1
|
Burkett BJ, Johnson DR, Lowe VJ. Evaluation of Neurodegenerative Disorders with Amyloid-β, Tau, and Dopaminergic PET Imaging: Interpretation Pitfalls. J Nucl Med 2024; 65:829-837. [PMID: 38664015 DOI: 10.2967/jnumed.123.266463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/03/2024] [Indexed: 06/05/2024] Open
Abstract
Antiamyloid therapies for Alzheimer disease recently entered clinical practice, making imaging biomarkers for Alzheimer disease even more relevant to guiding patient management. Amyloid and tau PET are valuable tools that can provide objective evidence of Alzheimer pathophysiology in living patients and will increasingly be used to complement 18F-FDG PET in the diagnostic evaluation of cognitive impairment and dementia. Parkinsonian syndromes, also common causes of dementia, can likewise be evaluated with a PET imaging biomarker,18F-DOPA, allowing in vivo assessment of the presynaptic dopaminergic neurons. Understanding the role of these PET biomarkers will help the nuclear medicine physician contribute to the appropriate diagnosis and management of patients with cognitive impairment and dementia. To successfully evaluate brain PET examinations for neurodegenerative diseases, knowledge of the necessary protocol details for obtaining a reliable imaging study, inherent limitations for each PET radiopharmaceutical, and pitfalls in image interpretation is critical. This review will focus on underlying concepts for interpreting PET examinations, important procedural details, and guidance for avoiding potential interpretive pitfalls for amyloid, tau, and dopaminergic PET examinations.
Collapse
Affiliation(s)
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Zhang Y, Xin M, Wang C, Hu Z, Wang Y, Shao H, Liu J, Zhang C. Neuronal intranuclear inclusion disease with cerebellar white matter tau uptake and incidental meningioma. Eur J Nucl Med Mol Imaging 2024; 51:1794-1795. [PMID: 38273004 DOI: 10.1007/s00259-024-06615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Affiliation(s)
- Yan Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Mei Xin
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhoumi Hu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yue Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hongda Shao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Chenpeng Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
3
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
4
|
Clinical Evaluation of 18F-PI-2620 as a Potent PET Radiotracer Imaging Tau Protein in Alzheimer Disease and Other Neurodegenerative Diseases Compared With 18F-THK-5351. Clin Nucl Med 2020; 45:841-847. [PMID: 32910050 DOI: 10.1097/rlu.0000000000003261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE PET is a useful tool for detecting the presence and extent of brain tau accumulation. However, most first-generation tau PET tracers are limited for high off-target binding and detection of tau in non-Alzheimer disease (AD). This study evaluated potential clinical applications of F-PI-2620 as a novel PET tracer with a high binding affinity for tau deposition in AD and non-AD tauopathies. METHODS Twenty-six participants diagnosed with either mild cognitive impairment, probable AD, frontotemporal dementia, or parkinsonism, as well as healthy controls underwent a 60- to 90-minute brain PET scan after 7 mci (259 MBq) injection of F-PI-2620. Some participants had previous PET scans using F-THK-5351 or F-FP-CIT for dopamine transporter imaging. RESULTS All participants showed no increase in off-target binding in basal ganglia on F-PI-2620 PET images, as noted for first-generation tau tracers. Aβ+ mild cognitive impairment or AD patients showed diverse cortical F-PI-2620 uptake in frontotemporoparietal cortex that correlated with Mini-Mental Status Examination (ρ = -0.692, P = 0.013). Aβ+ Parkinson disease with dementia and (Aβ unknown) primary progressive aphasia patients also showed increased F-PI-2620 uptakes in the frontotemporoparietal cortex. Patients with parkinsonism showed increased uptakes in the pallidum compared with Aβ- healthy controls (left: 1.41 ± 0.14 vs 1.04 ± 0.13, P = 0.014; right: 1.18 ± 0.16 vs 0.95 ± 0.07, P = 0.014). CONCLUSIONS F-PI-2620 PET might be a sensitive tool to detect cortical tau deposits in patients with Aβ+ AD and Aβ+ non-AD tauopathies. Furthermore, this study showed that "off-target" binding in the basal ganglia does not affect F-PI-2620.
Collapse
|
5
|
Lesman-Segev OH, La Joie R, Stephens ML, Sonni I, Tsai R, Bourakova V, Visani AV, Edwards L, O'Neil JP, Baker SL, Gardner RC, Janabi M, Chaudhary K, Perry DC, Kramer JH, Miller BL, Jagust WJ, Rabinovici GD. Tau PET and multimodal brain imaging in patients at risk for chronic traumatic encephalopathy. Neuroimage Clin 2019; 24:102025. [PMID: 31670152 PMCID: PMC6831941 DOI: 10.1016/j.nicl.2019.102025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/03/2019] [Accepted: 09/27/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To characterize individual and group-level neuroimaging findings in patients at risk for Chronic Traumatic Encephalopathy (CTE). METHODS Eleven male patients meeting criteria for Traumatic Encephalopathy Syndrome (TES, median age: 64) underwent neurologic evaluation, 3-Tesla MRI, and PET with [18F]-Flortaucipir (FTP, tau-PET) and [11C]-Pittsburgh compound B (PIB, amyloid-PET). Six patients underwent [18F]-Fluorodeoxyglucose-PET (FDG, glucose metabolism). We assessed imaging findings at the individual patient level, and in group-level comparisons with modality-specific groups of cognitively normal older adults (CN). Tau-PET findings in patients with TES were also compared to a matched group of patients with mild cognitive impairment or dementia due to Alzheimer's disease (AD). RESULTS All patients with TES sustained repetitive head injury participating in impact sports, ten in American football. Three patients met criteria for dementia and eight had mild cognitive impairment. Two patients were amyloid-PET positive and harbored the most severe MRI atrophy, FDG hypometabolism, and FTP-tau PET binding. Among the nine amyloid-negative patients, tau-PET showed either mildly elevated frontotemporal binding, a "dot-like" pattern, or no elevated binding. Medial temporal FTP was mildly elevated in a subset of amyloid-negative patients, but values were considerably lower than in AD. Voxelwise analyses revealed a convergence of imaging abnormalities (higher FTP binding, lower FDG, lower gray matter volumes) in frontotemporal areas in TES compared to controls. CONCLUSIONS Mildly elevated tau-PET binding was observed in a subset of amyloid-negative patients at risk for CTE, in a distribution consistent with CTE pathology stages III-IV. FTP-PET may be useful as a biomarker of tau pathology in CTE but is unlikely to be sensitive to early disease stages.
Collapse
Affiliation(s)
- Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States.
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Melanie L Stephens
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Ida Sonni
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Richard Tsai
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Viktoriya Bourakova
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Adrienne V Visani
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - James P O'Neil
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Suzanne L Baker
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Raquel C Gardner
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States; San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, United States
| | - Mustafa Janabi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Kiran Chaudhary
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - David C Perry
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - William J Jagust
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States; Departments of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, United States; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
6
|
Molecular imaging in dementia: Past, present, and future. Alzheimers Dement 2018; 14:1522-1552. [DOI: 10.1016/j.jalz.2018.06.2855] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 12/14/2022]
|
7
|
Josephs KA, Martin PR, Botha H, Schwarz CG, Duffy JR, Clark HM, Machulda MM, Graff-Radford J, Weigand SD, Senjem ML, Utianski RL, Drubach DA, Boeve BF, Jones DT, Knopman DS, Petersen RC, Jack CR, Lowe VJ, Whitwell JL. [ 18 F]AV-1451 tau-PET and primary progressive aphasia. Ann Neurol 2018; 83:599-611. [PMID: 29451323 PMCID: PMC5896771 DOI: 10.1002/ana.25183] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To assess [18 F]AV-1451 tau-PET (positron emission tomography) uptake patterns across the primary progressive aphasia (PPA) variants (logopenic, semantic, and agrammatic), examine regional uptake patterns of [18 F]AV-1451 independent of clinical diagnosis, and compare the diagnostic utility of [18 F]AV-1451, [18 F]-fluorodeoxygluclose (FDG)-PET and MRI (magnetic resonance imaging) to differentiate the PPA variants. METHODS We performed statistical parametric mapping of [18 F]AV-1451 across 40 PPA patients (logopenic-PPA = 14, semantic-PPA = 13, and agrammatic-PPA = 13) compared to 80 cognitively normal, Pittsburgh compound B-negative controls, age and gender matched 2:1. Principal component analysis of regional [18 F]AV-1451 tau-PET standard uptake value ratio was performed to understand underlying patterns of [18 F]AV-1451 uptake independent of clinical diagnosis. Penalized multinomial regression analyses were utilized to assess diagnostic utility. RESULTS Logopenic-PPA showed striking uptake throughout neocortex, particularly temporoparietal, compared to controls, semantic-PPA, and agrammatic-PPA. Semantic-PPA and agrammatic-PPA showed milder patterns of focal [18 F]AV-1451 uptake. Semantic-PPA showed elevated uptake (left>right) in anteromedial temporal lobes, compared to controls and agrammatic-PPA. Agrammatic-PPA showed elevated uptake (left>right) throughout prefrontal white matter and in subcortical gray matter structures, compared to controls and semantic-PPA. The principal component analysis of regional [18 F]AV-1451 indicated two primary dimensions, a severity dimension that distinguished logopenic-PPA from agrammatic-PPA and semantic-PPA, and a frontal versus temporal contrast that distinguishes agrammatic-PPA and semantic-PPA cases. Diagnostic utility of [18 F]AV-1451was superior to MRI and at least equal to FDG-PET. INTERPRETATION [18 F]AV-1451binding characteristics differ across the PPA variants and were excellent at distinguishing between the variants. [18 F]AV-1451binding characteristics were as good or better than other brain imaging modalities utilized in clinical practice, suggesting that [18 F]AV-1451 may have clinical diagnostic utility in PPA. Ann Neurol 2018 Ann Neurol 2018;83:599-611.
Collapse
Affiliation(s)
- Keith A. Josephs
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Peter R. Martin
- Department of Health Science Research (Biostatistics), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Hugo Botha
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | | | - Joseph R. Duffy
- Department of Neurology (Speech pathology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Heather M. Clark
- Department of Neurology (Speech pathology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Mary M. Machulda
- Department of Psychiatry (Neuropsychology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Jonathan Graff-Radford
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Stephen D. Weigand
- Department of Health Science Research (Biostatistics), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Matthew L. Senjem
- Department of Information Technology, Mayo Clinic, Rochester, Minnesota, U.S.A
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Rene L. Utianski
- Department of Neurology (Speech pathology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Daniel A. Drubach
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Bradley F. Boeve
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - David T. Jones
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - David S. Knopman
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Ronald C. Petersen
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Clifford R. Jack
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Val J. Lowe
- Department of Radiology (Nuclear Medicine), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Jennifer L. Whitwell
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, Minnesota, U.S.A
| |
Collapse
|