1
|
Yoshimoto M, Hayakawa T, Yamaguchi M, Kimura S, Fujii H. αvβ3 integrin-targeted magnetic resonance imaging in a pancreatic cancer mouse model using RGD-modified liposomes encapsulated with Fe-deferoxamine. PLoS One 2024; 19:e0310984. [PMID: 39316565 PMCID: PMC11421790 DOI: 10.1371/journal.pone.0310984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Magnetic resonance (MR) imaging is a powerful imaging modality for obtaining anatomical information with high spatial and temporal resolution. In the drug delivery system (DDS) framework, nanoparticles such as liposomes are potential candidates for MR imaging. We validated that RGD peptides are possible targeting molecules for pancreatic cancer with αvβ3 integrin expression. This study aimed to evaluate RGD-modified liposomes loaded with ferrioxamine B for pancreatic cancer imaging. We synthesized four types of RGD-modified liposomes encapsulated with ferrioxamine B (SH-, H-, M-, and L-RGD-liposomes). The binding affinity of RGD-modified liposomes was evaluated in a competitive inhibition study using 125I-echistatin. To investigate the pharmacokinetics of RGD-modified liposomes, a biodistribution study using RGD-liposomes labeled with 111In was carried out in a human pancreatic cancer PANC-1 xenograft mouse model. Finally, MR was performed using ferrioxamine-B-loaded liposomes. RGD-liposomes inhibited the binding of 125I-echistatin to RGD. The biodistribution study revealed that 111In-RGD-liposomes accumulated significantly in the liver and spleen. Among the 111In-RGD-liposomes, 111In-H-RGD-liposomes showed the highest tumor-to-normal tissue ratio. In the MR study, H-RGD-liposomes loaded with ferrioxamine B showed higher tumor-to-muscle signal ratios than RKG-liposomes loaded with ferrioxamine B (control). We successfully synthesized RGD-liposomes that can target αvβ3 integrin.
Collapse
Affiliation(s)
- Mitsuyoshi Yoshimoto
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Takuya Hayakawa
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Masayuki Yamaguchi
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Sadaaki Kimura
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| |
Collapse
|
2
|
Happl B, Balber T, Heffeter P, Denk C, Welch JM, Köster U, Alliot C, Bonraisin AC, Brandt M, Haddad F, Sterba JH, Kandioller W, Mitterhauser M, Hacker M, Keppler BK, Mindt TL. Synthesis and preclinical evaluation of BOLD-100 radiolabeled with ruthenium-97 and ruthenium-103. Dalton Trans 2024; 53:6031-6040. [PMID: 38470348 DOI: 10.1039/d4dt00118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BOLD-100 (formerly IT-139, KP1339), a well-established chemotherapeutic agent, is currently being investigated in clinical trials for the treatment of gastric, pancreatic, colorectal, and bile duct cancer. Despite numerous studies, the exact mode of action is still the subject of discussions. Radiolabeled BOLD-100 could be a powerful tool to clarify pharmacokinetic pathways of the compound and to predict therapy responses in patients using nuclear molecular imaging prior to the therapy. In this study, the radiosyntheses of carrier-added (c.a.) [97/103Ru]BOLD-100 were performed with the two ruthenium isotopes ruthenium-103 (103Ru; β-, γ) and ruthenium-97 (97Ru; EC, γ), of which in particular the latter isotope is suitable for imaging by single-photon emission computed tomography (SPECT). To identify the best tumor-to-background ratio for diagnostic imaging, biodistribution studies were performed with two different injected doses of c.a. [103Ru]BOLD-100 (3 and 30 mg kg-1) in Balb/c mice bearing CT26 allografts over a time period of 72 h. Additionally, ex vivo autoradiography of the tumors (24 h p.i.) was conducted. Our results indicate that the higher injected dose (30 mg kg-1) leads to more unspecific accumulation of the compound in non-targeted tissue, which is likely due to an overload of the albumin transport system. It was also shown that lower amounts of injected c.a. [103Ru]BOLD-100 resulted in a relatively higher tumor uptake and, therefore, a better tumor-to-background ratio, which are encouraging results for future imaging studies using c.a. [97Ru]BOLD-100.
Collapse
Affiliation(s)
- B Happl
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
| | - T Balber
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - P Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - C Denk
- Institute of Applied Synthetic Chemistry, Technische Universität (TU) Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - J M Welch
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - U Köster
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - C Alliot
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
- CRCI2NA, Inserm/CNRS/Nantes Université, 8 quai Moncousu, 44007, Nantes Cedex 1, France
| | - A-C Bonraisin
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
| | - M Brandt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - F Haddad
- GIP ARRONAX, 1 rue Aronnax, CS10112, 44817, Saint-Herblain Cedex, France
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique/CNRS-IN2P3/Nantes Université, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France
| | - J H Sterba
- Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Vienna, Austria
| | - W Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - M Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - M Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - B K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Research cluster "Translational Cancer Therapy Research", Währinger Straße 42, 1090 Vienna, Austria
| | - T L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 and Währinger Straße 42, 1090 Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Umeda IO, Koike Y, Ogata M, Kaneko E, Hamamichi S, Uehara T, Moribe K, Arano Y, Takahashi T, Fujii H. New liposome-radionuclide-chelate combination for tumor targeting and rapid healthy tissue clearance. J Control Release 2023; 361:847-855. [PMID: 37543291 DOI: 10.1016/j.jconrel.2023.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Radionuclide imaging and therapy are promising methods for controlling systemic cancers; however, their clinical application has been limited by excessive radionuclide accumulation in healthy tissues. To minimize radionuclide accumulation in non-cancerous tissues while ensuring sufficient build up in tumors, we aimed to develop a method that controlled the in vivo dynamics of radionuclides post-administration. To this end, we describe a novel strategy that combines liposomes, a potent carrier system for drug delivery, with unique radionuclide-ligand complexes based on 111In-ethylenedicysteine. Conventional 111In-ligand-complexes-carrying liposomes delivered substantial amounts of radionuclides to tumors; however, they also accumulated in the liver and spleen. In contrast, 111In-ethylenedicysteine-carrying liposomes greatly reduced non-specific accumulation, while being retained selectively at high doses within tumors. Liposomes were rapidly broken down in the liver, releasing encapsulated 111In-ligand complexes. Among the chelates used, only 111In-ethylenedicysteine could escape from the liver and be excreted in the urine. Instead, most liposomes remained intact in tumors, retaining the radionuclide-ligand complexes within them. Therefore, high tumor accumulation was obtained regardless of the type of 111In-ligand complexes in the liposomes. In vivo single photon emission computed tomography/computed tomography imaging with 111In-ethylenedicysteine-carrying liposomes accurately revealed tumor-selective radionuclide retention with little background. Hence, our new strategy could greatly enhance tumor-to-healthy tissue ratios, improve diagnostic imaging, boost therapeutic efficacy, reduce toxicity to healthy tissues, and facilitate radionuclide imaging and therapy.
Collapse
Affiliation(s)
- Izumi O Umeda
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8583, Japan; Kyoto College of Medical Science, 1-3, Imakita, Oyama-higashi, Sonobe, Nantan, Kyoto 622-0041, Japan.
| | - Yusuke Koike
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Cyuo-ku, Chiba, Chiba 260-8675, Japan
| | - Mayumi Ogata
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Cyuo-ku, Chiba, Chiba 260-8675, Japan
| | - Emi Kaneko
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Cyuo-ku, Chiba, Chiba 260-8675, Japan
| | - Shusei Hamamichi
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Cyuo-ku, Chiba, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Cyuo-ku, Chiba, Chiba 260-8675, Japan
| | - Yasushi Arano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Cyuo-ku, Chiba, Chiba 260-8675, Japan
| | - Tadayuki Takahashi
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8583, Japan
| | - Hirofumi Fujii
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
4
|
Zaw Thin M, Moore C, Snoeks T, Kalber T, Downward J, Behrens A. Micro-CT acquisition and image processing to track and characterize pulmonary nodules in mice. Nat Protoc 2023; 18:990-1015. [PMID: 36494493 DOI: 10.1038/s41596-022-00769-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
X-ray computed tomography is a reliable technique for the detection and longitudinal monitoring of pulmonary nodules. In preclinical stages of diagnostic or therapeutic development, the miniaturized versions of the clinical computed tomography scanners are ideally suited for carrying out translationally-relevant research in conditions that closely mimic those found in the clinic. In this Protocol, we provide image acquisition parameters optimized for low radiation dose, high-resolution and high-throughput computed tomography imaging using three commercially available micro-computed tomography scanners, together with a detailed description of the image analysis tools required to identify a variety of lung tumor types, characterized by specific radiological features. For each animal, image acquisition takes 4-8 min, and data analysis typically requires 10-30 min. Researchers with basic training in animal handling, medical imaging and software analysis should be able to implement this protocol across a wide range of lung cancer models in mice for investigating the molecular mechanisms driving lung cancer development and the assessment of diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- May Zaw Thin
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK. .,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
| | - Christopher Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Thomas Snoeks
- Imaging Research Facility, The Francis Crick Institute, London, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging (CABI), University College London, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK. .,Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| | - Axel Behrens
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK.,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK.,Cancer Research UK Convergence Science Centre, Imperial College London, London, UK
| |
Collapse
|
5
|
Spoormans K, Crabbé M, Struelens L, De Saint-Hubert M, Koole M. A Review on Tumor Control Probability (TCP) and Preclinical Dosimetry in Targeted Radionuclide Therapy (TRT). Pharmaceutics 2022; 14:2007. [PMID: 36297446 PMCID: PMC9608466 DOI: 10.3390/pharmaceutics14102007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Targeted radionuclide therapy (TRT) uses radiopharmaceuticals to specifically irradiate tumor cells while sparing healthy tissue. Response to this treatment highly depends on the absorbed dose. Tumor control probability (TCP) models aim to predict the tumor response based on the absorbed dose by taking into account the different characteristics of TRT. For instance, TRT employs radiation with a high linear energy transfer (LET), which results in an increased effectiveness. Furthermore, a heterogeneous radiopharmaceutical distribution could result in a heterogeneous dose distribution at a tissue, cellular as well as subcellular level, which will generally reduce the tumor response. Finally, the dose rate in TRT is protracted, relatively low, and variable over time. This allows cells to repair more DNA damage, which may reduce the effectiveness of TRT. Within this review, an overview is given on how these characteristics can be included in TCP models, while some experimental findings are also discussed. Many parameters in TCP models are preclinically determined and TCP models also play a role in the preclinical stage of radiopharmaceutical development; however, this all depends critically on the calculated absorbed dose. Accordingly, an overview of the existing preclinical dosimetry methods is given, together with their limitation and applications. It can be concluded that although the theoretical extension of TCP models from external beam radiotherapy towards TRT has been established quite well, the experimental confirmation is lacking. Thus, requiring additional comprehensive studies at the sub-cellular, cellular, and organ level, which should be provided with accurate preclinical dosimetry.
Collapse
Affiliation(s)
- Kaat Spoormans
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), 3000 Leuven, Belgium
| | - Melissa Crabbé
- NURA Research Group, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Lara Struelens
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Marijke De Saint-Hubert
- Research in Dosimetric Applications, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Michel Koole
- Unit of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Katholieke Universiteit Leuven (KUL), 3000 Leuven, Belgium
| |
Collapse
|
6
|
Frangos S, Michael K, Exadaktylou P, Giannoula E, Iakovou I. The Anger's camera. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Attarwala AA, Hardiansyah D, Romanó C, Jiménez-Franco LD, Roscher M, Wängler B, Glatting G. Performance assessment of the ALBIRA II pre-clinical SPECT S102 system for 99mTc imaging. Ann Nucl Med 2021; 35:111-120. [PMID: 33180260 DOI: 10.1007/s12149-020-01547-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The performance characteristics of the SPECT sub-system S102 of the ALBIRA II PET/SPECT/CT are analyzed for the 80 mm field of view (FOV) to evaluate the potential in-vivo imaging in rats, based on measurements of the system response for the commonly used Technetium-99 m (99mTc) in small animal imaging. METHODS The ALBIRA II tri-modal µPET/SPECT/CT pre-clinical system (Bruker BioSpin, Ettlingen, Germany) was used. The SPECT modality is made up of two opposite gamma cameras (Version S102) with Sodium doped Cesium Iodide (CsI(Na)) single continuous crystal detectors coupled to position-sensitive photomultipliers (PSPMTs). Imaging was performed with the NEMA NU-4 image quality phantom (Data Spectrum Corporation, Durham, USA). Measurements were performed with a starting activity concentration of 4.76 MBq/mL 99mTc. An energy window of 20% at 140 keV was selected in this study. The system offers a 20 mm, 40 mm, 60 mm and an 80 mm field of view (FOV) and in this study the 80 mm FOV was used for all the acquisitions. The data were reconstructed with an ordered subset expectation maximization (OSEM) algorithm. Sensitivity, spatial resolution, count rate linearity, convergence of the algorithm and the recovery coefficients (RC) were analyzed. All analyses were performed with PMOD and MATLAB software. RESULTS The sensitivities measured at the center of the 80 mm FOV with the point source were 23.1 ± 0.3 cps/MBq (single pinhole SPH) and 105.6 ± 5.5 cps/MBq (multi pinhole MPH). The values for the axial, tangential and radial full width at half maximum (FWHM) were 2.51, 2.54, and 2.55 mm with SPH and 2.35, 2.44 and 2.32 mm with MPH, respectively. The corresponding RC values for the 5 mm, 4 mm, 3 mm and 2 mm rods were 0.60 ± 0.28, 0.61 ± 0.24, 0.29 ± 0.11 and 0.20 ± 0.06 with SPH and 0.56 ± 0.20, 0.50 ± 0.18, 0.38 ± 0.09 and 0.23 ± 0.06 with MPH. To obtain quantitative imaging data, the image reconstructions should be performed with 12 iterations. CONCLUSION The ALBIRA II preclinical SPECT sub-system S102 has a favorable sensitivity and spatial resolution for the 80 mm FOV setting for both the SPH and MPH configurations and is a valuable tool for small animal imaging.
Collapse
Affiliation(s)
- Ali Asgar Attarwala
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Deni Hardiansyah
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- Medical Physics and Biophysics Research Group, Physics Department, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok, 16424, Indonesia.
| | - Chiara Romanó
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Luis David Jiménez-Franco
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft GmbH, 01307, Dresden, Germany
| | - Mareike Roscher
- Molecular Imaging and Radiochemistry, Department for Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department for Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
8
|
Abstract
Molecular imaging enables both spatial and temporal understanding of the complex biologic systems underlying carcinogenesis and malignant spread. Single-photon emission tomography (SPECT) is a versatile nuclear imaging-based technique with ideal properties to study these processes in vivo in small animal models, as well as to identify potential drug candidates and characterize their antitumor action and potential adverse effects. Small animal SPECT and SPECT-CT (single-photon emission tomography combined with computer tomography) systems continue to evolve, as do the numerous SPECT radiopharmaceutical agents, allowing unprecedented sensitivity and quantitative molecular imaging capabilities. Several of these advances, their specific applications in oncology as well as new areas of exploration are highlighted in this chapter.
Collapse
Affiliation(s)
- Benjamin L Franc
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Carina Mari Aparici
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA
| |
Collapse
|
9
|
Ito K, Hamamichi S, Abe T, Akagi T, Shirota H, Kawano S, Asano M, Asano O, Yokoi A, Matsui J, Umeda IO, Fujii H. Antitumor effects of eribulin depend on modulation of the tumor microenvironment by vascular remodeling in mouse models. Cancer Sci 2017; 108:2273-2280. [PMID: 28869796 PMCID: PMC5665763 DOI: 10.1111/cas.13392] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/20/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
We previously reported that eribulin mesylate (eribulin), a tubulin‐binding drug (TBD), could remodel tumor vasculature (i.e. increase tumor vessels and perfusion) in human breast cancer xenograft models. However, the role of this vascular remodeling in antitumor effects is not fully understood. Here, we investigated the effects of eribulin‐induced vascular remodeling on antitumor activities in multiple human cancer xenograft models. Microvessel densities (MVD) were evaluated by immunohistochemistry (CD31 staining), and antitumor effects were examined in 10 human cancer xenograft models. Eribulin significantly increased MVD compared to the controls in six out of 10 models with a correlation between enhanced MVD levels and antitumor effects (R2 = 0.54). Because of increased MVD, we next used radiolabeled liposomes to examine whether eribulin treatment would result in increased tumoral accumulation levels of these macromolecules and, indeed, we found that eribulin, unlike vinorelbine (another TBD) enhanced them. As eribulin increased accumulation of radiolabeled liposomes, we postulated that this treatment might enhance the antitumor effect of Doxil (a liposomal anticancer agent) and facilitate recruitment of immune cells into the tumor. As expected, eribulin enhanced antitumor activity of Doxil in a post‐erlotinib treatment H1650 (PE‐H1650) xenograft model. Furthermore, infiltrating CD11b‐positive immune cells were significantly increased in multiple eribulin‐treated xenografted tumors, and natural killer (NK) cell depletion reduced the antitumor effects of eribulin. These findings suggest a contribution of the immune cells for antitumor activities of eribulin. Taken together, our results suggest that vascular remodeling induced by eribulin acts as a microenvironment modulator and, consequently, this alteration enhanced the antitumor effects of eribulin.
Collapse
Affiliation(s)
- Ken Ito
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan.,Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| | - Shusei Hamamichi
- Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| | - Takanori Abe
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Tsuyoshi Akagi
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Hiroshi Shirota
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Satoshi Kawano
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Makoto Asano
- Biology Research, Oncology, Eisai Co., Ltd., Tsukuba, Japan
| | - Osamu Asano
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Akira Yokoi
- Halichondrin Research Laboratory, Eisai Co., Ltd, Tsukuba, Japan
| | - Junji Matsui
- Biology Research, Oncology, Eisai Co., Ltd., Tsukuba, Japan
| | - Izumi O Umeda
- Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
10
|
Kamimura M, Saito R, Hyodo H, Tsuji K, Umeda IO, Fujii H, Soga K. Over-1000 nm Near-infrared Fluorescence and SPECT/CT Dual-modal in vivo Imaging Based on Rare-earth Doped Ceramic Nanophosphors. J PHOTOPOLYM SCI TEC 2016. [DOI: 10.2494/photopolymer.29.525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Ito K, Hamamichi S, Asano M, Hori Y, Matsui J, Iwata M, Funahashi Y, Umeda IO, Fujii H. Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models. Cancer Sci 2015; 107:60-7. [PMID: 26509883 PMCID: PMC4724823 DOI: 10.1111/cas.12841] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 01/22/2023] Open
Abstract
Liposomal anticancer agents can effectively deliver drugs to tumor lesions, but their therapeutic effects are enhanced in only limited number of patients. Appropriate biomarkers to identify responder patients to these liposomal agents will improve their treatment efficacies. We carried out pharmacological and histopathological analyses of mouse xenograft models bearing human ovarian cancers (Caov‐3, SK‐OV‐3, KURAMOCHI, and TOV‐112D) to correlate the therapeutic effects of doxorubicin‐encapsulated liposome (Doxil®) and histological characteristics linked to the enhanced permeability and retention effect. We next generated 111In‐encapsulated liposomes to examine their capacities to determine indications for Doxil® treatment by single‐photon emission computed tomography (SPECT)/CT imaging. Antitumor activities of Doxil® were drastically enhanced in Caov‐3, moderately in SK‐OV‐3, and minimally in KURAMOCHI and TOV‐112D when compared to doxorubicin. Microvessel density and vascular perfusion were high in Caov‐3 and SK‐OV‐3, indicating a close relation with the enhanced antitumor effects. Next, 111In‐encapsulated liposomes were given i.v. to the animals. Their tumor accumulation and area under the curve values over 72 h were high in Caov‐3, relatively high in SK‐OV‐3, and low in two other tumors. Importantly, as both Doxil® effects and liposomal accumulation varied in the SK‐OV‐3 group, we individually obtained SPECT/CT images of SK‐OV‐3‐bearing mouse (n = 11) before Doxil® treatment. Clear correlation between liposomal tumor accumulation and effects of Doxil® was confirmed (R2 = 0.73). Taken together, our experiments definitely verified that enhanced therapeutic effects through liposomal formulations of anticancer agents depend on tumor accumulation of liposomes. Tumor accumulation of the radiolabeled liposomes evaluated by SPECT/CT imaging is applicable to appropriately determine indications for liposomal antitumor agents.
Collapse
Affiliation(s)
- Ken Ito
- Halichondrin Research Laboratory, Eisai Co., Ltd., Tsukuba, Japan.,Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| | - Shusei Hamamichi
- Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| | - Makoto Asano
- Oncology Product Creation Unit, Eisai Co., Ltd., Tsukuba, Japan
| | - Yusaku Hori
- Division of Functional Imaging, National Cancer Center, Kashiwa, Japan.,Oncology Product Creation Unit, Eisai Co., Ltd., Tsukuba, Japan
| | - Junji Matsui
- Oncology Product Creation Unit, Eisai Co., Ltd., Tsukuba, Japan
| | - Masao Iwata
- Oncology Product Creation Unit, Eisai Co., Ltd., Tsukuba, Japan
| | - Yasuhiro Funahashi
- Biomarkers and Personalized Medicine Core Function Unit, Eisai Inc., Andover, Massachusetts, USA
| | - Izumi O Umeda
- Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
12
|
Performance characteristics of a novel clustered multi-pinhole technology for simultaneous high-resolution SPECT/PET. Ann Nucl Med 2015; 29:460-6. [DOI: 10.1007/s12149-015-0966-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/19/2015] [Indexed: 11/26/2022]
|
13
|
Bernsen MR, Vaissier PEB, Van Holen R, Booij J, Beekman FJ, de Jong M. The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI. Eur J Nucl Med Mol Imaging 2014; 41 Suppl 1:S36-49. [PMID: 24895751 PMCID: PMC4003405 DOI: 10.1007/s00259-013-2685-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 01/03/2023]
Abstract
Preclinical imaging with SPECT combined with CT or MRI is used more and more frequently and has proven to be very useful in translational research. In this article, an overview of current preclinical research applications and trends of SPECT combined with CT or MRI, mainly in tumour imaging and neuroscience imaging, is given and the advantages and disadvantages of the different approaches are described. Today SPECT and CT systems are often integrated into a single device (commonly called a SPECT/CT system), whereas at present combined SPECT and MRI is almost always carried out with separate systems and fiducial markers to combine the separately acquired images. While preclinical SPECT/CT is most widely applied in oncology research, SPECT combined with MRI (SPECT/MRI when integrated in one system) offers the potential for both neuroscience applications and oncological applications. Today CT and MRI are still mainly used to localize radiotracer binding and to improve SPECT quantification, although both CT and MRI have additional potential. Future technology developments may include fast sequential or simultaneous acquisition of (dynamic) multimodality data, spectroscopy, fMRI along with high-resolution anatomic MRI, advanced CT procedures, and combinations of more than two modalities such as combinations of SPECT, PET, MRI and CT all together. This will all strongly depend on new technologies. With further advances in biology and chemistry for imaging molecular targets and (patho)physiological processes in vivo, the introduction of new imaging procedures and promising new radiopharmaceuticals in clinical practice may be accelerated.
Collapse
Affiliation(s)
- Monique R. Bernsen
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter E. B. Vaissier
- Section Radiation Detection and Medical Imaging, Delft University of Technology, Delft, The Netherlands
| | - Roel Van Holen
- ELIS Department, MEDISIP, Ghent University, iMinds, Ghent, Belgium
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Freek J. Beekman
- Section Radiation Detection and Medical Imaging, Delft University of Technology, Delft, The Netherlands
- MILabs B.V., Utrecht, The Netherlands
| | - Marion de Jong
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Branderhorst W, Blezer ELA, Houtkamp M, Ramakers RM, van den Brakel JH, Witteveen H, van der Have F, Gratama van Andel HA, Vastenhouw B, Wu C, Walsum MSV, van Dongen GAMS, Viergever MA, Bleeker WK, Beekman FJ. Three-dimensional histologic validation of high-resolution SPECT of antibody distributions within xenografts. J Nucl Med 2014; 55:830-7. [PMID: 24686779 DOI: 10.2967/jnumed.113.125401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Longitudinal imaging of intratumoral distributions of antibodies in vivo in mouse cancer models is of great importance for developing cancer therapies. In this study, multipinhole SPECT with sub-half-millimeter resolution was tested for exploring intratumoral distributions of radiolabeled antibodies directed toward the epidermal growth factor receptor (EGFr) and compared with full 3-dimensional target expression assessed by immunohistochemistry. METHODS (111)In-labeled zalutumumab, a human monoclonal human EGFr-targeting antibody, was administered at a nonsaturating dose to 3 mice with xenografted A431 tumors exhibiting high EGFr expression. Total-body and focused in vivo tumor SPECT was performed at 0 and 48 h after injection and compared both visually and quantitatively with full 3-dimensional immunohistochemical staining for EGFr target expression. RESULTS SPECT at 48 h after injection showed that activity was predominantly concentrated in the tumor (10.5% ± 1.3% of the total-body activity; average concentration, 30.1% ± 4.6% of the injected dose per cubic centimeter). (111)In-labeled EGFr-targeting antibodies were distributed heterogeneously throughout the tumor. Some hot spots were observed near the tumor rim. Immunohistochemistry indicated that the antibody distributions obtained by SPECT were morphologically similar to those obtained for ex vivo EGFr target expression. Regions showing low SPECT activity were necrotic or virtually negative for EGFr target expression. A good correlation (r = 0.86, P < 0.0001) was found between the percentage of regions showing low activity on SPECT and the percentage of necrotic tissue on immunohistochemistry. CONCLUSION Multipinhole SPECT enables high-resolution visualization and quantification of the heterogeneity of (111)In-zalutumumab concentrations in vivo.
Collapse
Affiliation(s)
- Woutjan Branderhorst
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Matsunari I, Miyazaki Y, Kobayashi M, Nishi K, Mizutani A, Kawai K, Hayashi A, Komatsu R, Yonezawa S, Kinuya S. Performance evaluation of the eXplore speCZT preclinical imaging system. Ann Nucl Med 2014; 28:484-97. [PMID: 24610679 DOI: 10.1007/s12149-014-0828-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 02/19/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The eXplore speCZT is a recently introduced cadmium zinc telluride-based preclinical SPECT system that has a stationary detector design with interchangeable rotating collimators. Our aim was to evaluate the performance of the eXplore speCZT using 99mTc-sources. In particular, the image quality was assessed using the National Electrical Manufacturers Association NU-4 image quality phantom as well as an in vivo mouse. METHODS Energy resolution, sensitivity and spatial resolution were measured using 99mTc sources. Image quality was assessed using NU-4 image quality phantom. The measurements were performed for 4 available collimators: (1) mouse 7-pinhole collimator (mouse PH); (2) mouse 8-slit collimator (mouse SL); (3) rat 5-pinhole collimator (rat PH); and (4) rat 5-slit collimator (rat SL). Furthermore, a mouse bone imaging study was performed using mouse PH and mouse SL. RESULTS The system achieved the energy resolution of 5.5% in full-width at half maximum (FWHM) at 140 keV using a 99mTc source. Without resolution recovery function, the system provided a near millimeter transaxial and axial spatial resolution using mouse PH. Mouse SL and rat SL provided reasonably good transaxial (1.79-2.00 mm in FWHM), but much worse axial resolutions (4.55-4.96 mm in FWHM). The use of resolution recovery significantly improved spatial resolution by in average 31±3 or 35±4% in FWHM or full-width at tenth maximum, respectively. In particular, a sub-millimeter resolution of 0.71 mm in FWHM was achieved in either transaxial or axial direction with mouse PH. Using NU-4 phantom, the uniformity of slit collimators as expressed as percentage standard deviation was generally better than that of pinhole collimators. The use of resolution recovery substantially improved uniformity for all the collimators tested, but caused some overestimation in recovery coefficient. Reconstruction settings such as iteration or subset number significantly affected image quality measures. Finally, bone images of acceptable quality were obtained in in vivo mouse using mouse PH with resolution recovery. CONCLUSIONS The overall performance shows that the eXplore speCZT system is suitable for preclinical imaging-based research using small-animals.
Collapse
Affiliation(s)
- Ichiro Matsunari
- Clinical Research Department, The Medical and Pharmacological Research Center Foundation, Wo 32, Inoyama, Hakui, Ishikawa, 925-0613, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wu C, Gratama van Andel HA, Laverman P, Boerman OC, Beekman FJ. Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images. EJNMMI Res 2013; 3:7. [PMID: 23369630 PMCID: PMC3579699 DOI: 10.1186/2191-219x-3-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/23/2013] [Indexed: 12/18/2022] Open
Abstract
Background In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well as registration accuracy between SPECT and CT can be influenced by several factors. Here we investigate how such inaccuracies influence micro-SPECT quantification. Methods Effects of (1) misalignments between micro-SPECT and micro-CT through shifts and rotation, (2) globally altered attenuation coefficients and (3) combinations of these were evaluated. Tests were performed with a NEMA NU 4–2008 phantom and with rat cadavers containing sources with known activity. Results Changes in measured activities within volumes of interest in phantom images ranged from <1.5% (125I) and <0.6% (201Tl, 99mTc and 111In) for 1-mm shifts to <4.5% (125I) and <1.7% (201Tl, 99mTc and 111In) with large misregistration (3 mm). Changes induced by 15° rotation were smaller than those by 3-mm shifts. By significantly altering attenuation coefficients (±10%), activity changes of <5.2% for 125I and <2.7% for 201Tl, 99mTc and 111In were induced. Similar trends were seen in rat studies. Conclusions While getting sufficient accuracy of attenuation maps in clinical imaging is highly challenging, our results indicate that micro-SPECT quantification is quite robust to various imperfections of attenuation maps.
Collapse
Affiliation(s)
- Chao Wu
- Section Radiation, Detection & Medical Imaging, Delft University of Technology, Mekelweg 15, Delft, 2629 JB, the Netherlands.
| | | | | | | | | |
Collapse
|
17
|
Higaki Y, Kobayashi M, Uehara T, Hanaoka H, Arano Y, Kawai K. Appropriate collimators in a small animal SPECT scanner with CZT detector. Ann Nucl Med 2013; 27:271-8. [DOI: 10.1007/s12149-012-0681-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/26/2012] [Indexed: 12/29/2022]
|
18
|
Seo Y, Jiang H, Franc BL. Preclinical SPECT and SPECT/CT. Recent Results Cancer Res 2013; 187:193-220. [PMID: 23179882 DOI: 10.1007/978-3-642-10853-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The molecular processes underlying carcinogenesis and malignant spread are the foundation of future drug development for the treatment of cancer. Understanding these processes requires study of the interaction of complex biologic systems in a way that spatially and temporally recapitulates that seen in humans. Likewise, once an anticancer agent is developed, its intended antitumor action and its unintended side-effects must be studied in a rigorous and reproducible manner prior to its introduction into the clinic, a process that can benefit from methods that elucidate specific molecular processes and that can be performed serially. Recent advances in small-animal models of cancer, radiochemistry of single photon emitting radionuclides, single photon emission tomography systems, and image reconstruction techniques have set the stage for an ever-increasing use of SPECT and SPECT/CT in preclinical oncology-related applications. Several of these advances as well as several specific applications in oncology are highlighted and areas needing further improvement are identified.
Collapse
Affiliation(s)
- Youngho Seo
- Radiological Associate of Sacramento, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
19
|
In vivo visualization of heterogeneous intratumoral distribution of hypoxia-inducible factor-1α activity by the fusion of high-resolution SPECT and morphological imaging tests. J Biomed Biotechnol 2012; 2012:262741. [PMID: 22778544 PMCID: PMC3385015 DOI: 10.1155/2012/262741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/24/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose. We aimed to clearly visualize heterogeneous distribution of hypoxia-inducible factor 1α (HIF) activity in tumor tissues in vivo. Methods. We synthesized of 125I-IPOS, a 125I labeled chimeric protein probe, that would visualize HIF activity. The biodistribution of 125I-IPOS in FM3A tumor-bearing mice was evaluated. Then, the intratumoral localization of this probe was observed by autoradiography, and it was compared with histopathological findings. The distribution of 125I-IPOS in tumors was imaged by a small animal SPECT/CT scanner. The obtained in vivo SPECT-CT fusion images were compared with ex vivo images of excised tumors. Fusion imaging with MRI was also examined. Results. 125I-IPOS well accumulated in FM3A tumors. The intratumoral distribution of 125I-IPOS by autoradiography was quite heterogeneous, and it partially overlapped with that of pimonidazole. High-resolution SPECT-CT fusion images successfully demonstrated the heterogeneity of 125I-IPOS distribution inside tumors. SPECT-MRI fusion images could give more detailed information about the intratumoral distribution of 125I-IPOS. Conclusion. High-resolution SPECT images successfully demonstrated heterogeneous intratumoral distribution of 125I-IPOS. SPECT-CT fusion images, more favorably SPECT-MRI fusion images, would be useful to understand the features of heterogeneous intratumoral expression of HIF activity in vivo.
Collapse
|