1
|
Edelmers E, Ņikuļins A, Sprūdža KL, Stapulone P, Pūce NS, Skrebele E, Siņicina EE, Cīrule V, Kazuša A, Boločko K. AI-Assisted Detection and Localization of Spinal Metastatic Lesions. Diagnostics (Basel) 2024; 14:2458. [PMID: 39518425 PMCID: PMC11545154 DOI: 10.3390/diagnostics14212458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES The integration of machine learning and radiomics in medical imaging has significantly advanced diagnostic and prognostic capabilities in healthcare. This study focuses on developing and validating an artificial intelligence (AI) model using U-Net architectures for the accurate detection and segmentation of spinal metastases from computed tomography (CT) images, addressing both osteolytic and osteoblastic lesions. METHODS Our methodology employs multiple variations of the U-Net architecture and utilizes two distinct datasets: one consisting of 115 polytrauma patients for vertebra segmentation and another comprising 38 patients with documented spinal metastases for lesion detection. RESULTS The model demonstrated strong performance in vertebra segmentation, achieving Dice Similarity Coefficient (DSC) values between 0.87 and 0.96. For metastasis segmentation, the model achieved a DSC of 0.71 and an F-beta score of 0.68 for lytic lesions but struggled with sclerotic lesions, obtaining a DSC of 0.61 and an F-beta score of 0.57, reflecting challenges in detecting dense, subtle bone alterations. Despite these limitations, the model successfully identified isolated metastatic lesions beyond the spine, such as in the sternum, indicating potential for broader skeletal metastasis detection. CONCLUSIONS The study concludes that AI-based models can augment radiologists' capabilities by providing reliable second-opinion tools, though further refinements and diverse training data are needed for optimal performance, particularly for sclerotic lesion segmentation. The annotated CT dataset produced and shared in this research serves as a valuable resource for future advancements.
Collapse
Affiliation(s)
- Edgars Edelmers
- Faculty of Medicine, Rīga Stradiņš University, LV-1010 Riga, Latvia; (K.L.S.); (P.S.); (A.K.)
- Faculty of Computer Science, Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia; (A.Ņ.); (N.S.P.)
| | - Artūrs Ņikuļins
- Faculty of Computer Science, Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia; (A.Ņ.); (N.S.P.)
| | - Klinta Luīze Sprūdža
- Faculty of Medicine, Rīga Stradiņš University, LV-1010 Riga, Latvia; (K.L.S.); (P.S.); (A.K.)
| | - Patrīcija Stapulone
- Faculty of Medicine, Rīga Stradiņš University, LV-1010 Riga, Latvia; (K.L.S.); (P.S.); (A.K.)
| | - Niks Saimons Pūce
- Faculty of Computer Science, Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia; (A.Ņ.); (N.S.P.)
| | - Elizabete Skrebele
- Faculty of Civil and Mechanical Engineering, Riga Technical University, LV-1048 Riga, Latvia;
| | | | - Viktorija Cīrule
- Department of Radiology, Faculty of Medicine, Rīga Stradiņš University, LV-1010 Riga, Latvia;
| | - Ance Kazuša
- Faculty of Medicine, Rīga Stradiņš University, LV-1010 Riga, Latvia; (K.L.S.); (P.S.); (A.K.)
| | - Katrina Boločko
- Department of Computer Graphics and Computer Vision, Riga Technical University, LV-1048 Riga, Latvia;
| |
Collapse
|
2
|
Magdy O, Elaziz MA, Dahou A, Ewees AA, Elgarayhi A, Sallah M. Bone scintigraphy based on deep learning model and modified growth optimizer. Sci Rep 2024; 14:25627. [PMID: 39465262 PMCID: PMC11514163 DOI: 10.1038/s41598-024-73991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Bone scintigraphy is recognized as an efficient diagnostic method for whole-body screening for bone metastases. At the moment, whole-body bone scan image analysis is primarily dependent on manual reading by nuclear medicine doctors. However, manual analysis needs substantial experience and is both stressful and time-consuming. To address the aforementioned issues, this work proposed a machine-learning technique that uses phases to detect Bone scintigraphy. The first phase in the proposed model is the feature extraction and it was conducted based on integrating the Mobile Vision Transformer (MobileViT) model in our framework to capture highly complex representations from raw medical imagery using two primary components including ViT and lightweight CNN featuring a limited number of parameters. In addition, the second phase is named feature selection, and it is dependent on the Arithmetic Optimization Algorithm (AOA) being used to improve the Growth Optimizer (GO). We evaluate the performance of the proposed FS model, named GOAOA using a set of 18 UCI datasets. Additionally, the applicability of Bone scintigraphy for real-world application is evaluated using 2800 bone scan images (1400 normal and 1400 abnormal). The results and statistical analysis revealed that the proposed GOAOA algorithm as an FS technique outperforms the other FS algorithms employed in this study.
Collapse
Affiliation(s)
- Omnia Magdy
- Applied Mathematical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Abd Elaziz
- Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
- Faculty of Computer Science and Engineering, Galala University, Suze, 435611, Egypt.
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, 346, United Arab Emirates.
| | - Abdelghani Dahou
- Mathematics and Computer Science department, University of Ahmed DRAIA, Adrar, 01000, Algeria
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China
| | - Ahmed A Ewees
- Department of Information System, College of Computing and Information Technology, University of Bisha, P.O Box 551, Bisha, 61922, Saudi Arabia
| | - Ahmed Elgarayhi
- Applied Mathematical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed Sallah
- Department of Physics, College of Sciences, University of Bisha, P.O. Box 344, Bisha, 61922, Saudi Arabia
| |
Collapse
|
3
|
Pogu SV, Yadav DN, Sankaranarayanan SA, Rengan AK. Barium Sulfate Nanocomposites for Bioimaging and Chemo-photothermal Therapy of Physiologically Aggravated Lung Adenocarcinoma Cells. ACS APPLIED BIO MATERIALS 2024; 7:6213-6228. [PMID: 39135378 DOI: 10.1021/acsabm.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Cancer is a complex disease that displays physiomorphological transformation in different surrounding microenvironments. Therefore, the single treatment modalities are relatively less effective, and their efficiency varies with tumor cell physiology, leading to the development of tumor resistance. Combinatorial therapeutic approaches, such as chemo-photothermal therapy, are promising for efficiently mitigating tumor progression irrespective of cancer physiology. Nanotechnology has played a significant role in this regard. Therefore, the present study reports the synthesis of poly(acrylic acid)-tetraethylene glycol (PAA-TEG)-coated BaSO4 nanoparticles (NPs) with enhanced solubility, dispersibility, and X-ray attenuation. Next, nanocomposites (NCs) are synthesized by loading BaSO4 NPs with the therapeutic drug triiodobenzoic acid (Tiba) and the photosensitizer IR780 using a lipid coating. These fabricated NCs are analyzed for dual-modal imaging (fluorescence and X-ray-based imaging) properties and chemo-phototherapeutic ability against two-dimensional (2D) and three-dimensional (3D) cultures of A549 cells. Furthermore, A549 cells are morphologically and physiologically aggravated into potent malignant cells using tobacco leaf extract (TE), and the variation in the therapeutic effect of NCs compared to cisplatin is determined. The synthesized NCs display enhanced encapsulation and excellent synergistic anticancer activity through the generation of reactive oxygen species (ROS), mitochondrial damage, and genotoxicity. Also, the NCs are more potent in inhibiting cancer cell growth than cisplatin, and their impact is unaltered in the presence or absence of TE pretreatment of A549 cells. The present study holds significant potential for various theranostic applications, which are highly desired for laparoscopic image-guided lung cancer therapy.
Collapse
Affiliation(s)
- Sunil Venkanna Pogu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| |
Collapse
|
4
|
Lin R, Lv H, Yu J, Song C, Tian A. 18F-fluorodeoxyglucose positron emission tomography-computed tomography in the localization of the lesions in the osteogenic region of breast cancer bone metastases after therapy. Quant Imaging Med Surg 2024; 14:4950-4964. [PMID: 39022246 PMCID: PMC11250318 DOI: 10.21037/qims-23-1738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Background Accurate efficacy evaluation of bone metastases (BMs) from breast cancer (BC) is an intractable issue in clinical practice, for which solutions are urgently needed. This study aimed to investigate the utility of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) in the response evaluation of bone metastasis of BC. Methods In total, 22 patients diagnosed with BC and BM were enrolled. These patients underwent repeated 18F-FDG PET/CT evaluations. The patients and each BM site were divided into two groups based on their response to treatment: progressive disease (PD) and nonprogressive disease (non-PD). We analyzed and compared the changes in PET and CT images, as well as the serum concentration of carcinoembryonic antigen (CEA), carbohydrate antigen 153 (CA153), alkaline phosphatase (ALP), and calcium (Ca) over the same time frame. The immunohistochemistry (IHC) of primary lesions between groups and between the primary focus and BM with high 18F-FDG uptake were compared and analyzed. Results Maximum standard uptake value (SUVmax) after therapy [area under the curve (AUC): 0.932] and Δ-value of SUVmax (AUC: 0.811) on 18F-FDG PET imaging proved significantly valuable for the efficacy of therapy outcomes related to BM lesions (P<0.05). In terms of overall evaluation of BM, age and human epidermal growth factor receptor 2 (HER2) expression were significantly lower in the PD group than in the non-PD group (P<0.05). There were marked differences in CEA after therapy, the changes of CEA, and CA153 (∆-value) between the groups (P<0.05). The SUVmax and Ca concentration after therapy and ∆-value of SUVmax, along with the levels of CA153, CEA, and ALP, were valuable indicators for evaluating the efficacy of individual BMs (P<0.05). IHC of BM in the PD group showed differences compared to primary lesions, with antigen Ki-67 being downregulated in metastatic lesions and HER2 being downregulated in a portion of BMs (2 of 6). Meanwhile, the expression of estrogen receptor (ER) and progesterone receptor (PR) remained relatively unchanged. Conclusions 18F-FDG PET/CT confers precise assessment of the posttreatment efficacy pertaining to BM in BC. This modality facilitates the identification of poor effect lesions following extant therapies and localization for pathological assessment and may substantially contribute to evaluating therapeutic efficacy, refining treatment strategies, and predicting the disease trajectory of patients with BC and BM.
Collapse
Affiliation(s)
- Runlong Lin
- Department of Nuclear Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Huiyun Lv
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jing Yu
- Department of Nuclear Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chen Song
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Aijuan Tian
- Department of Nuclear Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Zamani-Siahkali N, Mirshahvalad SA, Farbod A, Divband G, Pirich C, Veit-Haibach P, Cook G, Beheshti M. SPECT/CT, PET/CT, and PET/MRI for Response Assessment of Bone Metastases. Semin Nucl Med 2024; 54:356-370. [PMID: 38172001 DOI: 10.1053/j.semnuclmed.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Recent developments in hybrid SPECT/CT systems and the use of cadmium-zinc-telluride (CZT) detectors have improved the diagnostic accuracy of bone scintigraphy. These advancements have paved the way for novel quantitative approaches to accurate and reproducible treatment monitoring of bone metastases. PET/CT imaging using [18F]F-FDG and [18F]F-NaF have shown promising clinical utility in bone metastases assessment and monitoring response to therapy and prediction of treatment response in a broad range of malignancies. Additionally, specific tumor-targeting tracers like [99mTc]Tc-PSMA, [68Ga]Ga-PSMA, or [11C]C- or [18F]F-Choline revealed high diagnostic performance for early assessment and prognostication of bone metastases, particularly in prostate cancer. PET/MRI appears highly accurate imaging modality, but has associated limitations notably, limited availability, more complex logistics and high installation costs. Advances in artificial intelligence (Al) seem to improve the accuracy of imaging modalities and provide an assistant role in the evaluation of treatment response of bone metastases.
Collapse
Affiliation(s)
- Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Abolfazl Farbod
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Gary Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
6
|
Vulasala SS, Virarkar M, Karbasian N, Calimano-Ramirez LF, Daoud T, Amini B, Bhosale P, Javadi S. Whole-body MRI in oncology: A comprehensive review. Clin Imaging 2024; 108:110099. [PMID: 38401295 DOI: 10.1016/j.clinimag.2024.110099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
Whole-Body Magnetic Resonance Imaging (WB-MRI) has cemented its position as a pivotal tool in oncological diagnostics. It offers unparalleled soft tissue contrast resolution and the advantage of sidestepping ionizing radiation. This review explores the diverse applications of WB-MRI in oncology. We discuss its transformative role in detecting and diagnosing a spectrum of cancers, emphasizing conditions like multiple myeloma and cancers with a proclivity for bone metastases. WB-MRI's capability to encompass the entire body in a singular scan has ushered in novel paradigms in cancer screening, especially for individuals harboring hereditary cancer syndromes or at heightened risk for metastatic disease. Additionally, its contribution to the clinical landscape, aiding in the holistic management of multifocal and systemic malignancies, is explored. The article accentuates the technical strides achieved in WB-MRI, its myriad clinical utilities, and the challenges in integration into standard oncological care. In essence, this review underscores the transformative potential of WB-MRI, emphasizing its promise as a cornerstone modality in shaping the future trajectory of cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Sai Swarupa Vulasala
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States.
| | - Mayur Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Niloofar Karbasian
- Department of Radiology, McGovern Medical School at University of Texas Health Houston, Houston, TX, United States
| | - Luis F Calimano-Ramirez
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Taher Daoud
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Behrang Amini
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priya Bhosale
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sanaz Javadi
- Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Sun J, Sheng J, Zhang LJ. Gastrointestinal tract. TRANSPATHOLOGY 2024:281-296. [DOI: 10.1016/b978-0-323-95223-1.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Omotade A, Malhotra A, Holloway B. Complete fatty replacement of lytic bone metastases following treatment. A case report, assessing response to treatment of bone metastases on CT imaging. Radiol Case Rep 2024; 19:455-458. [PMID: 38046922 PMCID: PMC10692371 DOI: 10.1016/j.radcr.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 12/05/2023] Open
Abstract
Bone is the most common site for breast cancer metastases, occurring in up to 70% of patients, who have metastatic disease. The treatment of advanced breast cancer with bony metastases has significant health and economic implications including the costs of imaging, systemic therapy, and hospital admission. Therefore, accurate interpretation of response to therapy in bone metastases on post-treatment computed tomography (CT) imaging is an essential role of the radiologist in daily practice. It is well recognized that lytic metastases become sclerotic in response to treatment, but it is less appreciated that lytic metastases can become fatty in response to treatment as in this index case. We present a case of post-treatment lytic bone metastases demonstrating an unusual finding of complete fatty replacement within the lesions indicating a response to treatment.
Collapse
Affiliation(s)
- Adeola Omotade
- Department of Radiology, Royal Free Hospital, Royal Free London NHS Trust, London, UK
| | - Anmol Malhotra
- Department of Radiology, Royal Free Hospital, Royal Free London NHS Trust, London, UK
| | - Brian Holloway
- Department of Radiology, Royal Free Hospital, Royal Free London NHS Trust, London, UK
| |
Collapse
|
9
|
Raoufinia R, Afrasiabi P, Dehghanpour A, Memarpour S, Hosseinian SHS, Saburi E, Naghipoor K, Rezaei S, Haghmoradi M, Keyhanvar N, Rostami M, Fakoor F, Kazemi MI, Moghbeli M, Rahimi HR. The Landscape of microRNAs in Bone Tumor: A Comprehensive Review in Recent Studies. Microrna 2024; 13:175-201. [PMID: 39005129 DOI: 10.2174/0122115366298799240625115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Cancer, the second greatest cause of mortality worldwide, frequently causes bone metastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord compression. These injurious incidents leave uncomfortably in each of the cancer patient's life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and exhibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various biological processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Afrasiabi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Memarpour
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naghipoor
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Haghmoradi
- Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Keyhanvar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Fakoor
- Department of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Izadpanah Kazemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Yildiz S, Schecht M, Aggarwal A, Nael K, Doshi A, Pawha PS. Diffusion Weighted Imaging in Spine Tumors. Neuroimaging Clin N Am 2023; 33:459-475. [PMID: 37356862 DOI: 10.1016/j.nic.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Diffusion weighted imaging (DWI) has developed into a powerful tool for the evaluation of spine tumors, particularly for the assessment of vertebral marrow lesions and intramedullary tumors. Advances in magnetic resonance techniques have improved the quality of spine DWI and diffusion tensor imaging (DTI) in recent years, with increased reproducibility and utilization. DTI, with quantitative parameters such as fractional anisotropy and qualitative visual assessment of nerve fiber tracts, can play a valuable role in the evaluation and surgical planning of spinal cord tumors. These widely available techniques can be used to enhance the diagnostic evaluation of spinal tumors.
Collapse
Affiliation(s)
- Sema Yildiz
- Division of Neuroradiology, Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, 1468 Madison Avenue MC Level, New York, NY 10029, USA.
| | - Michael Schecht
- Division of Neuroradiology, Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, 1468 Madison Avenue MC Level, New York, NY 10029, USA
| | - Amit Aggarwal
- Division of Neuroradiology, Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, 1468 Madison Avenue MC Level, New York, NY 10029, USA
| | - Kambiz Nael
- Division of Neuroradiology, Department of Radiology, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Amish Doshi
- Division of Neuroradiology, Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, 1468 Madison Avenue MC Level, New York, NY 10029, USA
| | - Puneet S Pawha
- Division of Neuroradiology, Department of Radiology, Icahn School of Medicine at Mount Sinai Hospital, 1468 Madison Avenue MC Level, New York, NY 10029, USA
| |
Collapse
|
11
|
Filippi L, Frantellizzi V, De Vincentis G, Schillaci O. The new bone WB-SPECT/CT: hybrid, from head-to-toe and digital! Is it worth the effort? Expert Rev Med Devices 2023; 20:791-795. [PMID: 37623913 DOI: 10.1080/17434440.2023.2252743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION A bone scan (BS) plays a pivotal role in many oncological and non-oncological conditions. The planar BS is characterized by high sensitivity but low specificity. With respect to planar imaging, the implementation of single-photon emission computed tomography (SPECT) has allowed increased image contrast and more accurate tracer localization. AREAS COVERED Recent technological innovations in the field of BS are treated, with a particular focus on multi-field-of-view devices allowing to cover the entire scan length with a 3D acquisition (WB-SPECT/CT). In addition, the applications of cadmium zinc telluride/CzT detectors capable of converting gamma photons directly into electrical impulses (i.e. 'digital SPECT') are discussed. EXPERT OPINION Initial clinical experiences indicate that WB-SPECT/CT is characterized by higher sensitivity, diagnostic accuracy, and increased confidence in image interpretation with respect to the 'old-fashioned' BS (planar images with or without a single field-of-view SPECT). Furthermore, CzT-based detectors, thanks to their superior sensitivity, might be helpful to implement fast acquisition protocols. Further studies are needed to better define the clinical impact of bone CzT WB-SPECT/CT on patients' management and outcome, as well as its cost-benefit ratio.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| |
Collapse
|
12
|
Abd elsalam SM, ELbadawi MA, Diab WA, Said AHM, Gomaa MI. Diagnostic value of whole -body diffusion weighted imaging added to bone scan in early diagnosis of bone metastases in breast cancer patients. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2023; 54:102. [DOI: 10.1186/s43055-023-01050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/25/2023] [Indexed: 09/01/2023] Open
Abstract
Abstract
Background
Metastases to the bones are a frequent location of metastasis in advanced breast cancer and are responsible for substantial morbidity and healthcare expenses. Imaging has been crucial in directing patient therapy for decades, contributing to the staging and response evaluation of the skeleton. This research aimed to assess the diagnostic value of whole-body magnetic resonance imaging with diffusion-weighted imaging added to radionuclide bone scans for early diagnosis of bone metastases in breast cancer patients.
Results
The study was a prospective observational cohort study performed on 20 patients with breast cancer and suspected bone metastases. The patients were evaluated first by obtaining a detailed personal history. Laboratory tests, including CBC, liver, and kidney function tests were assessed. All patients were examined by diffusion-weighted whole-body MRI (DWIBS; diffusion-weighted imaging with background body signal suppression) images and bone scintigraphy after intravenous injection of 20 mci of technetium-99m (99mTc) methylene diphosphonate using a dual head gamma camera. The total number of lesions detected by bone scan was 74, and 75 lesions were seen by DWIBS. Twenty-four lesions were missed by bone scan and detected by DWIBS. Fourteen lesions were detected by bone scan and found free by DWIBS examination in the spine and pelvic bones.
Conclusions
Whole body DWIBS seems to be a promising method of imaging in detecting bone metastases from breast cancer that could be used complementary to the traditional bone scan for more accurate diagnosis and staging of the tumor, helping to determine the most appropriate protocol of management.
Collapse
|
13
|
Khojasteh E, Dehdashti F, Shokeen M. Molecular imaging of bone metastasis. J Bone Oncol 2023; 40:100477. [PMID: 37193117 PMCID: PMC10182320 DOI: 10.1016/j.jbo.2023.100477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/18/2023] Open
Abstract
Recent advances in molecularly targeted modular designs for in vivo imaging applications has thrusted open possibilities of investigating deep molecular interactions non-invasively and dynamically. The shifting landscape of biomarker concentration and cellular interactions throughout pathological progression requires quick adaptation of imaging agents and detection modalities for accurate readouts. The synergy of state of art instrumentation with molecularly targeted molecules is resulting in more precise, accurate and reproducible data sets, which is facilitating investigation of several novel questions. Small molecules, peptides, antibodies and nanoparticles are some of the commonly used molecular targeting vectors that can be applied for imaging as well as therapy. The field of theranostics, which encompasses joint application of therapy and imaging, is successfully leveraging the multifunctional use of these biomolecules [[1], [2]]. Sensitive detection of cancerous lesions and accurate assessment of treatment response has been transformative for patient management. Particularly, since bone metastasis is one of the dominant causes of morbidity and mortality in cancer patients, imaging can be hugely impactful in this patient population. The intent of this review is to highlight the utility of molecular positron emission tomography (PET) imaging in the context of prostate and breast bone metastatic cancer, and multiple myeloma. Furthermore, comparisons are drawn with traditionally utilized bone scans (skeletal scintigraphy). Both these modalities can be synergistic or complementary for assessing lytic- and blastic- bone lesions.
Collapse
Affiliation(s)
- Eliana Khojasteh
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Farrokh Dehdashti
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Shokeen
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Corresponding author at: Mallinckrodt Institute of Radiology, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Han D, Ren XH, Liao XR, He XY, Guo T, Chen XS, Pang X, Cheng SX. A Multiple Targeting Nanoprobe for Identifying Cancer Metastatic Sites Based on Detection of Various mRNAs in Circulating Tumor Cells. NANO LETTERS 2023; 23:3678-3686. [PMID: 37052638 DOI: 10.1021/acs.nanolett.2c04643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Identification of cancer metastatic sites is of importance for adjusting therapeutic interventions and treatment choice. However, identifying the location of metastatic lesions with easy accessibility and high safety is challenging. Here we demonstrate that cancer metastatic sites can be accurately detected by a triple targeting nanoprobe. Through coencapsulating molecular beacons probing a cancer biomarker (CXCR4 mRNA), a lung metastatic biomarker (CTSC mRNA), and a bone metastatic biomarker (JAG1 mRNA), the nanoprobe decorated by SYL3C conjugated hyaluronic acid and ICAM-1 specific aptamer conjugated hyaluronic acid can target diverse phenotyped circulating tumor cells (CTCs) during epithelial-mesenchymal and mesenchymal-epithelial transitions in whole blood for sensitive probing. The detection of CTCs from cancer patients shows that the nanoprobe can provide accurate information to distinguish different cancer metastasis statuses including nonmetastasis, lung metastasis, and bone metastasis. This study proposes an efficient screening tool for identifying the location of distant metastatic lesions via facile blood biopsy.
Collapse
Affiliation(s)
- Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, China
| | - Xin-Ru Liao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiao-Yan He
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230011, China
| | - Tao Guo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, Anhui 230011, China
| | - Xue-Si Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
15
|
Systematic Review of Tumor Segmentation Strategies for Bone Metastases. Cancers (Basel) 2023; 15:cancers15061750. [PMID: 36980636 PMCID: PMC10046265 DOI: 10.3390/cancers15061750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Purpose: To investigate the segmentation approaches for bone metastases in differentiating benign from malignant bone lesions and characterizing malignant bone lesions. Method: The literature search was conducted in Scopus, PubMed, IEEE and MedLine, and Web of Science electronic databases following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A total of 77 original articles, 24 review articles, and 1 comparison paper published between January 2010 and March 2022 were included in the review. Results: The results showed that most studies used neural network-based approaches (58.44%) and CT-based imaging (50.65%) out of 77 original articles. However, the review highlights the lack of a gold standard for tumor boundaries and the need for manual correction of the segmentation output, which largely explains the absence of clinical translation studies. Moreover, only 19 studies (24.67%) specifically mentioned the feasibility of their proposed methods for use in clinical practice. Conclusion: Development of tumor segmentation techniques that combine anatomical information and metabolic activities is encouraging despite not having an optimal tumor segmentation method for all applications or can compensate for all the difficulties built into data limitations.
Collapse
|
16
|
Review of the role of MRI and 18 F-sodium fluoride PET/computed tomography in the characterisation of spinal bone metastases in a cohort of patients with breast cancer. Nucl Med Commun 2023; 44:219-225. [PMID: 36592000 DOI: 10.1097/mnm.0000000000001659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE The purpose of the study was to compare the diagnostic accuracy and relative usefulness of MRI and 18 F-NaF (sodium fluoride) PET/computed tomography (CT) for detection of spinal bone metastases in a cohort of patients with high-risk breast cancer (BrCa). METHODS A retrospective study was conducted of patient and lesion-based analyses on 66 consecutive patients (median age, 62.5 years; age range, 33-91 years) who underwent Spinal MRI as well as 18 F-NaF PET-CT for restaging of newly diagnosed recurrent BrCa with no previous bone metastases. Both scans were performed within 20 days of each other. Review of prior images, clinical decisions, multi-disciplinary team discussions and decisions as well as follow-up information including scans and definitive tests was performed at least 12 months after the initial scans. RESULTS Of the 66 patients reviewed, 26 patients had documented spinal bone metastases on one or both modalities, while 40 patients were considered bone disease free on both modalities and this was confirmed on follow-up. On lesion-based analysis, the findings of 18 F-NaF PET-CT and spinal MRI were concordant in 51 patients (77.3%). In the remaining patients, 18 F-NaF PET/CT detected more lesions in 4 patients (7.6%) and MRI detected more lesions in 10 patients (15.1%). Interestingly, there was a very high, 97 % concordance (64 patients) between spinal MRI and 18 F-NaF PET-CT when staging of spinal bone metastasis was taken into consideration. In one patient MRI identified two spinal bone metastases which were not seen on 18 F-NaF PET/CT; and, in one patient 18 F-NaF PET/CT showed few spinal bone metastases when no lesion was seen on MRI. CONCLUSIONS Our study showed a high level of concordance between 18 F NaF PET-CT and spinal MRI within the setting of detection of bone lesions in the spine in a cohort of patients with high-risk BrCa. In our opinion, this high level of concordance negates the need to perform both tests although each test may be indicated for slightly different reasons. Further longitudinal studies across a longer duration and more centres may provide more definitive answers.
Collapse
|
17
|
Liu X, Xie T, Sun Z, Guo Y, Zhang X, Wang X. Analysis of interreader agreement in structured reports of pelvic multiparametric magnetic resonance imaging using the METastasis Reporting and Data System for Prostate Cancer guidelines. Diagn Interv Radiol 2023; 29:29-39. [PMID: 36959743 PMCID: PMC10679596 DOI: 10.5152/dir.2022.211232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/14/2022] [Indexed: 01/15/2023]
Abstract
PURPOSE To evaluate interreader agreement on pelvic multiparametric magnetic resonance imaging (mpMRI) interpretation among radiologists using a structured reporting tool based on the METastasis Reporting and Data System for Prostate Cancer (MET-RADS-P) guidelines. METHODS A structured report for follow-up pelvic mpMRI for advanced prostate cancer (APC) patients was formulated based on MET-RADS-P guidelines. In total, 163 paired pelvic mpMRI examinations were performed from December 2017 to February 2021 on 105 patients with APC. These were retrospectively reviewed by two senior and two junior radiologists for metastatic lesion detection and were categorized by these readers using primary/secondary response assessment categories (RACs), with and without the structured report. Interreader agreement regarding metastasis detection and RAC scores was evaluated with Cohen's kappa and weighted Cohen's kappa statistics (K), respectively. RESULTS The two senior radiologists showed higher agreement with the reference standard for metastasis detection using the structured report (S1: K = 0.83; S2: K = 0.73) compared with the conventional report (S1: K = 0.72; S2: K = 0.61). Junior radiologists showed similar results (J1: 0.66 vs. 0.59; J2: 0.65 vs. 0.57). The overall agreement between the two senior radiologists was excellent for the primary RAC pattern using the structured reports (K = 0.81) and was substantial for secondary RAC categorization (K = 0.75). The interreader agreement of the two junior radiologists was substantial for both primary and secondary RAC values (K = 0.76, 0.68). CONCLUSION Good interreader agreement was found for the follow-up assessment of APC patients between radiologists, where the pelvic mpMRI was reported using MET-RADS-P guidelines. This improvement applied to both metastatic lesion detection and qualitative RAC assessment.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Tingting Xie
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhaonan Sun
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Ying Guo
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
18
|
Ollodart J, Contino KF, Deep G, Shiozawa Y. The impacts of exosomes on bone metastatic progression and their potential clinical utility. Bone Rep 2022; 17:101606. [PMID: 35910404 PMCID: PMC9335387 DOI: 10.1016/j.bonr.2022.101606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Bone is one of the most common sites of cancer metastasis. Once cancer metastasizes to the bone, the mortality rate of cancer patients dramatically increases. Although the exact mechanisms for this observation remain elusive, recent studies have revealed that the complex crosstalk between bone marrow microenvironment and bone metastatic cancer cells is responsible for the induction of treatment resistance. Consequently, bone metastasis is currently considered incurable. Bone metastasis not only impairs the patients' survival, but also negatively affects their quality of life by causing painful complications. It has recently been implicated the regulatory role of exosomes in cancer development and/or progression as a delivery biomaterial between cancer cells and tumor microenvironment. However, little is known as to how exosomes contribute to the progression of bone metastasis by impaction on the crosstalk between bone metastatic cancer cells and bone marrow microenvironment. Here, we highlighted the emerging roles of cancer-derived exosomes in (i) the process of dissemination and bone colonization of bone metastatic cancer cells, (ii) the enhancement of crosstalk between bone marrow microenvironment and bone metastatic cancer cells, (iii) the development of its resultant painful complications, and (iv) the clinical applications of exosomes in the bone metastatic setting. Cancer-derived exosomes facilitate cancer dissemination and colonization to bone. Cancer-derived exosomes are crucial for controlling bone metastatic phenotype. Cancer-derived exosomes prime bone marrow microenvironment for further metastasis. Cancer-derived exosomes are involved in development of cancer-induced bone pain. Exosomes can be used as therapies and/or diagnostic tools for bone metastasis.
Collapse
Affiliation(s)
- Jenna Ollodart
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Kelly F Contino
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Gagan Deep
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| |
Collapse
|