1
|
Shah R, Eklund EA, Radenkovic S, Sadek M, Shammas I, Verberkmoes S, Ng BG, Freeze HH, Edmondson AC, He M, Kozicz T, Altassan R, Morava E. ALG13-Congenital Disorder of Glycosylation (ALG13-CDG): Updated clinical and molecular review and clinical management guidelines. Mol Genet Metab 2024; 142:108472. [PMID: 38703411 PMCID: PMC11402470 DOI: 10.1016/j.ymgme.2024.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
ALG13-Congenital Disorder of Glycosylation (CDG), is a rare X-linked CDG caused by pathogenic variants in ALG13 (OMIM 300776) that affects the N-linked glycosylation pathway. Affected individuals present with a predominantly neurological manifestation during infancy. Epileptic spasms are a common presenting symptom of ALG13-CDG. Other common phenotypes include developmental delay, seizures, intellectual disability, microcephaly, and hypotonia. Current management of ALG13-CDG is targeted to address patients' symptoms. To date, less than 100 individuals have been reported with ALG13-CDG. In this article, an international group of experts in CDG reviewed all reported individuals affected with ALG13-CDG and suggested diagnostic and management guidelines for ALG13-CDG. The guidelines are based on the best available data and expert opinion. Neurological symptoms dominate the phenotype of ALG13-CDG where epileptic spasm is confirmed to be the most common presenting symptom of ALG13-CDG in association with hypotonia and developmental delay. We propose that ACTH/prednisolone treatment should be trialed first, followed by vigabatrin, however ketogenic diet has been shown to have promising results in ALG13-CDG. In order to optimize medical management, we also suggest early cardiac, gastrointestinal, skeletal, and behavioral assessments in affected patients.
Collapse
Affiliation(s)
- Rameen Shah
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Erik A Eklund
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, Lund, Sweden; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Silvia Radenkovic
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Mustafa Sadek
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ibrahim Shammas
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sanne Verberkmoes
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Bobby G Ng
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, PA, USA
| | - Miao He
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; University of Pécs, Medical School, Pécs, Hungary
| | - Ruqaiah Altassan
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Medical Genomics, Centre for Genomics Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; University of Pécs, Medical School, Pécs, Hungary.
| |
Collapse
|
2
|
Madaan P, Kaushal Y, Srivastava P, Crow YJ, Livingston JH, Ahuja C, Sankhyan N. Delineating the epilepsy phenotype of NRROS-related microgliopathy: A case report and literature review. Seizure 2022; 100:15-20. [PMID: 35716448 DOI: 10.1016/j.seizure.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Negative regulator of reactive oxygen species (NRROS) related microgliopathy, a rare and recently recognized neurodegenerative condition, is caused by pathogenic variants in the NRROS gene, which plays a major role in the regulation of transforming growth factor-beta 1. METHODS We report a child presenting with infantile spasms syndrome (ISS) with subsequent progressive neurodegeneration who was identified to harbour a novel likely pathogenic NRROS variant (c.1359del; p.Ser454Alafs*11). The previously published reports of patients with this disorder were also reviewed systematically. RESULTS Including our index patient, 11 children (6 girls) were identified in total. Early development was normal in seven of these eleven children. All had a history of drug-resistant epilepsy, with 3 having epileptic spasms. The median age at seizure onset and developmental regression was 12 months, and the median age at death was 36 months. Intracranial calcifications were described in eight of eleven children. Neuroimaging revealed progressive cerebral atrophy and white matter loss in all children. The most common reported genetic variation was c.1981delC; (p.Leu661Serfs*97) observed in two families (likely due to a founder effect). CONCLUSIONS Pathogenic variants in NRROS should be suspected in children with neuro-regression and drug-resistant epilepsy including ISS with onset in the first two years of life. Punctate or serpiginous calcifications at the grey-white matter junction and acquired microcephaly are further clues towards the diagnosis.
Collapse
Affiliation(s)
- Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Yashovardhan Kaushal
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - John H Livingston
- Department of Paediatric Neurology, Leeds Teaching Hospitals, Leeds, UK
| | - Chirag Ahuja
- Department of Radiodiagnosis and Imaging (Section of Neuroimaging and Interventional Radiology), PGIMER, Chandigarh, India
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
3
|
Structural Analysis of the Effect of Asn107Ser Mutation on Alg13 Activity and Alg13-Alg14 Complex Formation and Expanding the Phenotypic Variability of ALG13-CDG. Biomolecules 2022; 12:biom12030398. [PMID: 35327592 PMCID: PMC8945535 DOI: 10.3390/biom12030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital Disorders of Glycosylation (CDG) are multisystemic metabolic disorders showing highly heterogeneous clinical presentation, molecular etiology, and laboratory results. Here, we present different transferrin isoform patterns (obtained by isoelectric focusing) from three female patients harboring the ALG13 c.320A>G mutation. Contrary to other known variants of type I CDGs, where transferrin isoelectric focusing revealed notably increased asialo- and disialotransferrin fractions, a normal glycosylation pattern was observed in the probands. To verify this data and give novel insight into this variant, we modeled the human Alg13 protein and analyzed the dynamics of the apo structure and the complex with the UDP-GlcNAc substrate. We also modeled the Alg13-Alg14 heterodimer and ran multiple simulations of the complex in the presence of the substrate. Finally, we proposed a plausible complex formation mechanism.
Collapse
|
4
|
Sharma A, Madaan P, Vyas S, Sankhyan N. FOXG1 variant presenting as unexplained irritability and peculiar crying spells. Seizure 2021; 93:32-33. [PMID: 34656939 DOI: 10.1016/j.seizure.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ajay Sharma
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Sameer Vyas
- Department of Radiodiagnosis and Imaging (section of neuroimaging and interventional radiology), PGIMER, Chandigarh, India
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
5
|
Alsharhan H, He M, Edmondson AC, Daniel EJP, Chen J, Donald T, Bakhtiari S, Amor DJ, Jones EA, Vassallo G, Vincent M, Cogné B, Deb W, Werners AH, Jin SC, Bilguvar K, Christodoulou J, Webster RI, Yearwood KR, Ng BG, Freeze HH, Kruer MC, Li D, Raymond KM, Bhoj EJ, Sobering AK. ALG13 X-linked intellectual disability: New variants, glycosylation analysis, and expanded phenotypes. J Inherit Metab Dis 2021; 44:1001-1012. [PMID: 33734437 PMCID: PMC8720508 DOI: 10.1002/jimd.12378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Pathogenic variants in ALG13 (ALG13 UDP-N-acetylglucosaminyltransferase subunit) cause an X-linked congenital disorder of glycosylation (ALG13-CDG) where individuals have variable clinical phenotypes that include developmental delay, intellectual disability, infantile spasms, and epileptic encephalopathy. Girls with a recurrent de novo c.3013C>T; p.(Asn107Ser) variant have normal transferrin glycosylation. Using a highly sensitive, semi-quantitative flow injection-electrospray ionization-quadrupole time-of-flight mass spectrometry (ESI-QTOF/MS) N-glycan assay, we report subtle abnormalities in N-glycans that normally account for <0.3% of the total plasma glycans that may increase up to 0.5% in females with the p.(Asn107Ser) variant. Among our 11 unrelated ALG13-CDG individuals, one male had abnormal serum transferrin glycosylation. We describe seven previously unreported subjects including three novel variants in ALG13 and report a milder neurodevelopmental course. We also summarize the molecular, biochemical, and clinical data for the 53 previously reported ALG13-CDG individuals. We provide evidence that ALG13 pathogenic variants may mildly alter N-linked protein glycosylation in both female and male subjects, but the underlying mechanism remains unclear.
Collapse
Affiliation(s)
- Hind Alsharhan
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Miao He
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew C. Edmondson
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Earnest J. P. Daniel
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jie Chen
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tyhiesia Donald
- Pediatrics Ward, Grenada General Hospital, St. George’s, Grenada
- Clinical Teaching Unit, St. George’s University, St. George’s, Grenada
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona
- Department of Child Health, Neurology, Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, Arizona
| | - David J. Amor
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, and Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Elizabeth A. Jones
- Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Grace Vassallo
- Department of Pediatric Neurology, Royal Manchester Children’s Hospital, Manchester University Foundation Trust, Manchester, UK
| | - Marie Vincent
- Service de génétique médicale, CHU de Nantes, Nantes, France
| | - Benjamin Cogné
- Service de génétique médicale, CHU de Nantes, Nantes, France
| | - Wallid Deb
- Service de génétique médicale, CHU de Nantes, Nantes, France
| | - Arend H. Werners
- Department of Anatomy, Physiology and Pharmacology, St. George University School of Veterinary Medicine, St. George’s, Grenada
| | - Sheng C. Jin
- Department of Genetics and Pediatrics, Washington University, St. Louis, Missouri
| | - Kaya Bilguvar
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, and Department of Pediatrics, University of Melbourne, Melbourne, Australia
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Richard I. Webster
- Institute for Neuroscience and Muscle Research, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | | | - Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Michael C. Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, Arizona
- Department of Child Health, Neurology, Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, Arizona
| | - Dong Li
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kimiyo M. Raymond
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth J. Bhoj
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew K. Sobering
- Department of Biochemistry, St. George’s University School of Medicine, St. George’s, Grenada
- Windward Islands Research and Education Foundation, True Blue, St. George’s, Grenada
| |
Collapse
|
6
|
Safety, Feasibility and Effectiveness of Pulse Methylprednisolone Therapy in Comparison with Intramuscular Adrenocorticotropic Hormone in Children with West Syndrome. Indian J Pediatr 2021; 88:663-667. [PMID: 33103229 DOI: 10.1007/s12098-020-03521-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To assess the feasibility, effectiveness, and safety of pulse methylprednisolone in comparison with intramuscular adrenocorticotropic hormone (ACTH) therapy in children with West syndrome (WS). METHODS This open-label, pilot study with a parallel-group assignment included 44 recently diagnosed children with WS. Methylprednisolone therapy was given as intravenous infusion at a dose of 30 mg/kg/d for five days followed by oral steroids 1 mg/kg gradually tapered over 5-6 wk. The efficacy outcomes included a cessation of epileptic spasms (as per caregiver reporting) and resolution of hypsarrhythmia on electroencephalogram; safety outcome was the frequency of various adverse effects. RESULTS By day 14 of therapy, 6/18 (33.3%) children in the methylprednisolone group and 10/26 (38.5%) children in the ACTH group achieved cessation of epileptic spasms [group difference - 5.2%; confidence interval (CI) -30.7 to 22.8; p = 0.73]. However, by six weeks of therapy, 4/18 (22.2%) children in the methylprednisolone group and 11/26 (42.3%) children in the ACTH group had cessation of epileptic spasms (group difference - 20.1%; CI -43.0 to 8.4; p = 0.17). Hypertension was more commonly observed in the ACTH group (10 children) than in the methylprednisolone group (2 children; p = 0.046). Pulse methylprednisolone therapy was relatively safe. CONCLUSIONS The study observed limited effectiveness of both ACTH and pulse methylprednisolone therapy, which may partially be due to preponderance of structural etiology and a long treatment lag. However, pulse methylprednisolone therapy appeared to be safe, tolerable, and feasible for management of WS.
Collapse
|
7
|
Paprocka J, Jezela-Stanek A, Boguszewicz Ł, Sokół M, Lipiński P, Jamroz E, Emich-Widera E, Tylki-Szymańska A. The First Metabolome Analysis in Children with Epilepsy and ALG13-CDG Resulting from c.320A>G Variant. CHILDREN (BASEL, SWITZERLAND) 2021; 8:251. [PMID: 33807002 PMCID: PMC8004727 DOI: 10.3390/children8030251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND ALG13-CDG belongs to the congenital disorders of glycosylation (CDG), which is an expanding group of multisystemic metabolic disorders caused by the N-linked, O-linked oligosaccharides, shared substrates, glycophosphatidylinositol (GPI) anchors, and dolichols pathways with high genetic heterogeneity. Thus, as far as clinical presentation, laboratory findings, and treatment are concerned, many questions are to be answered. Three individuals presented here may serve as a good example of clinical heterogeneity. This manuscript describes the first metabolomic analysis using NMR in three patients with epileptic encephalopathy due to the recurrent c.320A>G variant in ALG13, characterized to date only in about 60 individuals (mostly female). This is an important preliminary step in the understanding of the pathogenesis of the disease associated with this variant in the rare genetic condition. The disease is assumed to be a disorder of N-glycosylation given that this is the only known function of the ALG13 protein. Despite this, protein electrophoresis, which is abnormal in most conditions due to abnormalities in N-glycosylation, has been normal or only mildly abnormal in the ALG13 patients. METHODS Nuclear magnetic resonance (NMR) spectroscopy in conjunction with multivariate and univariate modelling were used to analyze the metabolic profile of the blood serum samples acquired from the studied patients. RESULTS Three metabolites were identified as potential biomarkers: betaine, N-acetyl-glycoprotein, and carnitine. CONCLUSIONS Since presented data are the first to be collected so far, they need be verified in further studies. Our intention was to turn attention toward possible CDG-ALG13 laboratory markers that would have clinical significance.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (E.J.); (E.E.-W.)
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Łukasz Boguszewicz
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (Ł.B.); (M.S.)
| | - Maria Sokół
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (Ł.B.); (M.S.)
| | - Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Disorders, Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (P.L.); (A.T.-S.)
| | - Ewa Jamroz
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (E.J.); (E.E.-W.)
| | - Ewa Emich-Widera
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (E.J.); (E.E.-W.)
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Disorders, Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (P.L.); (A.T.-S.)
| |
Collapse
|
8
|
Datta AN, Bahi-Buisson N, Bienvenu T, Buerki SE, Gardiner F, Cross JH, Heron B, Kaminska A, Korff CM, Lepine A, Lesca G, McTague A, Mefford HC, Mignot C, Milh M, Piton A, Pressler RM, Ruf S, Sadleir LG, de Saint Martin A, Van Gassen K, Verbeek NE, Ville D, Villeneuve N, Zacher P, Scheffer IE, Lemke JR. The phenotypic spectrum of X-linked, infantile onset ALG13-related developmental and epileptic encephalopathy. Epilepsia 2021; 62:325-334. [PMID: 33410528 PMCID: PMC7898319 DOI: 10.1111/epi.16761] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/27/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Objective Asparagine‐linked glycosylation 13 (ALG13) deficiencies have been repeatedly described in the literature with the clinical phenotype of a developmental and epileptic encephalopathy (DEE). Most cases were females carrying the recurrent ALG13 de novo variant, p.(Asn107Ser), with normal transferrin electrophoresis. Methods We delineate the phenotypic spectrum of 38 individuals, 37 girls and one boy, 16 of them novel and 22 published, with the most common pathogenic ALG13 variant p.(Asn107Ser) and additionally report the phenotype of three individuals carrying other likely pathogenic ALG13 variants. Results The phenotypic spectrum often comprised pharmacoresistant epilepsy with epileptic spasms, mostly with onset within the first 6 months of life and with spasm persistence in one‐half of the cases. Tonic seizures were the most prevalent additional seizure type. Electroencephalography showed hypsarrhythmia and at a later stage of the disease in one‐third of all cases paroxysms of fast activity with electrodecrement. ALG13‐related DEE was usually associated with severe to profound developmental delay; ambulation was acquired by one‐third of the cases, whereas purposeful hand use was sparse or completely absent. Hand stereotypies and dyskinetic movements including dystonia or choreoathetosis were relatively frequent. Verbal communication skills were absent or poor, and eye contact and pursuit were often impaired. Significance X‐linked ALG13‐related DEE usually manifests as West syndrome with severe to profound developmental delay. It is predominantly caused by the recurrent de novo missense variant p.(Asn107Ser). Comprehensive functional studies will be able to prove or disprove an association with congenital disorder of glycosylation.
Collapse
Affiliation(s)
- Alexandre N Datta
- Pediatric Neurology and Developmental Medicine Department, University Children's Hospital, University of Basel, Basel, Switzerland
| | - Nadia Bahi-Buisson
- Pediatric Neurology, Necker-Enfants Malades Children's Hospital, Paris and Institute IMAGINE, INSERM U1163, University of Paris, Paris, France
| | - Thierry Bienvenu
- Paris Institute of Psychiatry and Neuroscience, University of Paris, Paris, France
| | - Sarah E Buerki
- Pediatric Neurology Department, University Children's Hospital Zürich, Switzerland
| | - Fiona Gardiner
- Austin Health, University of Melbourne, Melbourne, Victoria, Australia
| | - J Helen Cross
- Clinical Neuroscience, University College London-Great Ormond Street Institute of Child Health, London, UK
| | - Bénédicte Heron
- Pediatric Neurology Department, Armand Trousseau-La Roche Guyon University Hospital, APHP and GRC No. 19, Sorbonne Universities, Paris, France
| | - Anna Kaminska
- Department of Clinical Neurophysiology, Necker-Enfants Malades Hospital, Public Hospital Network of Paris, Paris, France
| | - Christian M Korff
- Pediatric Neurology Unit, Department of Pediatrics, Geneva University Hospital, Geneva, Switzerland
| | - Anne Lepine
- Pediatric Neurology and Metabolic Diseases Department, University Hospital La Timone, Marseilles, France
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Amy McTague
- Clinical Neuroscience, University College London-Great Ormond Street Institute of Child Health, London, UK
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Cyrill Mignot
- Department of Genetics and Reference Center for Intellectual Deficiencies of Rare Causes, , Sorbonne University, Paris, France
| | - Matthieu Milh
- Pediatric Neurology Unit, Department of Pediatrics, Geneva University Hospital, Geneva, Switzerland
| | - Amélie Piton
- Department of Molecular Genetics, University Hospital Strasbourg, Strasbourg, France
| | - Ronit M Pressler
- Clinical Neuroscience, University College London-Great Ormond Street Institute of Child Health, London, UK.,Department of Neurophysiology, Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, UK
| | - Susanne Ruf
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Anne de Saint Martin
- Pediatric Neurology Unit, Department of Pediatrics, University Hospital Strasbourg, Strasbourg, France
| | - Koen Van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dorothée Ville
- Pediatric Neurology Department and Reference Center of Rare Epilepsies, Mother Child Women's Hospital, Lyon University Hospital, France
| | - Nathalie Villeneuve
- Pediatric Neurology and Metabolic Diseases Department, University Hospital La Timone, Marseilles, France
| | - Pia Zacher
- Epilepsy Center Kleinwachau, Radeberg, Germany
| | - Ingrid E Scheffer
- Austin Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, University of Melbourne, Melbourne, Victoria, Australia
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
9
|
Ng BG, Eklund EA, Shiryaev SA, Dong YY, Abbott MA, Asteggiano C, Bamshad MJ, Barr E, Bernstein JA, Chelakkadan S, Christodoulou J, Chung WK, Ciliberto MA, Cousin J, Gardiner F, Ghosh S, Graf WD, Grunewald S, Hammond K, Hauser NS, Hoganson GE, Houck KM, Kohler JN, Morava E, Larson AA, Liu P, Madathil S, McCormack C, Meeks NJ, Miller R, Monaghan KG, Nickerson DA, Palculict TB, Papazoglu GM, Pletcher BA, Scheffer IE, Schenone AB, Schnur RE, Si Y, Rowe LJ, Serrano Russi AH, Russo RS, Thabet F, Tuite A, Mercedes Villanueva M, Wang RY, Webster RI, Wilson D, Zalan A, Wolfe LA, Rosenfeld JA, Rhodes L, Freeze HH. Predominant and novel de novo variants in 29 individuals with ALG13 deficiency: Clinical description, biomarker status, biochemical analysis, and treatment suggestions. J Inherit Metab Dis 2020; 43:1333-1348. [PMID: 32681751 PMCID: PMC7722193 DOI: 10.1002/jimd.12290] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Asparagine-linked glycosylation 13 homolog (ALG13) encodes a nonredundant, highly conserved, X-linked uridine diphosphate (UDP)-N-acetylglucosaminyltransferase required for the synthesis of lipid linked oligosaccharide precursor and proper N-linked glycosylation. De novo variants in ALG13 underlie a form of early infantile epileptic encephalopathy known as EIEE36, but given its essential role in glycosylation, it is also considered a congenital disorder of glycosylation (CDG), ALG13-CDG. Twenty-four previously reported ALG13-CDG cases had de novo variants, but surprisingly, unlike most forms of CDG, ALG13-CDG did not show the anticipated glycosylation defects, typically detected by altered transferrin glycosylation. Structural homology modeling of two recurrent de novo variants, p.A81T and p.N107S, suggests both are likely to impact the function of ALG13. Using a corresponding ALG13-deficient yeast strain, we show that expressing yeast ALG13 with either of the highly conserved hotspot variants rescues the observed growth defect, but not its glycosylation abnormality. We present molecular and clinical data on 29 previously unreported individuals with de novo variants in ALG13. This more than doubles the number of known cases. A key finding is that a vast majority of the individuals presents with West syndrome, a feature shared with other CDG types. Among these, the initial epileptic spasms best responded to adrenocorticotropic hormone or prednisolone, while clobazam and felbamate showed promise for continued epilepsy treatment. A ketogenic diet seems to play an important role in the treatment of these individuals.
Collapse
Affiliation(s)
- Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Erik A. Eklund
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, Lund, Sweden
| | - Sergey A. Shiryaev
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yin Y. Dong
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mary-Alice Abbott
- Department of Pediatrics, Baystate Children’s Hospital, University of Massachusetts Medical School - Baystate, Springfield, Massachusetts
| | - Carla Asteggiano
- CEMECO—CONICET, Children Hospital, School of Medicine, National University of Cordoba, Cordoba, Argentina
- Chair of Pharmacology, Catholic University of Cordoba, Cordoba, Argentina
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Eileen Barr
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Jonathan A. Bernstein
- Stanford University School of Medicine, Stanford, California
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | | | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, New York
- Department of Medicine, Columbia University, New York, New York
| | - Michael A. Ciliberto
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Janice Cousin
- Section of Human Biochemical Genetics, National Human Genome Research Institute, Bethesda, Maryland
| | - Fiona Gardiner
- University of Melbourne, Austin Health, Melbourne, Australia
| | - Suman Ghosh
- Department of Pediatrics Division of Pediatric Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - William D. Graf
- Division of Pediatric Neurology, Department of Pediatrics, Connecticut Children’s; University of Connecticut, Farmington, Connecticut
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital, Institute of Child Health University College London, NIHR Biomedical Research Center, London, UK
| | - Katherine Hammond
- Division of Pediatric Neurology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Natalie S. Hauser
- Inova Translational Medicine Institute Division of Medical Genomics Inova Fairfax Hospital Falls Church, Virginia
| | - George E. Hoganson
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Kimberly M. Houck
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Jennefer N. Kohler
- Stanford University School of Medicine, Stanford, California
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Austin A. Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Sujana Madathil
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Colleen McCormack
- Stanford University School of Medicine, Stanford, California
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Naomi J.L. Meeks
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Rebecca Miller
- Inova Translational Medicine Institute Division of Medical Genomics Inova Fairfax Hospital Falls Church, Virginia
| | | | | | | | - Gabriela Magali Papazoglu
- CEMECO—CONICET, Children Hospital, School of Medicine, National University of Cordoba, Cordoba, Argentina
| | - Beth A. Pletcher
- Department of Pediatrics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Ingrid E. Scheffer
- University of Melbourne, Austin Health, Melbourne, Australia
- University of Melbourne, Royal Children’s Hospital, Florey and Murdoch Institutes, Melbourne, Australia
| | | | | | - Yue Si
- GeneDx, Inc. Laboratory, Gaithersburg, Maryland
| | - Leah J. Rowe
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Alvaro H. Serrano Russi
- Division of Medical Genetics Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | - Allysa Tuite
- Department of Pediatrics, Rutgers New Jersey Medical School, Newark, New Jersey
| | | | - Raymond Y. Wang
- Division of Metabolic Disorders, Children’s Hospital of Orange County, Orange, California
- Department of Pediatrics, University of California-Irvine, Orange, California
| | - Richard I. Webster
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital, Westmead, Australia
- Kids Neuroscience Centre, The Children’s Hospital, Westmead, Australia
| | - Dorcas Wilson
- Netcare Sunninghill Hospital, Sandton, South Africa
- Nelson Mandela Children’s Hospital, Johannesburg, South Africa
| | - Alice Zalan
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | | | - Lynne A. Wolfe
- Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, Maryland
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | | | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|