1
|
Navasatli SA, Vahdati SN, Arjmand TF, Mohammadi far M, Behboudi H. New insight into the role of the ADAM protease family in breast carcinoma progression. Heliyon 2024; 10:e24805. [PMID: 38317965 PMCID: PMC10839977 DOI: 10.1016/j.heliyon.2024.e24805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Protease and adhesion molecules play a very emphasized role in the occurrence or progression of metastasis in many types of cancers. In this context, a molecule that contains both protease and adhesion functions play a crucial role in metastasis. ADAMs (a disintegrin and metalloprotease) are molecules with this special characteristic. Recently, a lot of attention has been attracted to various ADAM molecules and researchers have tried to elucidate the role of ADAMs in breast cancer occurrence and progression. Disrupting ADAMs protease and adhesion capabilities can lead to the discovery of worthy therapeutic targets in breast cancer treatment. In this review, we intend to discuss the mechanism of action of various ADAM molecules, their relation to pathogenic processes of breast cancer, and their potential as possible targets for breast cancer treatment.
Collapse
Affiliation(s)
- Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Tahura Fayeghi Arjmand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Mohammadi far
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Fang F, Quach B, Lawrence KG, van Dongen J, Marks JA, Lundgren S, Lin M, Odintsova VV, Costeira R, Xu Z, Zhou L, Mandal M, Xia Y, Vink JM, Bierut LJ, Ollikainen M, Taylor JA, Bell JT, Kaprio J, Boomsma DI, Xu K, Sandler DP, Hancock DB, Johnson EO. Trans-ancestry epigenome-wide association meta-analysis of DNA methylation with lifetime cannabis use. Mol Psychiatry 2024; 29:124-133. [PMID: 37935791 PMCID: PMC11078760 DOI: 10.1038/s41380-023-02310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cannabis is widely used worldwide, yet its links to health outcomes are not fully understood. DNA methylation can serve as a mediator to link environmental exposures to health outcomes. We conducted an epigenome-wide association study (EWAS) of peripheral blood-based DNA methylation and lifetime cannabis use (ever vs. never) in a meta-analysis including 9436 participants (7795 European and 1641 African ancestry) from seven cohorts. Accounting for effects of cigarette smoking, our trans-ancestry EWAS meta-analysis revealed four CpG sites significantly associated with lifetime cannabis use at a false discovery rate of 0.05 ( p < 5.85 × 10 - 7 ) : cg22572071 near gene ADGRF1, cg15280358 in ADAM12, cg00813162 in ACTN1, and cg01101459 near LINC01132. Additionally, our EWAS analysis in participants who never smoked cigarettes identified another epigenome-wide significant CpG site, cg14237301 annotated to APOBR. We used a leave-one-out approach to evaluate methylation scores constructed as a weighted sum of the significant CpGs. The best model can explain 3.79% of the variance in lifetime cannabis use. These findings unravel the DNA methylation changes associated with lifetime cannabis use that are independent of cigarette smoking and may serve as a starting point for further research on the mechanisms through which cannabis exposure impacts health outcomes.
Collapse
Affiliation(s)
- Fang Fang
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA.
| | - Bryan Quach
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jesse A Marks
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Sara Lundgren
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Mingkuan Lin
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
| | - Veronika V Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ricardo Costeira
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Linran Zhou
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Meisha Mandal
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Yujing Xia
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jacqueline M Vink
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Laura J Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Dana B Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Eric O Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|