1
|
Baratto L, Singh SB, Williams SE, Spunt SL, Rosenberg J, Adams L, Suryadevara V, Iv M, Daldrup-Link H. Detecting High-Dose Methotrexate-Induced Brain Changes in Pediatric and Young Adult Cancer Survivors Using [ 18F]FDG PET/MRI: A Pilot Study. J Nucl Med 2024; 65:864-871. [PMID: 38575193 PMCID: PMC11149594 DOI: 10.2967/jnumed.123.266760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Significant improvements in treatments for children with cancer have resulted in a growing population of childhood cancer survivors who may face long-term adverse outcomes. Here, we aimed to diagnose high-dose methotrexate-induced brain injury on [18F]FDG PET/MRI and correlate the results with cognitive impairment identified by neurocognitive testing in pediatric cancer survivors. Methods: In this prospective, single-center pilot study, 10 children and young adults with sarcoma (n = 5), lymphoma (n = 4), or leukemia (n = 1) underwent dedicated brain [18F]FDG PET/MRI and a 2-h expert neuropsychologic evaluation on the same day, including the Wechsler Abbreviated Scale of Intelligence, second edition, for intellectual functioning; Delis-Kaplan Executive Function System (DKEFS) for executive functioning; and Wide Range Assessment of Memory and Learning, second edition (WRAML), for verbal and visual memory. Using PMOD software, we measured the SUVmean, cortical thickness, mean cerebral blood flow (CBFmean), and mean apparent diffusion coefficient of 3 different cortical regions (prefrontal cortex, cingulate gyrus, and hippocampus) that are routinely involved during the above-specified neurocognitive testing. Standardized scores of different measures were converted to z scores. Pairs of multivariable regression models (one for z scores < 0 and one for z scores > 0) were fitted for each brain region, imaging measure, and test score. Heteroscedasticity regression models were used to account for heterogeneity in variances between brain regions and to adjust for clustering within patients. Results: The regression analysis showed a significant correlation between the SUVmean of the prefrontal cortex and cingulum and DKEFS-sequential tracking (DKEFS-TM4) z scores (P = 0.003 and P = 0.012, respectively). The SUVmean of the hippocampus did not correlate with DKEFS-TM4 z scores (P = 0.111). The SUVmean for any evaluated brain regions did not correlate significantly with WRAML-visual memory (WRAML-VIS) z scores. CBFmean showed a positive correlation with SUVmean (r = 0.56, P = 0.01). The CBFmean of the cingulum, hippocampus, and prefrontal cortex correlated significantly with DKEFS-TM4 (all P < 0.001). In addition, the hippocampal CBFmean correlated significantly with negative WRAML-VIS z scores (P = 0.003). Conclusion: High-dose methotrexate-induced brain injury can manifest as a reduction in glucose metabolism and blood flow in specific brain areas, which can be detected with [18F]FDG PET/MRI. The SUVmean and CBFmean of the prefrontal cortex and cingulum can serve as quantitative measures for detecting executive functioning problems. Hippocampal CBFmean could also be useful for monitoring memory problems.
Collapse
Affiliation(s)
- Lucia Baratto
- Division of Pediatric Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Shashi B Singh
- Division of Pediatric Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Sharon E Williams
- Child and Adolescent Psychiatry Clinic, Department of Psychiatry and Behavioral Sciences-Child and Adolescent Psychiatry and Child Development, Stanford University, Stanford, California
| | - Sheri L Spunt
- Department of Pediatrics-Hematology/Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, California
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University School of Medicine, Stanford University, Stanford, California; and
| | - Lisa Adams
- Division of Pediatric Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Vidyani Suryadevara
- Division of Pediatric Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Michael Iv
- Neuroimaging Division, Radiology Department, Stanford Health Care, Stanford University, Stanford, California
| | - Heike Daldrup-Link
- Division of Pediatric Radiology, Department of Radiology, Stanford University School of Medicine, Stanford, California;
- Department of Pediatrics-Hematology/Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, California
| |
Collapse
|
2
|
Bishay S, Robb WH, Schwartz TM, Smith DS, Lee LH, Lynn CJ, Clark TL, Jefferson AL, Warner JL, Rosenthal EL, Murphy BA, Hohman TJ, Koran MEI. Frontal and anterior temporal hypometabolism post chemoradiation in head and neck cancer: A real-world PET study. J Neuroimaging 2024; 34:211-216. [PMID: 38148283 DOI: 10.1111/jon.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Adverse neurological effects after cancer therapy are common, but biomarkers to diagnose, monitor, or risk stratify patients are still not validated or used clinically. An accessible imaging method, such as fluorodeoxyglucose positron emission tomography (FDG PET) of the brain, could meet this gap and serve as a biomarker for functional brain changes. We utilized FDG PET to evaluate which brain regions are most susceptible to altered glucose metabolism after chemoradiation in patients with head and neck cancer (HNCa). METHODS Real-world FDG PET images were acquired as standard of care before and after chemoradiation for HNCa in 68 patients. Linear mixed-effects voxelwise models assessed changes after chemoradiation in cerebral glucose metabolism quantified with standardized uptake value ratio (SUVR), covarying for follow-up time and patient demographics. RESULTS Voxelwise analysis revealed two large clusters of decreased glucose metabolism in the medial frontal and polar temporal cortices following chemoradiation, with decreases of approximately 5% SUVR after therapy. CONCLUSIONS These findings provide evidence that standard chemoradiation for HNCa can lead to decreased neuronal glucose metabolism, contributing to literature emphasizing the vulnerability of the frontal and anterior temporal lobes, especially in HNCa, where these areas may be particularly vulnerable to indirect radiation-induced injury. FDG PET shows promise as a sensitive biomarker for assessing these changes.
Collapse
Affiliation(s)
- Steven Bishay
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - W Hudson Robb
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Trent M Schwartz
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David S Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lok Hin Lee
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Cynthia J Lynn
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tammy L Clark
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeremy L Warner
- Department of Medicine, Brown University, Providence, Rhode Island, USA
- Lifespan Cancer Institute, Providence, Rhode Island, USA
| | - Eben L Rosenthal
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Barbara A Murphy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary Ellen I Koran
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Liu J, Tang M, Zhu D, Ruan G, Zou S, Cheng Z, Zhu X, Zhu Y. The remodeling of metabolic brain pattern in patients with extracranial diffuse large B-cell lymphoma. EJNMMI Res 2023; 13:94. [PMID: 37902852 PMCID: PMC10616001 DOI: 10.1186/s13550-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/22/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Owing to the advances in diagnosis and therapy, survival or remission rates for lymphoma have improved prominently. Apart from the lymphoma- and chemotherapy-related somatic symptom burden, increasing attention has been drawn to the health-related quality of life. The application of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) has been routinely recommended for the staging and response assessment of FDG-avid lymphoma. However, up till now, only a few researches have investigated the brain metabolic impairments in patients with pre-treatment lymphoma. The determination of the lymphoma-related metabolic brain pattern would facilitate exploring the tailored therapeutic regimen to alleviate not only the physiological, but also the psychological symptoms. In this retrospective study, we aimed to establish the diffuse large B-cell lymphoma-related pattern (DLBCLRP) of metabolic brain network and investigate the correlations between DLBCLRP and several indexes of the staging and response assessment. RESULTS The established DLBCLRP was characterized by the increased metabolic activity in bilateral cerebellum, brainstem, thalamus, striatum, hippocampus, amygdala, parahippocampal gyrus and right middle temporal gyrus and by the decreased metabolic activity in bilateral occipital lobe, parietal lobe, anterior cingulate gyrus, midcingulate cortex and medial frontal gyrus. Significant difference in the baseline expression of DLBCLRP was found among complete metabolic response (CMR), partial metabolic response (PMR) and progressive metabolic disease (PMD) groups (P < 0.01). DLBCLRP expressions were also significantly or tended to be positively correlated with international prognostic index (IPI) (rs = 0.306, P < 0.05), lg(total metabolic tumor volume, TMTV) (r = 0.298, P < 0.05) and lg(total lesion glycolysis, TLG) (r = 0.233, P = 0.064). Though no significant correlation of DLBCLRP expression was found with Ann Arbor staging or tumor SUVmax (P > 0.05), the post-treatment declines of DLBCLRP expression were significantly positively correlated with Ann Arbor staging (rs = 0.284, P < 0.05) and IPI (rs = 0.297, P < 0.05). CONCLUSIONS The proposed DLBCLRP would lay the foundation for further investigating the cerebral dysfunction related to DLBCL itself and/or treatments. Besides, the expression of DLBCLRP was associated with the tumor burden of lymphoma, implying a potential biomarker for prognosis.
Collapse
Affiliation(s)
- Junyi Liu
- Department of Nuclear Medicine and PET Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ming Tang
- Department of Nuclear Medicine and PET Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, China
| | - Dongling Zhu
- Department of Nuclear Medicine and PET Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ge Ruan
- Department of Radiology, Hospital, Hubei University, Wuhan, 430062, China
| | - Sijuan Zou
- Department of Nuclear Medicine and PET Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zhaoting Cheng
- Department of Nuclear Medicine and PET Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Yuankai Zhu
- Department of Nuclear Medicine and PET Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
4
|
Hu Y, Zhang Q, Cui C, Zhang Y. Altered Regional Brain Glucose Metabolism in Diffuse Large B-Cell Lymphoma Patients Treated With Cyclophosphamide, Epirubicin, Vincristine, and Prednisone: An Fluorodeoxyglucose Positron Emission Tomography Study of 205 Cases. Front Neurosci 2022; 16:914556. [PMID: 35784854 PMCID: PMC9240384 DOI: 10.3389/fnins.2022.914556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Background A growing number of neuroimaging studies reported that chemotherapy might impair brain functions, leading to persistent cognitive alterations in a subset of cancer patients. The present study aimed to investigate the regional brain glucose metabolism differences between diffuse large B cell lymphoma (DLBCL) patients treated with cyclophosphamide, epirubicin, vincristine, and prednisone and controls using positron emission tomography with 18F-labeled fluoro-2-deoxyglucose integrated with computed tomography (18F-FDG PET/CT) scanning. Methods We analyzed 18F-FDG PET data from 205 right-handed subjects (for avoiding the influence of handedness factors on brain function), including 105 post-chemotherapy DLBCL patients and 100 controls. The two groups had similar average age, gender ratio, and years of education. First, we compared the regional brain glucose metabolism using a voxel-based two-sample t-test. Second, we compared the interregional correlation. Finally, we investigated the correlations between the regional brain glucose metabolism and the number of chemotherapy cycles. Results Compared with the controls, the post-chemotherapy group showed higher metabolism in the right hippocampus and parahippocampal gyrus (region of interest (ROI) 1) and the left hippocampus (ROI 2), and lower metabolism in the left medial orbitofrontal gyrus (ROI 3), the left medial superior frontal gyrus (ROI 4), and the left superior frontal gyrus (ROI 5). The two groups had different interregional correlations between ROI 3 and ROI 5. In some brain regions—mainly located in the bilateral frontal gyrus—the number of chemotherapy cycles was positively correlated with the regional brain glucose metabolism. Meanwhile, in some bilateral hippocampus regions, these two parameters were negatively correlated. Conclusion The present study provides solid data on the regional brain glucose metabolism differences between post-chemotherapy DLBCL patients and controls. These results should improve our understanding of human brain functions alterations in post-chemotherapy DLBCL patients and suggest that 18F-FDG PET/CT scanning is a valuable neuroimaging technology for studying chemotherapy-induced brain function changes.
Collapse
Affiliation(s)
- Yuxiao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yuxiao Hu,
| | - Qin Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Qin Zhang,
| | - Can Cui
- Department of PET/CT Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Zhang
- Department of PET/CT Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Kesler SR, Sleurs C, McDonald BC, Deprez S, van der Plas E, Nieman BJ. Brain Imaging in Pediatric Cancer Survivors: Correlates of Cognitive Impairment. J Clin Oncol 2021; 39:1775-1785. [PMID: 33886371 DOI: 10.1200/jco.20.02315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shelli R Kesler
- School of Nursing, Department of Diagnostic Medicine, Dell School of Medicine, Livestrong Cancer Institutes, Austin, TX
| | - Charlotte Sleurs
- Department of Oncology, Catholic University of Leuven, Leuven, Belgium.,Leuven Cancer Institute, Leuven, Belgium
| | - Brenna C McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Center for Neuroimaging, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN
| | - Sabine Deprez
- Leuven Cancer Institute, Leuven, Belgium.,Department of Imaging and Pathology, Catholic University of Leuven, Leuven, Belgium
| | - Ellen van der Plas
- Department of Psychiatry, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Brian J Nieman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada.,Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
6
|
Lopez-Rodriguez MM, Fernández-Millan A, Ruiz-Fernández MD, Dobarrio-Sanz I, Fernández-Medina IM. New Technologies to Improve Pain, Anxiety and Depression in Children and Adolescents with Cancer: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3563. [PMID: 32438762 PMCID: PMC7277488 DOI: 10.3390/ijerph17103563] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022]
Abstract
Pain, anxiety, or depression are very prevalent in children and adolescents with cancer, which is a great challenge for health professionals. Several studies pointing out the positive effect of technology on the management of symptoms have been published in recent years. Considering these studies is important in order to reduce the negative impact on the quality of life of this population. This study aimed to analyze the available evidence and to describe the benefits of the new technologies in the treatment of pain, anxiety, and depression in children and adolescents with cancer. A systematic search using six electronic databases was conducted to identify studies using technological interventions with a focus on pain, anxiety, and depression that were published from 2008 to 2018 including oncology patients from 0-18 years old. Out of the 1261 studies that were identified, five studies met the inclusion criteria for this systematic review. Robots were used in two studies, providing amusement and social interventions that showed significant improvements. Virtual reality, a mobile application, and a videogame were used in three studies and obtained beneficial results in pain and anxiety. The studies included in this review suggest that new technologies can be used as an innovative form of non-pharmacological intervention with therapeutic benefits.
Collapse
Affiliation(s)
| | | | - María Dolores Ruiz-Fernández
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain; (M.M.L.-R.); (A.F.-M.); (I.D.-S.); (I.M.F.-M.)
| | | | | |
Collapse
|