1
|
Chen Y, Ye X, Hu M, Hu Y, Ding J. Long non-coding RNAs in pancreatic cancer. Clin Chim Acta 2025; 566:120040. [PMID: 39536894 DOI: 10.1016/j.cca.2024.120040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
This article reviews the recent advances in pathogenesis, diagnosis and treatment of pancreatic cancer, as well as the relationship between long non-coding RNA (lncRNA) in disease progression. Unfortunately, pancreatic cancer has no early symptoms and quickly invades surrounding tissue and organs, making it one of the deadliest. Accordingly, we urgently need to identify high-risk individuals with precancerous lesions through screening methods to identify early disease, provide better prevention strategies and improve overall survival. LncRNAs have a variety of biological functions in both physiologic and pathophysiologic states including tumor growth, differentiation and proliferation. Herein we review the biological functions, expression patterns, clinical significance and targeted therapy potential of lncRNAs to provide new approaches for diagnosis and treatment in pancreatic cancer.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China
| | - Yibing Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, Zhejiang, China.
| |
Collapse
|
2
|
Fettrelet T, Hosseini A, Wyss J, Boros-Majewska J, Stojkov D, Yousefi S, Simon HU. Evidence for a Role of the Long Non-Coding RNA ITGB2-AS1 in Eosinophil Differentiation and Functions. Cells 2024; 13:1936. [PMID: 39682685 DOI: 10.3390/cells13231936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Eosinophils, a type of granulocyte derived from myeloid precursors in the bone marrow, are distinguished by their cytoplasmic granules. They play crucial roles in immunoregulation, tissue homeostasis, and host defense, while also contributing to the pathogenesis of various inflammatory diseases. Although long non-coding RNAs (lncRNAs) are known to be involved in eosinophilic conditions, their specific expression and functions within eosinophils have not been thoroughly investigated, largely due to the reliance on tissue homogenates. In an effort to address this gap, we analyzed publicly available high-throughput RNA sequencing data to identify lncRNAs associated with eosinophilic conditions. Among the identified lncRNAs, ITGB2 antisense RNA 1 (ITGB2-AS1) was significantly downregulated in blood eosinophils from patients with hypereosinophilia. To further explore its role in eosinophil biology, we generated a stable ITGB2-AS1 knockdown in the HL-60 cell line. Interestingly, ITGB2-AS1 deficiency led to impaired eosinophil differentiation, as evidenced by a reduction in cytoplasmic granules and decreased expression of key eosinophil granule proteins, including eosinophil peroxidase (EPX) and major basic protein-1 (MBP-1). Additionally, ITGB2-AS1-deficient cells exhibited compromised eosinophil effector functions, with reduced degranulation and impaired production of reactive oxygen species (ROS). These findings suggest that ITGB2-AS1 plays a pivotal role in eosinophil differentiation and function, positioning it as a novel regulator in eosinophil biology.
Collapse
Affiliation(s)
| | - Aref Hosseini
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Jacqueline Wyss
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | | | - Darko Stojkov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| |
Collapse
|
3
|
Li P, Ma X, Huang D. Role of the lncRNA/Wnt signaling pathway in digestive system cancer: a literature review. Eur J Med Res 2024; 29:447. [PMID: 39218950 PMCID: PMC11367813 DOI: 10.1186/s40001-024-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The long noncoding RNA (lncRNA)/Wingless (Wnt) axis is often dysregulated in digestive system tumors impacting critical cellular processes. Abnormal expression of specific Wnt-related lncRNAs such as LINC01606 (promotes motility), SLCO4A1-AS1 (promotes motility), and SH3BP5-AS1 (induces chemoresistance), plays a crucial role in these malignancies. These lncRNAs are promising targets for cancer diagnosis and therapy, offering new treatment perspectives. The lncRNAs, NEF and GASL1, differentially expressed in plasma show diagnostic potential for esophageal squamous cell carcinoma and gastric cancer, respectively. Additionally, Wnt pathway inhibitors like XAV-939 have demonstrated preclinical efficacy, underscoring their therapeutic potential. This review comprehensively analyzes the lncRNA/Wnt axis, highlighting its impact on cell proliferation, motility, and chemoresistance. By elucidating the complex molecular mechanisms of the lncRNA/Wnt axis, we aim to identify potential therapeutic targets for digestive system tumors to pave the way for the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xiao Ma
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
4
|
Pokorná M, Černá M, Boussios S, Ovsepian SV, O’Leary VB. lncRNA Biomarkers of Glioblastoma Multiforme. Biomedicines 2024; 12:932. [PMID: 38790894 PMCID: PMC11117901 DOI: 10.3390/biomedicines12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.
Collapse
Affiliation(s)
- Markéta Pokorná
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| | - Saak V. Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK;
- Faculty of Medicine, Tbilisi State University, Tbilisi 0177, Georgia
| | - Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| |
Collapse
|
5
|
Yadav G, Kulshreshtha R. Pan-cancer analyses identify MIR210HG overexpression, epigenetic regulation and oncogenic role in human tumors and its interaction with the tumor microenvironment. Life Sci 2024; 339:122438. [PMID: 38242493 DOI: 10.1016/j.lfs.2024.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Molecular entities showing dysregulation in multiple cancers may hold great biomarker or therapeutic potential. There is accumulating evidence that highlights the dysregulation of a long non-coding RNA, MIR210HG, in various cancers and its oncogenic role. However, a comprehensive analysis of MIR210HG expression pattern, molecular mechanisms, diagnostic or prognostic significance or evaluation of its interaction with tumor microenvironment across various cancers remains unstudied. METHODS A systematic pan-cancer analysis was done using multiple public databases and bioinformatic tools to study the molecular role and clinical significance of MIR210HG. We have analyzed expression patterns, genome alteration, transcriptional and epigenetic regulation, correlation with patient survival, immune infiltrates, co-expressed genes, interacting proteins, and pathways associated with MIR210HG. RESULTS The Pan cancer expression analysis of MIR210HG through various tumor datasets demonstrated that MIR210HG is significantly upregulated in most cancers and increased with the tumor stage in a subset of them. Furthermore, prognostic analysis revealed high MIR210HG expression is associated with poor overall and disease-free survival in specific cancer types. Genetic alteration analysis showed minimal alterations in the MIR210HG locus, indicating that overexpression in cancers is not due to gene amplification. The exploration of SNPs on MIR210HG suggested possible structural changes that may affect its interactions with the miRNAs. The correlation of MIR210HG with promoter methylation was found to be significantly negative in nature in majority of cancers depicting the possible epigenetic regulation of expression of MIR210HG. Additionally, MIR210HG showed negative correlations with immune cells and thus may have strong impact on the tumor microenvironment. Functional analysis indicates its association with hypoxia, angiogenesis, metastasis, and DNA damage repair processes. MIR210HG was found to interact with several proteins and potentially regulate chromatin modifications and transcriptional regulation. CONCLUSIONS A first pan-can cancer analysis of MIR210HG highlights its transcriptional and epigenetic deregulation and oncogenic role in the majority of cancers, its correlation with tumor microenvironment factors such as hypoxia and immune infiltration, and its potential as a prognostic biomarker and therapeutic target in several cancers.
Collapse
Affiliation(s)
- Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
6
|
Wang J, Shu J. Construction of RNA Methylation Modification-immune-related lncRNA Molecular Subtypes and Prognostic Scoring System in Lung Adenocarcinoma. Curr Med Chem 2024; 31:1539-1560. [PMID: 37680151 DOI: 10.2174/0929867331666230901110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND RNA methylation modification is not only intimately interrelated with cancer development and progression but also actively influences immune cell infiltration in the tumor microenvironment (TME). RNA methylation modification genes influence the therapeutic progression of lung adenocarcinoma (LUAD), and mining RNA methylation modification prognosis-related markers in LUAD is crucial for its precise prognosis. METHODS RNA-Seq data and Gene sets were collected from online databases or published literature. Genomic variation analysis was conducted by the Maftools package. RNA methylation-immune-related lncRNAs were obtained by Pearson correlation analysis. Then, Consistent clustering analysis was performed to obtain RNA methylation modification- immune molecular subtypes (RMM-I Molecular subtypes) in LUAD based on selected lncRNAs. COX and random survival forest analysis were carried out to construct the RMM-I Score. The receiver operating characteristic (ROC) curve and Kaplan Meier survival analysis were used to assess survival differences. Tumor immune microenvironment was assessed through related gene signatures and CIBERSORT algorithm. In addition, drug sensitivity analysis was executed by the pRRophetic package. RESULTS Four RNA methylation modified-immune molecular subtypes (RMM-I1, RMM- I2, RMM-I3, RMM-I4) were presented in LUAD. Patients in RMM-I4 exhibited excellent survival advantages and immune activity. HAVCR2, CD274, and CTLA-4 expression were activated in RMM-I4, which might be heat tumors and a potential beneficial group for immunotherapy. OGFRP1, LINC01116, DLGAP1-AS2, CRNDE, LINC01137, MIR210HG, and CYP1B1-AS1 comprised the RMM-I Score. The RMM-I Score exhibited excellent accuracy in the prognostic assessment of LUAD, as patients with a low RMM- I Score exhibited remarkable survival advantage. Patients with a low RMM-I score might be more sensitive to treatment with Docetaxel, Vinorelbine, Paclitaxel, Cisplatin, and immunotherapy. CONCLUSION The RMM-I molecular subtype constituted the novel molecular characteristic subtype of LUAD, which complemented the existing pathological typing. More refined and accurate molecular subtypes provide help to reveal the mechanism of LUAD development. In addition, the RMM-I score offers a reliable tool for accurate prognosis of LUAD.
Collapse
Affiliation(s)
- Jiajing Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Ningbo, 315000, China
| | - Jianfeng Shu
- Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, China
| |
Collapse
|