1
|
Wang R, Zhang D, Hu Y, Lyu Z, Ma T. High-sensitivity cardiac SPECT system design with collimator-less interspaced mosaic-patterned scintillators. Front Med (Lausanne) 2023; 10:1145351. [PMID: 37448793 PMCID: PMC10336213 DOI: 10.3389/fmed.2023.1145351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
Purpose Single-photon emission computed tomography (SPECT) is an important tool for myocardial perfusion imaging (MPI). Mechanical collimators cause the resolution-sensitivity trade-off in the existing cardiac SPECT systems, which hinders fast cardiac scan capability. In this work, we propose a novel collimator-less cardiac SPECT system with interspaced mosaic-patterned scintillators, aiming to significantly improve sensitivity and reduce scan time without trading-off image resolution. Methods We propose to assemble a collimator-less cardiac SPECT with 7 mosaic-patterned detector modules forming a half-ring geometry. The detector module consists of 10 blocks, each of which is assembled with 768 sparsely distributed scintillators with a size of 1.68 mm × 1.68 mm × 20 mm, forming a mosaic pattern in the trans-axial direction. Each scintillator bar contains 5 GAGG(Ce) scintillators and 5 optical-guide elements, forming a mosaic pattern in the axial direction. In the Monte Carlo simulations, the in-plane resolution and axial resolution are evaluated using a hot-rod phantom and 5 disk phantoms, respectively. We simulate a cardiac phantom that is placed in a water-filled cylinder and evaluate the image performance with different data acquisition time. We perform image reconstruction with the expectation-maximization algorithm using system matrices derived from the simulation of a uniform cylindrical source filling the field-of-view (FOV). Besides, a 2-D prototype system is designed to demonstrate the feasibility of the collimator-less imaging concept. Results In the simulation system, the sensitivity is 16.31% ± 8.85% in a 180 mm (Φ) × 100 mm (L) FOV. The 6-mm rods in the hot rod phantom and the 5-mm disks in the disk phantom are clearly separable. Satisfactory MPI image quality is achieved in the cardiac phantom study with an acquisition time of 30 s. In prototype experiments, the point sources with an 8 mm center-to-center distance are clearly separable at different positions across the FOV. Conclusion The study reveals a promising approach to high-sensitivity SPECT imaging without a heavy-metal collimator. In cardiac imaging, this approach opens the way to a very fast cardiac scan with good resolution. Further works are ongoing to build a practical 3-D imaging system based on the existing design.
Collapse
Affiliation(s)
- Rui Wang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education (Tsinghua University), Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Debin Zhang
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education (Tsinghua University), Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Yifan Hu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education (Tsinghua University), Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Zhenlei Lyu
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education (Tsinghua University), Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Tianyu Ma
- Department of Engineering Physics, Tsinghua University, Beijing, China
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education (Tsinghua University), Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Könik A, Zeraatkar N, Kalluri KS, Auer B, Fromme TJ, He Y, May M, Furenlid LR, Kuo PH, King MA. Improved Performance of a Multipinhole SPECT for DAT Imaging by Increasing Number of Pinholes at the Expense of Increased Multiplexing. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:817-825. [PMID: 34746540 DOI: 10.1109/trpms.2020.3035626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SPECT imaging of dopamine transporters (DAT) in the brain is a widely utilized study to improve the diagnosis of Parkinsonian syndromes, where conventional (parallel-hole and fan-beam) collimators on dual-head scanners are commonly employed. We have designed a multi-pinhole (MPH) collimator to improve the performance of DAT imaging. The MPH collimator focuses on the striatum and hence offers a better trade-off for sensitivity and spatial resolution than the conventional collimators within this clinically most relevant region for DAT imaging. Our original MPH design consisted of 9 pinholes with a background-to-striatal (Bkg/Str) projection multiplexing of 1% only. In this simulation study, we investigated whether further improvements in the performance of MPH imaging could be obtained by increasing the number of pinholes, hence by enhancing the sensitivity and sampling, despite the ambiguity in reconstructing images due to increased multiplexing. We performed analytic simulations of the MPH configurations with 9, 13, and 16 pinholes (aperture diameters: 4-6mm) using a digital phantom modeling DAT imaging. Our quantitative analyses indicated that using 13 (Bkg/Str: 12%) and 16 (Bkg/Str: 22%) pinholes provided better performance than the original 9-pinhole configuration for the acquisition with 2 or 4 angular views, but a similar performance with 8 and 16 views.
Collapse
Affiliation(s)
- Arda Könik
- Department of Imaging, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Navid Zeraatkar
- Department of Radiology, Univ. of Mass. Medical School, Worcester, MA, 01605, USA
| | - Kesava S Kalluri
- Department of Radiology, Univ. of Mass. Medical School, Worcester, MA, 01605, USA
| | - Benjamin Auer
- Department of Radiology, Univ. of Mass. Medical School, Worcester, MA, 01605, USA
| | | | - Yulun He
- MD Anderson Cancer Center, Houston, TX
| | - Micaehla May
- Department of Radiology, University of Arizona, Tucson, AZ, 85724 USA
| | - Lars R Furenlid
- Department of Radiology, University of Arizona, Tucson, AZ, 85724 USA
| | - Phillip H Kuo
- Department of Radiology, University of Arizona, Tucson, AZ, 85724 USA
| | - Michael A King
- Department of Radiology, Univ. of Mass. Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
3
|
Auer B, Zeraatkar N, Goding JC, Könik A, Fromme TJ, Kalluri KS, Furenlid LR, Kuo PH, King MA. Inclusion of quasi-vertex views in a brain-dedicated multi-pinhole SPECT system for improved imaging performance. Phys Med Biol 2021; 66:035007. [PMID: 33065564 PMCID: PMC9899040 DOI: 10.1088/1361-6560/abc22e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With brain-dedicated multi-detector systems employing pinhole apertures the usage of detectors facing the top of the patient's head (i.e. quasi-vertex (QV) views) can provide the advantage of additional viewing from close to the brain for improved detector coverage. In this paper, we report the results of simulation and reconstruction studies to investigate the impact of the QV views on the imaging performance of AdaptiSPECT-C, a brain-dedicated stationary SPECT system under development. In this design, both primary and scatter photons from regions located inferior to the brain can contribute to SPECT projections acquired by the QV views, and thus degrade AdaptiSPECT-C imaging performance. In this work, we determined the proportion, origin, and nature (i.e. primary, scatter, and multiple-scatter) of counts emitted from structures within the head and throughout the body contributing to projections from the different AdaptiSPECT-C detector rings, as well as from a true vertex view detector. We simulated phantoms used to assess different aspects of image quality (i.e. uniform activity concentration sphere, and Derenzo), as well as anthropomorphic phantoms with different count levels emulating clinical 123I activity distributions (i.e. DaTscan and perfusion). We determined that attenuation and scatter in the patient's body greatly diminish the probability of the photons emitted outside the volume of interest reaching to detectors and being recorded within the 15% photopeak energy window. In addition, we demonstrated that the inclusion of the residual of such counts in the system acquisition does not degrade visual interpretation or quantitative analysis. The addition of the QV detectors improves volumetric sensitivity, angular sampling, and spatial resolution leading to significant enhancement in image quality, especially in the striato-thalamic and superior regions of the brain. Besides, the use of QV detectors improves the recovery of clinically relevant metrics such as the striatal binding ratio and mean activity in selected cerebral structures. Our findings proving the usefulness of the QV ring for brain imaging with 123I agents can be generalized to other commonly used SPECT imaging agents labelled with isotopes, such as 99mTc and likely 111In.
Collapse
Affiliation(s)
- Benjamin Auer
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA, 01655
| | - Navid Zeraatkar
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA, 01655
| | - Justin C. Goding
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA, 01655
| | - Arda Könik
- Department of Imaging, Dana Farber Cancer Institute, Boston, MA, USA, 02215
| | | | - Kesava S. Kalluri
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA, 01655
| | - Lars R. Furenlid
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA, 85721.,Department of Medical Imaging, University of Arizona, Tucson, AZ, USA, 85724
| | - Phillip H. Kuo
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA, 85724
| | - Michael A. King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA, 01655
| |
Collapse
|
4
|
Zeraatkar N, Kalluri KS, Auer B, Konik A, Fromme TJ, Furenlid LR, Kuo PH, King MA. Investigation of Axial and Angular Sampling in Multi-Detector Pinhole-SPECT Brain Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4209-4224. [PMID: 32763850 PMCID: PMC7875096 DOI: 10.1109/tmi.2020.3015079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We designed a dedicated multi-detector multi-pinhole brain SPECT scanner to generate images of higher quality compared to general-purpose systems. The system, AdaptiSPECT-C, is intended to adapt its sensitivity-resolution trade-off by varying its aperture configurations allowing both high-sensitivity dynamic and high-spatial-resolution static imaging. The current system design consists of 23 detector heads arranged in a truncated spherical geometry. In this work, we investigated the axial and angular sampling capability of the current stationary system design. Two data acquisition schemes using limited rotation of the gantry and two others using axial translation of the imaging bed were also evaluated concerning their impact on image quality through improved sampling. Increasing both angular and axial sampling in the current prototype system resulted in quantitative improvements in image quality metrics and qualitative appearance of the images as determined in studies with specifically selected phantoms. Visual improvements for the brain phantoms with clinical distributions were less pronounced but presented quantitative improvements in the fidelity (normalized root-mean-square error (NRMSE)) and striatal specific binding ratio (SBR) for a dopamine transporter (DAT) distribution, and in NRMSE and activity recovery for a brain perfusion distribution. More pronounced improvements with increased sampling were seen in contrast recovery coefficient, bias, and coefficient of variation for a lesion in the brain perfusion distribution. The negligible impact of the most cranial ring of detectors on axial sampling, but its significant impact on sensitivity and angular sampling in the cranial portion of the imaging volume-of-interest were also determined.
Collapse
|
5
|
Ozsahin I, Chen L, Könik A, King MA, Beekman FJ, Mok GSP. The clinical utilities of multi-pinhole single photon emission computed tomography. Quant Imaging Med Surg 2020; 10:2006-2029. [PMID: 33014732 PMCID: PMC7495312 DOI: 10.21037/qims-19-1036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 11/06/2022]
Abstract
Single photon emission computed tomography (SPECT) is an important imaging modality for various applications in nuclear medicine. The use of multi-pinhole (MPH) collimators can provide superior resolution-sensitivity trade-off when imaging small field-of-view compared to conventional parallel-hole and fan-beam collimators. Besides the very successful application in small animal imaging, there has been a resurgence of the use of MPH collimators for clinical cardiac and brain studies, as well as other small field-of-view applications. This article reviews the basic principles of MPH collimators and introduces currently available and proposed clinical MPH SPECT systems.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Nicosia/TRNC, Mersin-10, Turkey
- DESAM Institute, Near East University, Nicosia/TRNC, Mersin-10, Turkey
| | - Ling Chen
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Arda Könik
- Department of Imaging, Dana Farber Cancer Institute, Boston, MA, USA
| | - Michael A. King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Freek J. Beekman
- Section of Biomedical Imaging, Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
- MILabs B.V, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Greta S. P. Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China
| |
Collapse
|
6
|
Könik A, Auer B, De Beenhouwer J, Kalluri K, Zeraatkar N, Furenlid LR, King MA. Primary, scatter, and penetration characterizations of parallel-hole and pinhole collimators for I-123 SPECT. Phys Med Biol 2019; 64:245001. [PMID: 31746783 DOI: 10.1088/1361-6560/ab58fe] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multi-pinhole (MPH) collimators are known to provide better trade-off between sensitivity and resolution for preclinical, as well as for smaller regions in clinical SPECT imaging compared to conventional collimators. In addition to this geometric advantage, MPH plates typically offer better stopping power for penetration than the conventional collimators, which is especially relevant for I-123 imaging. The I-123 emits a series of high-energy (>300 keV, ~2.5% abundance) gamma photons in addition to the primary emission (159 keV, 83% abundance). Despite their low abundance, high-energy photons penetrate through a low-energy parallel-hole (LEHR) collimator much more readily than the 159 keV photons, resulting in large downscatter in the photopeak window. In this work, we investigate the primary, scatter, and penetration characteristics of a single pinhole collimator that is commonly used for I-123 thyroid imaging and our two MPH collimators designed for I-123 DaTscan imaging for Parkinson's Disease, in comparison to three different parallel-hole collimators through a series of experiments and Monte Carlo simulations. The simulations of a point source and a digital human phantom with DaTscan activity distribution showed that our MPH collimators provide superior count performance in terms of high primary counts, low penetration, and low scatter counts compared to the parallel-hole and single pinhole collimators. For example, total scatter, multiple scatter, and collimator penetration events for the LEHR were 2.5, 7.6 and 14 times more than that of MPH within the 15% photopeak window. The total scatter fraction for LEHR was 56% where the largest contribution came from the high-energy scatter from the back compartments (31%). For the same energy window, the total scatter for MPH was 21% with only 1% scatter from the back compartments. We therefore anticipate that using MPH collimators, higher quality reconstructions can be obtained in a substantially shorter acquisition time for I-123 DaTscan and thyroid imaging.
Collapse
Affiliation(s)
- Arda Könik
- Department of Imaging, Dana Farber Cancer Institute, Boston, MA 02215, United States of America
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Cardiac SPECT continues to play a critical role in detecting and managing cardiovascular disease, in particularly coronary artery disease (CAD) (Jaarsma et al 2012 J. Am. Coll. Cardiol. 59 1719-28), (Agostini et al 2016 Eur. J. Nucl. Med. Mol. Imaging 43 2423-32). While conventional dual-head SPECT scanners using parallel-hole collimators and scintillation crystals with photomultiplier tubes are still the workhorse of cardiac SPECT, they have the limitations of low photon sensitivity (~130 count s-1 MBq-1), poor image resolution (~15 mm) (Imbert et al 2012 J. Nucl. Med. 53 1897-903), relatively long acquisition time, inefficient use of the detector, high radiation dose, etc. Recently our field observed an exciting growth of new developments of dedicated cardiac scanners and collimators, as well as novel imaging algorithms for quantitative cardiac SPECT. These developments have opened doors to new applications with potential clinical impact, including ultra-low-dose imaging, absolute quantification of myocardial blood flow (MBF) and coronary flow reserve (CFR), multi-radionuclide imaging, and improved image quality as a result of attenuation, scatter, motion, and partial volume corrections (PVCs). In this article, we review the recent advances in cardiac SPECT instrumentation and imaging methods. This review mainly focuses on the most recent developments published since 2012 and points to the future of cardiac SPECT from an imaging physics perspective.
Collapse
Affiliation(s)
- Jing Wu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, United States of America
| | | |
Collapse
|