1
|
Yuan C, Hansen AL, Bruschweiler-Li L, Brüschweiler R. NMR 1H, 13C, 15N backbone resonance assignments of wild-type human K-Ras and its oncogenic mutants G12D and G12C bound to GTP. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:7-13. [PMID: 37948018 DOI: 10.1007/s12104-023-10162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Human K-Ras protein, which is a member of the GTPase Ras family, hydrolyzes GTP to GDP and concomitantly converts from its active to its inactive state. It is a key oncoprotein, because several mutations, particularly those at residue position 12, occur with a high frequency in a wide range of human cancers. The K-Ras protein is therefore an important target for developing therapeutic anti-cancer agents. In this work we report the almost complete sequence-specific resonance assignments of wild-type and the oncogenic G12C and G12D mutants in the GTP-complexed active forms, including the functionally important Switch I and Switch II regions. These assignments serve as the basis for a comprehensive functional dynamics study of wild-type K-Ras and its G12 mutants.
Collapse
Affiliation(s)
- Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA.
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Rafael Brüschweiler
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Gu X, Zhang Y, Long D. Conserved allosteric perturbation of the GTPase domains by region 1 of Ras hypervariable regions. Biophys J 2024; 123:839-846. [PMID: 38419331 PMCID: PMC10995424 DOI: 10.1016/j.bpj.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Ras proteins are important intracellular signaling hubs that can interact with numerous downstream effectors and upstream regulators through their GTPase domains (G-domains) anchored to plasma membranes by the C-terminal hypervariable regions (HVRs). The biological functions of Ras were proposed to be regulated at multiple levels including the intramolecular G-domain-HVR interactions, of which the exact mechanism and specificity are still controversial. Here, we demonstrate that the HVRs, instead of having direct contacts, can weakly perturb the G-domains via an allosteric interaction that is restricted to a ∼20 Å range and highly conserved in the tested Ras isoforms (HRas and KRas4B) and nucleotide-bound states. The origin of this allosteric perturbation has been localized to a short segment (residues 167-171) coinciding with region 1 of HVRs, which exhibits moderate to weak α-helical propensities. A charge-reversal mutation (E168K) of KRas4B in region 1, previously described in the Catalog of Somatic Mutations in Cancer database, was found to induce similar chemical shift perturbations as truncation of the HVR does. Further membrane paramagnetic relaxation enhancement (mPRE) data show that this region 1 mutation alters the membrane orientations of KRas4B and moderately increases the relative population of the signaling-compatible state.
Collapse
Affiliation(s)
- Xue Gu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yalong Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China; Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Gu X, Liu D, Yu Y, Wang H, Long D. Quantitative Paramagnetic NMR-Based Analysis of Protein Orientational Dynamics on Membranes: Dissecting the KRas4B-Membrane Interactions. J Am Chem Soc 2023; 145:10295-10303. [PMID: 37116086 DOI: 10.1021/jacs.3c01597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Peripheral membrane proteins can adopt distinct orientations on the surfaces of lipid bilayers that are often short-lived and challenging to characterize by conventional experimental methods. Here we describe a robust approach for mapping protein orientational landscapes through quantitative interpretation of paramagnetic relaxation enhancement (PRE) data arising from membrane mimetics with spin-labeled lipids. Theoretical analysis, followed by experimental verification, reveals insights into the distinct properties of the PRE observables that are generally distorted in the case of stably membrane-anchored proteins. To suppress the artifacts, we demonstrate that undistorted Γ2 values can be obtained via transient membrane anchoring, based on which a computational framework is established for deriving accurate orientational ensembles obeying Boltzmann statistics. Application of the approach to KRas4B, a classical peripheral membrane protein whose orientations are critical for its functions and drug design, reveals four distinct orientational states that are close but not identical to those reported previously. Similar orientations are also found for a truncated KRas4B without the hypervariable region (HVR) that can sample a broader range of orientations, suggesting a confinement role of the HVR geometrically prohibiting severe tilting. Comparison of the KRas4B Γ2 rates measured using nanodiscs containing different types of anionic lipids reveals identical Γ2 patterns for the G-domain but different ones for the HVR, indicating only the latter is able to selectively interact with anionic lipids.
Collapse
Affiliation(s)
- Xue Gu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yongkui Yu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Huang Q, Ng EY, Li Q, Kang C. 1 H, 15 N and 13 C resonance assignments of the Q61H mutant of human KRAS bound to GDP. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:51-56. [PMID: 34787842 DOI: 10.1007/s12104-021-10058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
KRAS proteins are small GTPases binding to the cell membrane and playing important roles in signal transduction. KRAS proteins form complexes with GTP and GDP to result in active and inactive conformations favouring interactions with different proteins. Mutations in KRAS have impact on the GTPase activity and some mutants are related to certain types of cancers. In addition to mutation at position 12, the Q61H mutant is also identified as an oncogenic mutant. Here, we describe resonance assignment for Q61H mutant of human KRAS-4B. A construct containing 1-169 residues of KRAS with a point mutation at position 61 (Q to H) was made for solution NMR studies. The backbone and some side chain resonance assignments were obtained using conventional multi-dimensional experiments. The secondary structures were analysed based on the assigned residues. As NMR is a powerful tool in probing target and ligand interactions, the assignment will be useful for later compound binding studies.
Collapse
Affiliation(s)
- Qiwei Huang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, 05-01, 138670, Singapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, 05-01, 138670, Singapore
| | - Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, 05-01, 138670, Singapore.
| |
Collapse
|
5
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
6
|
Wang X, Gorfe AA, Putkey JA. Antipsychotic phenothiazine drugs bind to KRAS in vitro. JOURNAL OF BIOMOLECULAR NMR 2021; 75:233-244. [PMID: 34176062 DOI: 10.1007/s10858-021-00371-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
We used NMR to show that the antipsychotic phenothiazine drugs promazine and promethazine bind to GDP-KRAS. Promazine also binds to oncogenic GDP-KRAS(G12D), and to wild type GppNHp-KRAS. A panel of additional phenothiazines bind to GDP-KRAS but with lower affinity than promazine or promethazine. Binding is most dependent on substitutions at C-2 of the tricyclic phenothiazine ring. Promazine was used to generate an NMR-driven HADDOCK model of the drug/GDP-KRAS complex. The structural model shows the tricyclic phenothiazine ring of promazine associates with the hydrophobic pocket p1 that is bordered by the central β sheet and Switch II in KRAS. Binding appears to stabilize helix 2 in a conformation that is similar to that seen in KRAS bound to other small molecules. Association of phenothiazines with KRAS may affect normal KRAS signaling that could contribute to multiple biological activities of these antipsychotic drugs. Moreover, the phenothiazine ring represents a new core scaffold on which to design modulators of KRAS activity.
Collapse
Affiliation(s)
- Xu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - John A Putkey
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Engineering subtilisin proteases that specifically degrade active RAS. Commun Biol 2021; 4:299. [PMID: 33674772 PMCID: PMC7935941 DOI: 10.1038/s42003-021-01818-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
We describe the design, kinetic properties, and structures of engineered subtilisin proteases that degrade the active form of RAS by cleaving a conserved sequence in switch 2. RAS is a signaling protein that, when mutated, drives a third of human cancers. To generate high specificity for the RAS target sequence, the active site was modified to be dependent on a cofactor (imidazole or nitrite) and protease sub-sites were engineered to create a linkage between substrate and cofactor binding. Selective proteolysis of active RAS arises from a 2-step process wherein sub-site interactions promote productive binding of the cofactor, enabling cleavage. Proteases engineered in this way specifically cleave active RAS in vitro, deplete the level of RAS in a bacterial reporter system, and also degrade RAS in human cell culture. Although these proteases target active RAS, the underlying design principles are fundamental and will be adaptable to many target proteins.
Collapse
|
8
|
Pálfy G, Vida I, Perczel A. 1H, 15N backbone assignment and comparative analysis of the wild type and G12C, G12D, G12V mutants of K-Ras bound to GDP at physiological pH. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:1-7. [PMID: 31468366 PMCID: PMC7069925 DOI: 10.1007/s12104-019-09909-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/02/2019] [Indexed: 05/14/2023]
Abstract
K-Ras protein is a membrane-bound small GTPase acting as a molecular switch. It plays a key role in many signal transduction pathways regulating cell proliferation, differentiation, survival, etc. It alternates between its GTP-bound active and the GDP-bound inactive conformers regulated by guanine nucleotide exchange factors and GTPase activating proteins. Its most frequent oncogenic mutants are G12C, G12D, and G12V that have impaired GTPase activity, thus induce malignant tumors. Here we report the resonance assignment of the backbone 1H and 15N nuclei of K-Ras wildtype, G12C, G12D and G12V proteins' catalytic G domain (1-169 residues) in GDP-bound state, and 13C of backbone and side chains of G12C mutant at physiological pH 7.4. Triple resonance data were used to get secondary structure information and backbone dynamics of G12C, the best-known drug target among K-Ras mutants. Simultaneous investigation of G12C, G12D and G12V mutants, along with the wild type form at the very same conditions allowed us to perform a comprehensive analysis based on the combined chemical shifts to reveal the effect of mutation at G12 position on structure. Intriguingly, the G12C and G12V mutants found to be structurally very similar at the three most important regions of K-Ras (P-loop, Switch-I, Switch-II), while the G12D mutant significantly differs at P-loop and Switch-II from the wildtype as well as G12C and G12V mutants. However, in Switch-I it hardly deviates from the wildtype protein.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary
| | - István Vida
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary.
- MTA-ELTE Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary.
| |
Collapse
|
9
|
Dharmaiah S, Tran TH, Messing S, Agamasu C, Gillette WK, Yan W, Waybright T, Alexander P, Esposito D, Nissley DV, McCormick F, Stephen AG, Simanshu DK. Structures of N-terminally processed KRAS provide insight into the role of N-acetylation. Sci Rep 2019; 9:10512. [PMID: 31324887 PMCID: PMC6642148 DOI: 10.1038/s41598-019-46846-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/04/2019] [Indexed: 01/19/2023] Open
Abstract
Although post-translational modification of the C-terminus of RAS has been studied extensively, little is known about N-terminal processing. Mass spectrometric characterization of KRAS expressed in mammalian cells showed cleavage of the initiator methionine (iMet) and N-acetylation of the nascent N-terminus. Interestingly, structural studies on GDP- and GMPPNP-bound KRAS lacking the iMet and N-acetylation resulted in Mg2+-free structures of KRAS with flexible N-termini. In the Mg2+-free KRAS-GDP structure, the flexible N-terminus causes conformational changes in the interswitch region resulting in a fully open conformation of switch I. In the Mg2+-free KRAS-GMPPNP structure, the flexible N-terminus causes conformational changes around residue A59 resulting in the loss of Mg2+ and switch I in the inactive state 1 conformation. Structural studies on N-acetylated KRAS-GDP lacking the iMet revealed the presence of Mg2+ and a conformation of switch regions also observed in the structure of GDP-bound unprocessed KRAS with the iMet. In the absence of the iMet, the N-acetyl group interacts with the central beta-sheet and stabilizes the N-terminus and the switch regions. These results suggest there is crosstalk between the N-terminus and the Mg2+ binding site, and that N-acetylation plays an important role by stabilizing the N-terminus of RAS upon excision of the iMet.
Collapse
Affiliation(s)
- Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Constance Agamasu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - William K Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Wupeng Yan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Timothy Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Patrick Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
- Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA.
| |
Collapse
|
10
|
Bery N, Legg S, Debreczeni J, Breed J, Embrey K, Stubbs C, Kolasinska-Zwierz P, Barrett N, Marwood R, Watson J, Tart J, Overman R, Miller A, Phillips C, Minter R, Rabbitts TH. KRAS-specific inhibition using a DARPin binding to a site in the allosteric lobe. Nat Commun 2019; 10:2607. [PMID: 31197133 PMCID: PMC6565726 DOI: 10.1038/s41467-019-10419-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Inhibiting the RAS oncogenic protein has largely been through targeting the switch regions that interact with signalling effector proteins. Here, we report designed ankyrin repeat proteins (DARPins) macromolecules that specifically inhibit the KRAS isoform by binding to an allosteric site encompassing the region around KRAS-specific residue histidine 95 at the helix α3/loop 7/helix α4 interface. We show that these DARPins specifically inhibit KRAS/effector interactions and the dependent downstream signalling pathways in cancer cells. Binding by the DARPins at that region influences KRAS/effector interactions in different ways, including KRAS nucleotide exchange and inhibiting KRAS dimerization at the plasma membrane. These results highlight the importance of targeting the α3/loop 7/α4 interface, a previously untargeted site in RAS, for specifically inhibiting KRAS function.
Collapse
Affiliation(s)
- Nicolas Bery
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Sandrine Legg
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Judit Debreczeni
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Jason Breed
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Kevin Embrey
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Christopher Stubbs
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Paulina Kolasinska-Zwierz
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Nathalie Barrett
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Rose Marwood
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Jo Watson
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Jon Tart
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Ross Overman
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Ami Miller
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Christopher Phillips
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Ralph Minter
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Terence H Rabbitts
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| |
Collapse
|
11
|
Gupta AK, Wang X, Pagba CV, Prakash P, Sarkar-Banerjee S, Putkey J, Gorfe AA. Multi-target, ensemble-based virtual screening yields novel allosteric KRAS inhibitors at high success rate. Chem Biol Drug Des 2019; 94:1441-1456. [PMID: 30903639 DOI: 10.1111/cbdd.13519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 03/03/2019] [Indexed: 01/11/2023]
Abstract
RAS mutations account for >15% of all human tumors, and of these ~85% are due to mutations in a particular RAS gene: KRAS. Recent studies revealed that KRAS harbors four druggable allosteric sites. Here, we have (a) used molecular simulations to generate ensembles of wild type and four major oncogenic KRAS mutants (G12V, G12D, G13D, and Q61H); (b) characterized the druggability of each allosteric pocket in each protein; (c) conducted extensive ensemble-based virtual screening using pocket-tailored ligand libraries; (d) prioritized hits through hierarchical postdocking analysis; and (e) validated predicted hits with NMR. Of the 785 diverse potential hits identified by our in silico analysis, we tested 90 for their ability to bind KRAS using NMR and found that nine cause backbone amide chemical shift perturbations of residues near the functionally responsive switch loops, suggesting potential binding. We conducted detailed biophysical analyses on a novel indole-based compound to demonstrate the potential of our workflow to yield lead compounds. We believe the detailed information documented in this work regarding the druggability profile of each allosteric site and the chemical fingerprints of compounds that target them will serve as vital resources for future structure-based drug design efforts against KRAS, a high-value target for cancer therapy.
Collapse
Affiliation(s)
- Amit K Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Cynthia V Pagba
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Suparna Sarkar-Banerjee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - John Putkey
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
12
|
Cao S, Chung S, Kim S, Li Z, Manor D, Buck M. K-Ras G-domain binding with signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2): membrane association, protein orientation, and function. J Biol Chem 2019; 294:7068-7084. [PMID: 30792310 DOI: 10.1074/jbc.ra118.004021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Ras genes potently drive human cancers, with mutated proto-oncogene GTPase KRAS4B (K-Ras4B) being the most abundant isoform. Targeted inhibition of oncogenic gene products is considered the "holy grail" of present-day cancer therapy, and recent discoveries of small-molecule KRas4B inhibitors were made thanks to a deeper understanding of the structure and dynamics of this GTPase. Because interactions with biological membranes are key for Ras function, Ras-lipid interactions have become a major focus, especially because such interactions evidently involve both the Ras C terminus for lipid anchoring and its G-protein domain. Here, using NMR spectroscopy and molecular dynamics simulations complemented by biophysical- and cell-biology assays, we investigated the interaction between K-Ras4B with the signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2). We discovered that the β2 and β3 strands as well as helices 4 and 5 of the GTPase G-domain bind to PIP2 and identified the specific residues in these structural elements employed in these interactions, likely occurring in two K-Ras4B orientation states relative to the membrane. Importantly, we found that some of these residues known to be oncogenic when mutated (D47K, D92N, K104M, and D126N) are critical for K-Ras-mediated transformation of fibroblast cells, but do not substantially affect basal and assisted nucleotide hydrolysis and exchange. Moreover, the K104M substitution abolished localization of K-Ras to the plasma membrane. The findings suggest that specific G-domain residues can critically regulate Ras function by mediating interactions with membrane-associated PIP2 lipids; these insights that may inform the future design of therapeutic reagents targeting Ras activity.
Collapse
Affiliation(s)
- Shufen Cao
- From the Departments of Physiology and Biophysics
| | | | | | - Zhenlu Li
- From the Departments of Physiology and Biophysics
| | - Danny Manor
- Nutrition, .,Pharmacology, and.,the Case Comprehensive Cancer Center and
| | - Matthias Buck
- From the Departments of Physiology and Biophysics, .,the Case Comprehensive Cancer Center and.,Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106 and.,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
13
|
Lee SK, Jeong WJ, Cho YH, Cha PH, Yoon JS, Ro EJ, Choi S, Oh JM, Heo Y, Kim H, Min DS, Han G, Lee W, Choi KY. β-Catenin-RAS interaction serves as a molecular switch for RAS degradation via GSK3β. EMBO Rep 2018; 19:embr.201846060. [PMID: 30413483 DOI: 10.15252/embr.201846060] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
RAS proteins play critical roles in various cellular processes, including growth and transformation. RAS proteins are subjected to protein stability regulation via the Wnt/β-catenin pathway, and glycogen synthase kinase 3 beta (GSK3β) is a key player for the phosphorylation-dependent RAS degradation through proteasomes. GSK3β-mediated RAS degradation does not occur in cells that express a nondegradable mutant (MT) β-catenin. Here, we show that β-catenin directly interacts with RAS at the α-interface region that contains the GSK3β phosphorylation sites, threonine 144 and threonine 148 residues. Exposure of these sites by prior β-catenin degradation is required for RAS degradation. The introduction of a peptide that blocks the β-catenin-RAS interaction by binding to β-catenin rescues the GSK3β-mediated RAS degradation in colorectal cancer (CRC) cells that express MT β-catenin. The coregulation of β-catenin and RAS stabilities by the modulation of their interaction provides a mechanism for Wnt/β-catenin and RAS-ERK pathway cross-talk and the synergistic transformation of CRC by both APC and KRAS mutations.
Collapse
Affiliation(s)
- Sang-Kyu Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Woo-Jeong Jeong
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yong-Hee Cho
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jeong-Su Yoon
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eun Ji Ro
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sooho Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jeong-Min Oh
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yunseok Heo
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyuntae Kim
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Do Sik Min
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan, Korea
| | - Gyoonhee Han
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Weontae Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea .,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
14
|
Sharma AK, Lee SJ, Rigby AC, Townson SA. NMR 1H, 13C, 15N backbone and 13C side chain resonance assignment of the G12C mutant of human K-Ras bound to GDP. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:269-272. [PMID: 29721757 PMCID: PMC6132845 DOI: 10.1007/s12104-018-9821-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/24/2018] [Indexed: 05/27/2023]
Abstract
K-Ras is a key driver of oncogenesis, accounting for approximately 80% of Ras-driven human cancers. The small GTPase cycles between an inactive, GDP-bound and an active, GTP-bound state, regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. Activated K-Ras regulates cell proliferation, differentiation and survival by signaling through several effector pathways, including Raf-MAPK. Oncogenic mutations that impair the GTPase activity of K-Ras result in a hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. A cysteine mutation at glycine 12 is commonly found in K-Ras associated cancers, and has become a recent focus for therapeutic intervention. We report here 1HN, 15N, and 13C resonance assignments for the 19.3 kDa (aa 1-169) human K-Ras protein harboring an oncogenic G12C mutation in the GDP-bound form (K-RASG12C-GDP), using heteronuclear, multidimensional NMR spectroscopy. Backbone 1H-15N correlations have been assigned for all non-proline residues, except for the first methionine residue.
Collapse
Affiliation(s)
- Alok K Sharma
- Warp Drive Bio, Inc., 400 Technology Square, Cambridge, MA, 02139, USA
| | - Seung-Joo Lee
- Warp Drive Bio, Inc., 400 Technology Square, Cambridge, MA, 02139, USA
| | - Alan C Rigby
- Warp Drive Bio, Inc., 400 Technology Square, Cambridge, MA, 02139, USA
| | - Sharon A Townson
- Warp Drive Bio, Inc., 400 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Parker JA, Volmar AY, Pavlopoulos S, Mattos C. K-Ras Populates Conformational States Differently from Its Isoform H-Ras and Oncogenic Mutant K-RasG12D. Structure 2018; 26:810-820.e4. [PMID: 29706533 DOI: 10.1016/j.str.2018.03.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 02/04/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Structures of wild-type K-Ras from crystals obtained in the presence of guanosine triphosphate (GTP) or its analogs have remained elusive. Of the K-Ras mutants, only K-RasG12D and K-RasQ61H are available in the PDB representing the activated form of the GTPase not in complex with other proteins. We present the crystal structure of wild-type K-Ras bound to the GTP analog GppCH2p, with K-Ras in the state 1 conformation. Signatures of conformational states obtained by one-dimensional proton NMR confirm that K-Ras has a more substantial population of state 1 in solution than H-Ras, which predominantly favors state 2. The oncogenic mutant K-RasG12D favors state 2, changing the balance of conformational states in favor of interactions with effector proteins. Differences in the population of conformational states between K-Ras and H-Ras, as well as between K-Ras and its mutants, can provide a structural basis for focused targeting of the K-Ras isoform in cancer-specific strategies.
Collapse
Affiliation(s)
- Jillian A Parker
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Alicia Y Volmar
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Spiro Pavlopoulos
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Carla Mattos
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
16
|
McGee JH, Shim SY, Lee SJ, Swanson PK, Jiang SY, Durney MA, Verdine GL. Exceptionally high-affinity Ras binders that remodel its effector domain. J Biol Chem 2017; 293:3265-3280. [PMID: 29282294 PMCID: PMC5836121 DOI: 10.1074/jbc.m117.816348] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/21/2017] [Indexed: 01/27/2023] Open
Abstract
The Ras proteins are aberrantly activated in a wide range of human cancers, often endowing tumors with aggressive properties and resistance to therapy. Decades of effort to develop direct Ras inhibitors for clinical use have thus far failed, largely because of a lack of adequate small-molecule-binding pockets on the Ras surface. Here, we report the discovery of Ras-binding miniproteins from a naïve library and their evolution to afford versions with midpicomolar affinity to Ras. A series of biochemical experiments indicated that these miniproteins bind to the Ras effector domain as dimers, and high-resolution crystal structures revealed that these miniprotein dimers bind Ras in an unprecedented mode in which the Ras effector domain is remodeled to expose an extended pocket that connects two isolated pockets previously found to engage small-molecule ligands. We also report a Ras point mutant that stabilizes the protein in the open conformation trapped by these miniproteins. These findings provide new tools for studying Ras structure and function and present opportunities for the development of both miniprotein and small-molecule inhibitors that directly target the Ras proteins.
Collapse
Affiliation(s)
- John H McGee
- From the Departments of Molecular and Cellular Biology.,Stem Cell and Regenerative Biology, and.,FOG Pharmaceuticals, Cambridge, Massachusetts 02140
| | - So Youn Shim
- Stem Cell and Regenerative Biology, and.,FOG Pharmaceuticals, Cambridge, Massachusetts 02140.,Chemistry and Chemical Biology, Harvard University and Harvard Medical School, Cambridge, Massachusetts 02138 and
| | | | | | | | | | - Gregory L Verdine
- From the Departments of Molecular and Cellular Biology, .,Stem Cell and Regenerative Biology, and.,FOG Pharmaceuticals, Cambridge, Massachusetts 02140.,Chemistry and Chemical Biology, Harvard University and Harvard Medical School, Cambridge, Massachusetts 02138 and
| |
Collapse
|
17
|
Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Sanchez-Martin M, Badgley MA, Huang CS, Tran TH, Akkiraju H, Brown LM, Nandakumar R, Cremers S, Yang WS, Tong L, Olive KP, Ferrando A, Stockwell BR. Multivalent Small-Molecule Pan-RAS Inhibitors. Cell 2017; 168:878-889.e29. [PMID: 28235199 DOI: 10.1016/j.cell.2017.02.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/23/2016] [Accepted: 02/01/2017] [Indexed: 12/30/2022]
Abstract
Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, may provide chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small-molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins.
Collapse
Affiliation(s)
- Matthew E Welsch
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Anna Kaplan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jennifer M Chambers
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Michael E Stokes
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Pieter H Bos
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yan Zhang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Marta Sanchez-Martin
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael A Badgley
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Diseases in the Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Christine S Huang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Timothy H Tran
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hemanth Akkiraju
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Lewis M Brown
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Renu Nandakumar
- Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Serge Cremers
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Wan Seok Yang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Kenneth P Olive
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Diseases in the Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
18
|
Schöpel M, Herrmann C, Scherkenbeck J, Stoll R. The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics. FEBS Lett 2016; 590:369-75. [PMID: 26867649 DOI: 10.1002/1873-3468.12056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/21/2015] [Accepted: 01/01/2016] [Indexed: 12/19/2022]
Abstract
K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers.
Collapse
Affiliation(s)
- Miriam Schöpel
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Germany
| | - Christian Herrmann
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Germany
| | | | - Raphael Stoll
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Germany
| |
Collapse
|
19
|
Vo U, Vajpai N, Flavell L, Bobby R, Breeze AL, Embrey KJ, Golovanov AP. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence. J Biol Chem 2015; 291:1703-1718. [PMID: 26565026 PMCID: PMC4722452 DOI: 10.1074/jbc.m115.691238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 01/07/2023] Open
Abstract
The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions.
Collapse
Affiliation(s)
- Uybach Vo
- From the Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom and
| | - Navratna Vajpai
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TF, United Kingdom
| | - Liz Flavell
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TF, United Kingdom
| | - Romel Bobby
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TF, United Kingdom
| | - Alexander L Breeze
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TF, United Kingdom
| | - Kevin J Embrey
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TF, United Kingdom.
| | - Alexander P Golovanov
- From the Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom and.
| |
Collapse
|
20
|
Prakash P, Hancock JF, Gorfe AA. Binding hotspots on K-ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis. Proteins 2015; 83:898-909. [PMID: 25740554 PMCID: PMC4400267 DOI: 10.1002/prot.24786] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 01/21/2023]
Abstract
We have used probe-based molecular dynamics (pMD) simulations to search for interaction hotspots on the surface of the therapeutically highly relevant oncogenic K-Ras G12D. Combining the probe-based query with an ensemble-based pocket identification scheme and an analysis of existing Ras-ligand complexes, we show that (i) pMD is a robust and cost-effective strategy for binding site identification, (ii) all four of the previously reported ligand binding sites are suitable for structure-based ligand design, and (iii) in some cases probe binding and expanded sampling of configurational space enable pocket expansion and increase the likelihood of site identification. Furthermore, by comparing the distribution of hotspots in nonpocket-like regions with known protein- and membrane-interacting interfaces, we propose that pMD has the potential to predict surface patches responsible for protein-biomolecule interactions. These observations have important implications for future drug design efforts and will facilitate the search for potential interfaces responsible for the proposed transient oligomerization or interaction of Ras with other biomolecules in the cellular milieu.
Collapse
Affiliation(s)
- Priyanka Prakash
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| | - John F. Hancock
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| | - Alemayehu A. Gorfe
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| |
Collapse
|
21
|
Abstract
Activating mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) underlie the pathogenesis and chemoresistance of ∼ 30% of all human tumors, yet the development of high-affinity inhibitors that target the broad range of KRAS mutants remains a formidable challenge. Here, we report the development and validation of stabilized alpha helices of son of sevenless 1 (SAH-SOS1) as prototype therapeutics that directly inhibit wild-type and mutant forms of KRAS. SAH-SOS1 peptides bound in a sequence-specific manner to KRAS and its mutants, and dose-responsively blocked nucleotide association. Importantly, this functional binding activity correlated with SAH-SOS1 cytotoxicity in cancer cells expressing wild-type or mutant forms of KRAS. The mechanism of action of SAH-SOS1 peptides was demonstrated by sequence-specific down-regulation of the ERK-MAP kinase phosphosignaling cascade in KRAS-driven cancer cells and in a Drosophila melanogaster model of Ras85D(V12) activation. These studies provide evidence for the potential utility of SAH-SOS1 peptides in neutralizing oncogenic KRAS in human cancer.
Collapse
|
22
|
Schöpel M, Jockers KFG, Düppe PM, Autzen J, Potheraveedu VN, Ince S, Yip KT, Heumann R, Herrmann C, Scherkenbeck J, Stoll R. Bisphenol A binds to Ras proteins and competes with guanine nucleotide exchange: implications for GTPase-selective antagonists. J Med Chem 2013; 56:9664-72. [PMID: 24266771 DOI: 10.1021/jm401291q] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We show for the first time that bisphenol A (10) has the capacity to interact directly with K-Ras and that Rheb weakly binds to bisphenol A (10) and 4,4'-biphenol derivatives. We have characterized these interactions at atomic resolution suggesting that these compounds sterically interfere with the Sos-mediated nucleotide exchange in H- and K-Ras. We show that 4,4'-biphenol (5) selectively inhibits Rheb signaling and induces cell death suggesting that this compound might be a novel candidate for treatment of tuberous sclerosis-mediated tumor growth. Our results propose a new mode of action for bisphenol A (10) that advocates a reduced exposure to this compound in our environment. Our data may lay the foundation for the future design of GTPase-selective antagonists with higher affinity to benefit of the treatment of cancer because K-Ras inhibition is regarded to be a promising strategy with a potential therapeutic window for targeting Sos in Ras-driven tumors.
Collapse
Affiliation(s)
- Miriam Schöpel
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum , Universitätsstraße 150, D-44780 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|