1
|
Kay T, Liberti J, Richardson TO, McKenzie SK, Weitekamp CA, La Mendola C, Rüegg M, Kesner L, Szombathy N, McGregor S, Romiguier J, Engel P, Keller L. Social network position is a major predictor of ant behavior, microbiota composition, and brain gene expression. PLoS Biol 2023; 21:e3002203. [PMID: 37486940 PMCID: PMC10399779 DOI: 10.1371/journal.pbio.3002203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/03/2023] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
The physiology and behavior of social organisms correlate with their social environments. However, because social environments are typically confounded by age and physical environments (i.e., spatial location and associated abiotic factors), these correlations are usually difficult to interpret. For example, associations between an individual's social environment and its gene expression patterns may result from both factors being driven by age or behavior. Simultaneous measurement of pertinent variables and quantification of the correlations between these variables can indicate whether relationships are direct (and possibly causal) or indirect. Here, we combine demographic and automated behavioral tracking with a multiomic approach to dissect the correlation structure among the social and physical environment, age, behavior, brain gene expression, and microbiota composition in the carpenter ant Camponotus fellah. Variations in physiology and behavior were most strongly correlated with the social environment. Moreover, seemingly strong correlations between brain gene expression and microbiota composition, physical environment, age, and behavior became weak when controlling for the social environment. Consistent with this, a machine learning analysis revealed that from brain gene expression data, an individual's social environment can be more accurately predicted than any other behavioral metric. These results indicate that social environment is a key regulator of behavior and physiology.
Collapse
Affiliation(s)
- Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Joanito Liberti
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Thomas O. Richardson
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Sean K. McKenzie
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Chelsea A. Weitekamp
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christine La Mendola
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Matthias Rüegg
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lucie Kesner
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Natasha Szombathy
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Sean McGregor
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jonathan Romiguier
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology and Ecology, University of Montpellier, Montpellier, France
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Rainey PB. Major evolutionary transitions in individuality between humans and AI. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210408. [PMID: 36688400 PMCID: PMC9869444 DOI: 10.1098/rstb.2021.0408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
That humans might undergo future evolutionary transitions in individuality (ETIs) seems fanciful. However, drawing upon recent thinking concerning the origins of properties that underpin ETIs, I argue that certain ETIs are imminently realizable. Central to my argument is recognition that heritable variance in fitness at higher levels of organization can be externally imposed (scaffolded) by specific ecological structures and cultural practices. While ETIs to eusociality seem highly improbable, ETIs involving symbioses between humans and artificial intelligence (AI) can be readily envisaged. A necessary requirement is that fitness-affecting interactions between humans and AI devices are inherited by offspring. The Mendelian nature of human reproduction ensures that offspring resemble parents. Reproduction of AI devices requires nothing more than transference of algorithms from parental AI devices to devices that are assigned to offspring. This simple copying, combined with societal structures that require humans to carry AI devices, ensures heritable variance in fitness at the level of both interacting partners. Selection at the collective level will drive alignment of replicative fates and increase co-dependency, thus alleviating need for continual imposition of externally imposed scaffolds. I conclude by drawing attention to the immediacy of such transitions and express concern over possibilities for malevolent manipulation. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Paul B. Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany,Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| |
Collapse
|
3
|
Carmel Y. Human societal development: is it an evolutionary transition in individuality? Philos Trans R Soc Lond B Biol Sci 2023; 378:20210409. [PMID: 36688399 PMCID: PMC9869447 DOI: 10.1098/rstb.2021.0409] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An evolutionary transition in individuality (ETI) occurs when a previously independent organism becomes a lower level unit within a higher hierarchical level (for example, cells in an organism, ants in a colony). Using archaeological and historical accounts from the last 12 000 years, I empirically examine the proposition that human society increasingly functions as a higher hierarchical level within which individuals integrate as lower level units. I evaluate human societal development with respect to three criteria that together indicate complexity in biological systems and serve as an operationalization scheme for ETIs: size, inseparability and specialization. The size of the largest polity has increased seven orders of magnitude, from hundreds to billions. Inseparability became nearly complete since Mesopotamian city-states, following the first appearance of intricate specialization (division of labour). Connectivity within a polity has increased rapidly during the last few centuries, and particularly within the last few decades. In view of these results, I formulate the following hypothesis: human society is undergoing an evolutionary transition in individuality, driven by socio-cultural-technological processes. This proposition requires a detailed theoretical basis and further empirical testing. I propose four predictions derived from the hypothesis that may be used to test it. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Yohay Carmel
- Faculty of Civil and Environmental Engineering, The Technion, Haifa 32000, Israel
| |
Collapse
|
4
|
Crespi B, Yang N. Three laws of teleonometrics. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
We define teleonometrics as the theoretical and empirical study of teleonomy. We propose three laws for teleonometrics. The first law describes the hierarchical organization of teleonomic functions across biological levels from genes to individuals. According to this law, the number of goal-directed functions increases from individuals (one goal, maximizing inclusive fitness) to intermediate levels and to genes and alleles (myriad time-, space- and context-dependent goals, depending upon degrees and patterns of pleiotropy). The second law describes the operation of teleonomic functions under trade-offs, coadaptations and negative and positive pleiotropies, which are universal in biological systems. According to this law, the functions of an allele, gene or trait are described and defined by patterns of antagonistic (trading off) and compatible (coadapted) functions. The third law of teleonometrics is that the major transitions in evolution are driven by the origins of novel, emergent goals associated with functional changes and by the breaking and reshaping of trade-offs, especially by mechanisms involving increases in resources or time, and new divisions of labour or function. We illustrate the application of these laws using data from three empirical vignettes, which help to show the usefulness of teleonometric viewpoints for understanding the interfaces between function, trade-offs and dysfunctions manifest as disease.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University , Burnaby, British Columbia, V5A 1S6 , Canada
| | - Nancy Yang
- Department of Biological Sciences, Simon Fraser University , Burnaby, British Columbia, V5A 1S6 , Canada
| |
Collapse
|
5
|
Taylor H, Vestergaard MD. Developmental Dyslexia: Disorder or Specialization in Exploration? Front Psychol 2022; 13:889245. [PMID: 35814102 PMCID: PMC9263984 DOI: 10.3389/fpsyg.2022.889245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
We raise the new possibility that people diagnosed with developmental dyslexia (DD) are specialized in explorative cognitive search, and rather than having a neurocognitive disorder, play an essential role in human adaptation. Most DD research has studied educational difficulties, with theories framing differences in neurocognitive processes as deficits. However, people with DD are also often proposed to have certain strengths - particularly in realms like discovery, invention, and creativity - that deficit-centered theories cannot explain. We investigate whether these strengths reflect an underlying explorative specialization. We re-examine experimental studies in psychology and neuroscience using the framework of cognitive search, whereby many psychological processes involve a trade-off between exploration and exploitation. We report evidence of an explorative bias in DD-associated cognitive strategies. High DD prevalence and an attendant explorative bias across multiple areas of cognition suggest the existence of explorative specialization. An evolutionary perspective explains the combination of findings and challenges the view that individuals with DD have a disorder. In cooperating groups, individual specialization is favored when features that confer fitness benefits are functionally incompatible. Evidence for search specialization suggests that, as with some other social organisms, humans mediate the exploration-exploitation trade-off by specializing in complementary strategies. The existence of a system of collective cognitive search that emerges through collaboration would help to explain our species' exceptional adaptiveness. It also aligns with evidence for substantial variability during our evolutionary history and the notion that humans are adapted not to a particular habitat but to variability itself. Specialization creates interdependence and necessitates balancing complementary strategies. Reframing DD therefore underscores the urgency of changing certain cultural practices to ensure we do not inhibit adaptation. Key improvements would remove cultural barriers to exploration and nurture explorative learning in education, academia, and the workplace, as well as emphasize collaboration over competition. Specialization in complementary search abilities represents a meta-adaptation; through collaboration, this likely enables human groups (as a species and as cultural systems) to successfully adapt. Cultural change to support this system of collaborative search may therefore be essential in confronting the challenges humanity now faces.
Collapse
Affiliation(s)
- Helen Taylor
- Hunter Centre for Entrepreneurship, Strathclyde Business School, University of Strathclyde, Glasgow, United Kingdom
- Department of Archaeology, Faculty of Human, Social and Political Science, School of the Humanities and Social Sciences, McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
6
|
Kessler SE, Aunger R. The evolution of the human healthcare system and implications for understanding our responses to COVID-19. Evol Med Public Health 2022; 10:87-107. [PMID: 35284079 PMCID: PMC8908543 DOI: 10.1093/emph/eoac004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has revealed an urgent need for a comprehensive, multidisciplinary understanding of how healthcare systems respond successfully to infectious pathogens-and how they fail. This study contributes a novel perspective that focuses on the selective pressures that shape healthcare systems over evolutionary time. We use a comparative approach to trace the evolution of care-giving and disease control behaviours across species and then map their integration into the contemporary human healthcare system. Self-care and pro-health environmental modification are ubiquitous across animals, while derived behaviours like care for kin, for strangers, and group-level organizational responses have evolved via different selection pressures. We then apply this framework to our behavioural responses to COVID-19 and demonstrate that three types of conflicts are occurring: (1) conflicting selection pressures on individuals, (2) evolutionary mismatches between the context in which our healthcare behaviours evolved and our globalized world of today and (3) evolutionary displacements in which older forms of care are currently dispensed through more derived forms. We discuss the significance of understanding how healthcare systems evolve and change for thinking about the role of healthcare systems in society during and after the time of COVID-19-and for us as a species as we continue to face selection from infectious diseases.
Collapse
Affiliation(s)
- Sharon E Kessler
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Robert Aunger
- Environmental Health Group, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
7
|
DeSilva JM, Traniello JFA, Claxton AG, Fannin LD. When and Why Did Human Brains Decrease in Size? A New Change-Point Analysis and Insights From Brain Evolution in Ants. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.742639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo, the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size.
Collapse
|
8
|
Betzig L. A Note on Religion. EVOLUTIONARY PSYCHOLOGY 2021; 19:14747049211066795. [PMID: 34939448 PMCID: PMC10303561 DOI: 10.1177/14747049211066795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
At the beginning of our era, after a battle on the Ionian Sea, Antony and Cleopatra took their own lives in Egypt, and Augustus was made an imperator by his senators. Roman emperors had sexual access to those senators' daughters and wives, and to thousands of slaves. But they ran governments with help from their cubicularii, castrated civil servants. And they enforced an Imperial Cult: subjects made sacrifices to the emperor's genius, or procreative spirit; or they got disemboweled by wild animals, or decapitated. Then Constantine moved off from the Tiber to the Bosporus, and Europe was ruled over by a few. Lords covered the countryside with bastards, but passed on estates on to their oldest sons. Daughters and younger sons were put away in the Church, where some became parents, but most were reproductively suppressed: they were ἄνανδρος or anandros, or without a husband, and ἄγαμος or agamos, or without a wife. Heretics who objected got burned at the stake. Then the Crusaders expanded Europe to the East, and Columbus went off to the West, and politics, sex and religion became more democratic. Power was more widely distributed; more men and women had families if they wanted them, and monasteries emptied out. The Reformation followed the Roman Church, which had followed the Imperial Cult.
Collapse
Affiliation(s)
- Laura Betzig
- Evolutionary Psychology: Human History as
Natural History
| |
Collapse
|
9
|
Lehmann L, Rousset F. When Do Individuals Maximize Their Inclusive Fitness? Am Nat 2020; 195:717-732. [DOI: 10.1086/707561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Shilovsky GA, Putyatina TS, Ashapkin VV, Rozina AA, Lyubetsky VA, Minina EP, Bychkovskaia IB, Markov AV, Skulachev VP. Ants as Object of Gerontological Research. BIOCHEMISTRY (MOSCOW) 2019; 83:1489-1503. [PMID: 30878024 DOI: 10.1134/s0006297918120076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Social insects with identical genotype that form castes with radically different lifespans are a promising model system for studying the mechanisms underlying longevity. The main direction of progressive evolution of social insects, in particular, ants, is the development of the social way of life inextricably linked with the increase in the colony size. Only in a large colony, it is possible to have a developed polyethism, create large food reserves, and actively regulate the nest microclimate. The lifespan of ants hugely varies among genetically similar queens, workers (unproductive females), and males. The main advantage of studies on insects is the determinism of ontogenetic processes, with a single genome leading to completely different lifespans in different castes. This high degree of determinacy is precisely the reason why some researchers (incorrectly) call a colony of ants the "superorganism", emphasizing the fact that during the development, depending on the community needs, ants can switch their ontogenetic programs, which influences their social roles, ability to learn (i.e., the brain [mushroom-like body] plasticity), and, respectively, the spectrum of tasks performed by a given individual. It has been shown that in many types of food behavior, older ants surpass young ones in both performing the tasks and transferring the experience. The balance between the need to reduce the "cost" of non-breeding individuals (short lifespan and small size of workers) and the benefit from experienced long-lived workers possessing useful skills (large size and "non-aging") apparently determines the differences in the lifespan and aging rate of workers in different species of ants. A large spectrum of rigidly determined ontogenetic trajectories in different castes with identical genomes and the possibility of comparison between "evolutionarily advanced" and "primitive" subfamilies (e.g., Formicinae and Ponerinae) make ants an attractive object in the studies of both normal aging and effects of anti-aging drugs.
Collapse
Affiliation(s)
- G A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - T S Putyatina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - V V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A A Rozina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V A Lyubetsky
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - E P Minina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - I B Bychkovskaia
- Nikiforov Center of Emergency and Radiation Medicine of the Russian Ministry of Emergency Control, St. Petersburg, 194044, Russia
| | - A V Markov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - V P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
11
|
Shared sociogenetic basis of honey bee behavior and human risk for autism. Proc Natl Acad Sci U S A 2017; 114:9502-9504. [PMID: 28851832 DOI: 10.1073/pnas.1712292114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Abstract
AbstractHuman hunter-gatherers share a suite of traits with social insects, which demonstrates convergent social evolution of these taxa prior to agriculture. Humans differ from social insects in that their divisions of labor are more competitive than cooperative. Resulting higher within-group competition in humans has been alleviated by religion and culturally imposed monogamy, both of which also find parallels among social insects.
Collapse
|
13
|
Joiner TE, Hom MA, Hagan CR, Silva C. Suicide as a derangement of the self-sacrificial aspect of eusociality. Psychol Rev 2015; 123:235-54. [PMID: 26524155 DOI: 10.1037/rev0000020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Building upon the idea that humans may be a eusocial species (i.e., rely on multigenerational and cooperative care of young, utilize division of labor for successful survival), we conjecture that suicide among humans represents a derangement of the self-sacrificial aspect of eusociality. In this article, we outline the characteristics of eusociality, particularly the self-sacrificial behavior seen among other eusocial species (e.g., insects, shrimp, mole rats). We then discuss parallels between eusocial self-sacrificial behavior in nonhumans and suicide in humans, particularly with regard to overarousal states, withdrawal phenomena, and perceptions of burdensomeness. In so doing, we make the argument that death by suicide among humans is an exemplar of psychopathology and is due to a derangement of the self-sacrificial behavioral suite found among eusocial species. Implications and future directions for research are also presented.
Collapse
|
14
|
Eusociality: from the first foragers to the first states. Introduction to the special issue. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2015; 25:1-5. [PMID: 24293196 DOI: 10.1007/s12110-013-9187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
People have always been social. Ethnographic evidence suggests that transfers of food and labor are common among contemporary hunter-gatherers, and they probably were common in Paleolithic groups. Archaeological evidence suggests that cooperative breeding went up as we settled down: as territory defenders became more successful breeders, their helpers' fertility would have been delayed or depressed. And written evidence from the Neolithic suggests that the first civilizations were often eusocial; emperors fathered hundreds of children, who were provided for and protected by workers in sterile castes. Papers in this issue of Human Nature look at helpers and workers across the eusociality continuum--from hard-working grandmothers and grandfathers, to celibate sisters and brothers, to castrated civil servants--from the first foragers to the first states.
Collapse
|
15
|
Kramer KL. Why what juveniles do matters in the evolution of cooperative breeding. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2015; 25:49-65. [PMID: 24430798 DOI: 10.1007/s12110-013-9189-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The evolution of cooperative breeding is complex, and particularly so in humans because many other life history traits likely evolved at the same time. While cooperative childrearing is often presumed ancient, the transition from maternal self-reliance to dependence on allocare leaves no known empirical record. In this paper, an exploratory model is developed that incorporates probable evolutionary changes in birth intervals, juvenile dependence, and dispersal age to predict under what life history conditions mothers are unable to raise children without adult cooperation. The model's outcome variable (net balance) integrates dependent children's production and consumption as a function of varying life history parameters to estimate the investment mothers or others have to spend subsidizing children. Results suggest that maternal-juvenile cooperation can support the early transition toward a reduction in birth intervals, a longer period of juvenile dependence, and having overlapping young. The need for adult cooperation is most evident when birth intervals are short and age at net production is late. Findings suggest that the needs of juveniles would not have been an early selective force for adult cooperation. Rather, an age-graded division of labor and the mutual benefits of maternal-juvenile cooperation could be an important, but overlooked step in the evolution of cooperative breeding.
Collapse
Affiliation(s)
- Karen L Kramer
- Department of Anthropology, University of Utah, Salt Lake City, UT, 02138, USA,
| |
Collapse
|
16
|
Kramer KL, Otárola-Castillo E. When mothers need others: The impact of hominin life history evolution on cooperative breeding. J Hum Evol 2015; 84:16-24. [PMID: 25843884 DOI: 10.1016/j.jhevol.2015.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/25/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022]
Abstract
The evolution of cooperative breeding is particularly complex in humans because many other traits that directly affect parental care (shorter birth intervals, increased offspring survivorship, juvenile dependence, and older ages at dispersal) also emerge during the Pleistocene. If human cooperative breeding is ancient, it likely evolved in a hominin lacking a fully modern life history. However, the impact that changing life history traits has on parental care and cooperative breeding has not been analytically investigated. We develop an exploratory model to simulate an economic problem that would have arisen over the course of hominin life history evolution to identify those transitions that produced the strongest pressures for cooperative childrearing. The model generates two central predictions. First, help within maternal-offspring groups can support early changes in juvenile dependence, dispersal age, birth intervals, and fertility. If so, maternal-juvenile cooperation may be an important but understudied step in the evolution of human cooperative breeding. Second, pressure to recruit adult cooperation is most pronounced under more derived conditions of late dispersal and later ages of juvenile dependence, with a strong interaction at short birth intervals. Our findings indicate that changes in life history traits that affect parental care are critical in considering background selective forces that shaped the evolution of cooperative breeding.
Collapse
Affiliation(s)
- Karen L Kramer
- Department of Anthropology, University of Utah, 270 S 1400 E, Salt Lake City, UT 84112, USA; Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave., Cambridge, MA 03128, USA.
| | - Erik Otárola-Castillo
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave., Cambridge, MA 03128, USA
| |
Collapse
|
17
|
Kramer KL, Russell AF. Kin-selected cooperation without lifetime monogamy: human insights and animal implications. Trends Ecol Evol 2014; 29:600-6. [PMID: 25267298 DOI: 10.1016/j.tree.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
Recent phylogenetic analyses suggest that monogamy precedes the evolution of cooperative breeding involving non-breeding helpers. The rationale: only through monogamy can helper-recipient relatedness coefficients match those of parent-offspring. Given that humans are cooperative breeders, these studies imply a monogamy bottleneck during hominin evolution. However, evidence from multiple sources is not compelling. In reconciliation, we propose that selection against cooperative breeding under alternative mating patterns will be mitigated by: (i) kin discrimination, (ii) reduced birth-intervals, and (iii) constraints on independent breeding, particularly for premature and post-fertile individuals. We suggest that such alternatives require consideration to derive a complete picture of the selection pressures acting on the evolution of cooperative breeding in humans and other animals.
Collapse
Affiliation(s)
- Karen L Kramer
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew F Russell
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK.
| |
Collapse
|