the two groups was found (
). After treatment, the combination group had higher GQOLI-74 scores than the GT group (
). Conclusion. 3D-CRT combined with GT chemotherapy yields a significant effect on the treatment of elderly advanced bladder cancer by effectively protecting immune function, mitigating inflammation, inhibiting tumor marker levels and the expression of angiogenic molecules, and improving patients’ survival.
Collapse
|
18
|
Gao R, Gu Y, Yang Y, He Y, Huang W, Sun T, Tang Z, Wang Y, Yang W. Robust radiosensitization of hemoglobin-curcumin nanoparticles suppresses hypoxic hepatocellular carcinoma. J Nanobiotechnology 2022; 20:115. [PMID: 35248069 PMCID: PMC8898525 DOI: 10.1186/s12951-022-01316-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background Radioresistance inducing by hypoxic microenvironment of hepatocellular carcinoma is a major obstacle to clinical radiotherapy. Advanced nanomedicine provides an alternative to alleviate the hypoxia extent of solid tumor, even to achieve effective synergistic treatment when combined with chemotherapy or radiotherapy. Results Herein, we developed a self-assembled nanoparticle based on hemoglobin and curcumin for photoacoustic imaging and radiotherapy of hypoxic hepatocellular carcinoma. The fabricated nanoparticles inhibited hepatoma migration and vascular mimics, and enhanced the radiosensitivity of hypoxic hepatoma cells in vitro via repressing cell proliferation and DNA damage repair, as well as inducing apoptosis. Benefit from oxygen-carrying hemoglobin combined with polyphenolic curcumin, the nanoparticles also effectively enhanced the photoacoustic contrast and the efficacy of radiotherapy for hepatocellular carcinoma in vivo. Conclusions Together, the current study offered a radiosensitization platform for optimizing the efficacy of nanomedicines on hypoxic radioresistant tumor. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01316-w.
Collapse
|
19
|
Frosina G. Radiotherapy of High-Grade Gliomas: First Half of 2021 Update with Special Reference to Radiosensitization Studies. Int J Mol Sci 2021; 22:8942. [PMID: 34445646 PMCID: PMC8396323 DOI: 10.3390/ijms22168942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Albeit the effort to develop targeted therapies for patients with high-grade gliomas (WHO grades III and IV) is evidenced by hundreds of current clinical trials, radiation remains one of the few effective therapeutic options for them. This review article analyzes the updates on the topic "radiotherapy of high-grade gliomas" during the period 1 January 2021-30 June 2021. The high number of articles retrieved in PubMed using the search terms ("gliom* and radio*") and manually selected for relevance indicates the feverish research currently ongoing on the subject. During the last semester, significant advances were provided in both the preclinical and clinical settings concerning the diagnosis and prognosis of high-grade gliomas, their radioresistance, and the inevitable side effects of their treatment with radiation. The novel information concerning tumor radiosensitization was of special interest in terms of therapeutic perspective and was discussed in detail.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
20
|
Mansouri V, Beheshtizadeh N, Gharibshahian M, Sabouri L, Varzandeh M, Rezaei N. Recent advances in regenerative medicine strategies for cancer treatment. Biomed Pharmacother 2021; 141:111875. [PMID: 34229250 DOI: 10.1016/j.biopha.2021.111875] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stands as one of the most leading causes of death worldwide, while one of the most significant challenges in treating it is revealing novel alternatives to predict, diagnose, and eradicate tumor cell growth. Although various methods, such as surgery, chemotherapy, and radiation therapy, are used today to treat cancer, its mortality rate is still high due to the numerous shortcomings of each approach. Regenerative medicine field, including tissue engineering, cell therapy, gene therapy, participate in cancer treatment and development of cancer models to improve the understanding of cancer biology. The final intention is to convey fundamental and laboratory research to effective clinical treatments, from the bench to the bedside. Proper interpretation of research attempts helps to lessen the burden of treatment and illness for patients. The purpose of this review is to investigate the role of regenerative medicine in accelerating and improving cancer treatment. This study examines the capabilities of regenerative medicine in providing novel cancer treatments and the effectiveness of these treatments to clarify this path as much as possible and promote advanced future research in this field.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|