1
|
Wang J, Zhou Z, Li Q, Zhang T, Fu Y. Nitrogen-doped carbon quantum dots as dual mode fluorescence sensors for the determination of food colorant quinoline yellow. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124285. [PMID: 38615416 DOI: 10.1016/j.saa.2024.124285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Quinoline yellow (QY), as a food coloring agent, will consume a large number of detoxifying substances in the body after being ingested by the human body, interfering with the normal metabolic functions of the human body, and may cause allergies, diarrhea and other symptoms, as well as a certain degree of carcinogenicity, posing a great threat to human health. As a result, it is critical to develop a fast, sensitive, and effective approach to determining quinoline yellow in food. In this study, carbon dots (N-CQDs) with high fluorescence quantum yield were prepared and used to determine the QY content using the dual mode of internal filtering effect and fluorescence emission shift detection. Both methods showed good linearity in the range of QY concentration of 0.3-3.2 μM, and the detection limits were classified as 2.6 nM and 0.18 μM. In addition, in order to achieve visual detection of QY, fluorescent test strips were constructed using the carbon dots and non-fluorescent qualitative filter paper to make the detection of QY more convenient. This probe presents a novel way for detecting quinoline yellow in food analysis.
Collapse
Affiliation(s)
- Jianghua Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China; Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, PR China
| | - Zhilin Zhou
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China; Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, PR China
| | - Qing Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China; Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, PR China
| | - Tong Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China; Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, PR China
| | - Yingqiang Fu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China; Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
2
|
Li F, Tang R, Kang Y, Cui X, Wang Y, Yang X. Fluorescent composite based on peptide nanotubes activating coumarin 6 for sensitive detection of new coccine in food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123492. [PMID: 37844452 DOI: 10.1016/j.saa.2023.123492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
New coccine (NC), as a kind of common colorant, has been frequently used in our daily life. Herein, the fluorescent composite (PNTs@C6) prepared by the hydrophobic non-covalent interaction between peptide nanotubes and coumarin 6 (C6) was designed for the determination of NC. Due to the activation of C6 by peptide nanotubes, the composite exhibits strong green fluorescence emission, which can be selectively quenched by NC through the inner filter effect. Therefore, a new fluorescent method based on the PNTs@C6 composite for NC detection was constructed. Under optimal conditions, the fluorescence quenching of the sensor exhibits a good linear relationship with the concentration of NC in the range of 0.01-10 μM and the limit of detection is 3.6 nM. Furthermore, the strategy shows simplicity, rapid response and high selectivity and has been successfully applied to the detection of NC in food samples.
Collapse
Affiliation(s)
- Fang Li
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Rong Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Yujie Kang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Xiaoyan Cui
- Nanchong Food and Drug Inspection Institute, Nanchong 637000, China
| | - Ya Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| |
Collapse
|
3
|
Bhaskar S. Biosensing Technologies: A Focus Review on Recent Advancements in Surface Plasmon Coupled Emission. MICROMACHINES 2023; 14:mi14030574. [PMID: 36984981 PMCID: PMC10054051 DOI: 10.3390/mi14030574] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 05/14/2023]
Abstract
In the past decade, novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF). Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher sensitivity rendered by augmented fluorescence signals. Recently, metallic thin films sustaining surface plasmon polaritons (SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). While the process parameters and conditions to realize optimum coupling efficiency between the radiating dipoles and the plasmon polaritons in SPCE framework have been extensively discussed, the utility of disruptive nano-engineering over the SPCE platform and analogous interfaces such as 'ferroplasmon-on-mirror (FPoM)' as well as an alternative technology termed 'photonic crystal-coupled emission (PCCE)' have been seldom reviewed. In light of these observations, in this focus review, the myriad nano-engineering protocols developed over the SPCE, FPoM and PCCE platform are succinctly captured, presenting an emphasis on the recently developed cryosoret nano-assembly technology for photo-plasmonic hotspot generation (first to fourth). These technologies and associated sensing platforms are expected to ameliorate the current biosensing modalities with better understanding of the biophysicochemical processes and related outcomes at advanced micro-nano-interfaces. This review is hence envisaged to present a broad overview of the latest developments in SPCE substrate design and development for interdisciplinary applications that are of relevance in environmental as well as biological heath monitoring.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Hameed EAA, Abd-ElHamid GH, El-Darder OM, Ibrahim AK, Salam RAA, Hadad GM, Abdelshakour MA. Fast Sensitive and Accurate Analysis of the Most Common Synthetic Food Colorants in 65 Egyptian Commercial Products Using New HPLC–DAD and UPLC-ESI–MS/MS Methods. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractOverexposure to food colorants above the allowed daily intake (ADI) level can provoke hyperactivity and other disturbed behaviors especially in children. Two new methods were developed to separate five synthetic colorants, which were Tartrazine (E102), Sunset Yellow (E110), Allura Red (E129), Carmoisine (E122), and Brilliant Blue (E133). They are labeled on a large variety of commercial food products in the Egyptian market without mentioning their definite concentrations. Therefore, there was a real need to determine these colorants with simple, accurate, and fast methods. This is the first study to determine these colorants in a wide variety of food products present in the Egyptian market. The HPLC approach with photodiode array detection was developed to quantify these colorants, on a C18 column, with a mobile phase composed of acetonitrile and water containing 1% ammonium acetate (pH 6.8), separation was carried out using a gradient program. The colorants were eluted and efficiently separated within 9 min. Then, as a complementary technique to HPLC, the UPLC-ESI–MS/MS approach was developed for identification and accurate mass measurement of the colorants found in high concentrations, the colorants were obtained simultaneously in negative mode, the run time was only 3 min. These developed methods were validated according to ICH recommendations and they were applied to analyze 65 food products including jelly powder, puddings, ice cream powders, concentrated soft drink powders, carbonated drinks, chewing gums, and sugar confectionery.
Collapse
|
5
|
Cross Talk between Synthetic Food Colors (Azo Dyes), Oral Flora, and Cardiovascular Disorders. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic food colors are important ingredients in the food industry. These synthetic food colorants are azo dyes, majorly acidic in nature such as Allura red and Tartrazine. They are present in sweets, carbonated drinks, meat products, and candies to attract the consumers. This review article is an attempt to explain the adverse effects of azo dyes and their association with oral cavities and cardiovascular disorders. These synthetic dyes (azo dyes) have staining effects on dentin. Poor dental care accelerates the bacterial accumulation on the dental crown (Gram-negative bacteria P. gingivalis, T. denticola, and T. forsythia and Gram-positive bacteria Strep. Gordonii), causing the washing of enamel, forming dental plaque. Bacterial pathogens (P. ginigivalis and F. nacleatum) release different chemicals (FadA and Fap2) that bind to protein on the cell by producing an inflammatory response through different line-host defenses, such as Gingival epithelial cells (ECs), Hemi-desmosomes, and desmosomes, which helps the bacterium migration from the cell–cell junction. This makes the junctions slightly open up and makes the whole vessel permeable, through which the bacterium enters into the blood stream line. This leads to different major arteries, such as the carotid artery, and causes the accumulation of plaque in major cardiac arteries, which causes different cardiovascular disorders. These bacterial species present in gums cause cardiovascular diseases, such as ischemic heart disease, coronary artery disease, heart attacks and strokes, and arrhythmias, which can lead to death.
Collapse
|
6
|
Lv R, Sun R, Du T, Li Y, Chen L, Zhang Y, Qi Y. Cu 2+ modified Zr-based metal organic framework-CTAB-graphene for sensitive electrochemical detection of sunset yellow. Food Chem Toxicol 2022; 166:113250. [PMID: 35750088 DOI: 10.1016/j.fct.2022.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 06/17/2022] [Indexed: 10/18/2022]
Abstract
A sensitive electrochemical sensor for sunset yellow (SY) was constructed based on cetyltrimethylammonium bromide (CTAB) functionalized graphene (Gr) and Cu/Zr-MOF electrode modified materials. The CTAB-Gr-Cu/Zr-MOF composites were synthesized by using a mild method and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and EDX spectrum. The combination of Cu/Zr-MOF and graphene exhibited synergetic effect of the strong accumulation efficiency, fast electron transfer rate and more sensing sites towards the oxidation of SY. The new modified materials remarkably increased the electrochemical response of SY to 6.53-fold when comparing with bare electrode. Under the optimized conditions, the oxidation peak currents of SY had a linear relationship with its concentration in a wide range from 0.10 to 8.00 μM and 40.00-1000.00 μM, and the limit of detection was 6.68 nM (S/N = 3). The electrochemical method shows high sensitivity, stability, reproducibility and is successfully applied in the determination of SY in soft drinks.
Collapse
Affiliation(s)
- Ruijuan Lv
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Ruimeng Sun
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Ting Du
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yuhan Li
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Lixia Chen
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yang Zhang
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
7
|
Zhang CE, Liao R, Liu X, Sun Y, Tian J. Application of sodium bicarbonate in extraction and determination of synthetic colorant in processed grain products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1855-1864. [PMID: 35531398 PMCID: PMC9046480 DOI: 10.1007/s13197-021-05199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/25/2020] [Accepted: 07/02/2021] [Indexed: 05/03/2023]
Abstract
As the only standard of its kind, GB5009.35-2016 provides the determination of water-soluble synthetic colorants in processed grain products with high starch content for the purpose of food safety risk monitoring. However, it's only applicable to candy products and liquid foods as beverages, but not solid grain products. Extraction is a critical and essential step in the overall analytical process for determination. This paper provides an improved method for extraction of synthetic colorants in food products presenting high starch content. The samples were successively extracted with methanol-water (4:6, v/v) containing 2.7% sodium bicarbonate, and the target analytes were purified by solid phase extraction column. The obtained eluent was concentrated in constant volume, separated by ODS-SP C18 column and determined by diode array detector. The limits of detection were in the range of 2.21 ~ 8.62 ng/mL for 6 synthetic colors. The average recoveries at the spiked levels of 10, 30, 50 μg/kg varied in the range of 79.3 ~ 101.4% with RSD (n = 6) around 0.2 ~ 6.7%. The developed sodium bicarbonate based extraction method was successfully applied to speciation analysis of water soluble azo synthetic colorant in starchy food, such as millet, grits, brown rice, rice flour, cornmeal and cornflakes. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05199-x.
Collapse
Affiliation(s)
- Chun-e Zhang
- Ningxia Hui Autonomous Region Grain and Oil Product Quality Inspection Center, 101 West Shanghai Road, Jinfeng Yinchuan, 750001 Ningxia China
| | - Ruoyu Liao
- Ningxia Hui Autonomous Region Grain and Oil Product Quality Inspection Center, 101 West Shanghai Road, Jinfeng Yinchuan, 750001 Ningxia China
| | - Xinbao Liu
- Ningxia Hui Autonomous Region Grain and Oil Product Quality Inspection Center, 101 West Shanghai Road, Jinfeng Yinchuan, 750001 Ningxia China
| | - Yue Sun
- Ningxia Hui Autonomous Region Grain and Oil Product Quality Inspection Center, 101 West Shanghai Road, Jinfeng Yinchuan, 750001 Ningxia China
| | - Jianwen Tian
- NingXia Academy of Agricultural and Forestry Sciences, 590 Huanghe East Road, Jinfeng Yinchuan, 750001 Ningxia China
- Ningxia University, Helan Mountain West Road, Xixia District, Yinchuan, 750001 Ningxia China
| |
Collapse
|
8
|
Liu L, Mi Z, Huo X, Yuan L, Bao Y, Liu Z, Feng F. A label-free fluorescence nanosensor based on nitrogen and phosphorus co-doped carbon quantum dots for ultra-sensitive detection of new coccine in food samples. Food Chem 2022; 368:130829. [PMID: 34411858 DOI: 10.1016/j.foodchem.2021.130829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/22/2023]
Abstract
In this paper, an innovative method for the sensitive detection of new coccine using N, P-doped carbon quantum dots (N,P-CQDs) as fluorescent nanosensor is reported for the first time. The sensing mechanism is based on the fluorescence quenching of N,P-CQDs by new coccine through inner filter effect (IFE). N,P-CQDs were prepared by simple hydrothermal treatment of citric acid, phosphoric acid and ethylenediamine. Under the optimal conditions, the new coccine has two good linear responses in the concentration range of 0.2-100 and 100-200 μM, and the detection limits are as low as 24.8 and 9.4 nM, respectively. Our developed nanosensor has been successfully used for the determination of new coccine in food samples with good precision and high accuracy. This work highlights the economic, rapid, simple, selective and ultra-sensitive for new coccine detection, and opens up a new way for the monitoring of new coccine in actual food samples.
Collapse
Affiliation(s)
- Lizhen Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Zhi Mi
- Shanxi Datong University, Datong 037009, PR China.
| | - Xingyan Huo
- Shanxi Normal University, Linfen 041004, PR China
| | - Lin Yuan
- Shanxi Datong University, Datong 037009, PR China
| | - Yayan Bao
- Shanxi Datong University, Datong 037009, PR China
| | - Zhixiong Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- Shanxi Datong University, Datong 037009, PR China.
| |
Collapse
|
9
|
Surface oxygen plasma modification of screen-printed carbon electrode for quantitative determination of sunset yellow and tartrazine in foods. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03927-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Mohseni-Shahri FS, Moeinpour F, Verdian A. A cationic surfactant-decorated liquid crystal-based sensor for sensitive detection of quinoline yellow. Sci Rep 2021; 11:24264. [PMID: 34930995 PMCID: PMC8688477 DOI: 10.1038/s41598-021-03788-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022] Open
Abstract
Quinoline yellow (QY) is one of the popular synthetic food colorants and in food industry greatly used. Developing accurate and simple QY detection procedures is of major considerable importance in ensuring food safety. Hence, it is important to detect this food colorant effectively to reduce risk. Herein, an innovative liquid crystal (LC)-based sensor was designed for the label-free and ultra-sensitive detecting of the QY by means of a cationic surfactant-decorated LC interface. The nematic liquid crystal in touch with CTAB revealed a homeotropic alignment, when QY was injected into the LC-cell, the homeotropic alignment consequently altered to a planar one by electrostatic interactions between QY and CTAB. The designed LC-based sensor detected QY at the too much trace level as low as 0.5 fM with analogous selectivity. The suggested LC-based sensor is a rapid, convenient and simple procedure for label-free detection of QY in food industrial and safety control application.
Collapse
Affiliation(s)
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
11
|
Su K, Xiang G, Jin X, Wang X, Jiang X, He L, Zhao W, Sun Y, Cui C. Gram-scale synthesis of nitrogen-doped carbon dots from locusts for selective determination of sunset yellow in food samples. LUMINESCENCE 2021; 37:118-126. [PMID: 34716643 DOI: 10.1002/bio.4152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/06/2022]
Abstract
Locust powder was converted into water-soluble fluorescent nitrogen-doped carbon dots (N-CDs) with gram-scale yield through a self-exothermic reaction between nitric acid and diethylenetriamine (DETA) within 10 min. The morphology, elemental information, and optical properties of the N-CDs were characterized using high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared, ultraviolet-visible and fluorescence spectroscopy. Spectroscopic investigation indicated that the fluorescence emission behaviour of N-CDs is excitation wavelength dependent, with the strongest emission peak at 470 nm using a 390 nm excitation wavelength. The strong absorption peak of sunset yellow (SY) at 482 nm overlaps substantially with the blue emission peak (470 nm) of N-CDs. This enables the fluorescence emission of N-CDs to be obviously quenched by SY through the inner filter effect. There was a good linear relationship between the fluorescence quenching degree and the concentrations of SY within the range 0.5-40 μM. The detection limit of developed fluorescence assay for SY is 28 nM, and the relative standard deviation is 2.3% (c = 10 μM). The N-CDs derived from locusts by the self-exothermic reaction are highly selective and sensitive fluorescent probes for SY, which were applied to the fluorescence sensing of SY in different food samples with satisfactory results.
Collapse
Affiliation(s)
- Ke Su
- School of chemistry and chemical engineering, Henan University of Technology, Zhengzhou, China
| | - Guoqiang Xiang
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, Henan University of Technology, Zhengzhou, China.,School of chemistry and chemical engineering, Henan University of Technology, Zhengzhou, China
| | - Xinrong Jin
- School of chemistry and chemical engineering, Henan University of Technology, Zhengzhou, China
| | - Xin Wang
- School of chemistry and chemical engineering, Henan University of Technology, Zhengzhou, China
| | - Xiuming Jiang
- School of chemistry and chemical engineering, Henan University of Technology, Zhengzhou, China
| | - Lijun He
- School of chemistry and chemical engineering, Henan University of Technology, Zhengzhou, China
| | - Wenjie Zhao
- School of chemistry and chemical engineering, Henan University of Technology, Zhengzhou, China
| | - Yaming Sun
- School of chemistry and chemical engineering, Henan University of Technology, Zhengzhou, China
| | - Chen Cui
- School of chemistry and chemical engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
12
|
Chung SWC. Quantification of permitted synthetic colours in food by liquid chromatographic methods: a review on analytical methods and their performance. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1636-1655. [PMID: 34238126 DOI: 10.1080/19440049.2021.1949496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Colours, natural and synthetic, are substances which add or restore colour to a food after processing or storage. They are widely used by food manufacturers but may pose a potential risk to human health. Most food safety authorities set up regulations to limit the use of synthetic colours, and monitor their levels and consumption by the general public. Therefore, validated analytical methods are needed to fulfil this requirement. This review presents a comprehensive overview of various liquid chromatographic methods used for quantification of permitted synthetic colours in foods. Available analytical methods have been assessed for their fitness for purpose in terms of extraction, clean-up, liquid chromatographic separation, quantification and method performance. The advantages and disadvantages are given of available analytical methods for analysing 24 synthetic colours, permitted for use by different jurisdictions. Gaps in the knowledge and levels of validation are identified and recommendations made on further research to develop suitable methods for routine monitoring of these permitted synthetic colours.
Collapse
Affiliation(s)
- Stephen W C Chung
- Independent Researcher, Formerly with the Food Research Laboratory, Centre for Food Safety, Hong Kong, China
| |
Collapse
|
13
|
Han Q, Sun Y, Shen K, Yan Y, Kang X. Rapid determination of seven synthetic dyes in casual snacks based on packed-fibers solid-phase extraction coupled with HPLC-DAD. Food Chem 2021; 347:129026. [PMID: 33465694 DOI: 10.1016/j.foodchem.2021.129026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 11/18/2022]
Abstract
Based on packed-fiber solid-phase extraction and HPLC-DAD, a simple analytical method for the determination of seven synthetic dyes has been successfully developed. Polystyrene/polypyrrole (PS/PPy) fibers were obtained via electro-spinning of polystyrene skeletal nanofibers, followed by the oxidation with FeCl3 to trigger the polymerization of pyrrole and the deposition of polypyrrole coatings on PS fibrous skeleton fibers. The relationship between the extraction performance of the fibers and the electrospinning process at different humidities was investigated based on morphologic study and BET surface area. In the extraction process, purification, concentration, and desorption could be accomplished in one step. The established method exhibited good sensitivity, selectivity, reproducibility, and good efficiency for synthetic dyes in casual snacks (preserved fruit, flavored yogurt, and fruity hard candy) samples. With optimal conditions, the LODs (S/N = 3) were 2.4 to 21.09 ng mL-1, and linearities were acceptable in liquid matrix and solid matrices. The recoveries were 93.9-103.9%.
Collapse
Affiliation(s)
- Qing Han
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center For Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ying Sun
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center For Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Kangwei Shen
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center For Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Yan
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education), School of Public Health, Southeast University, Nanjing 210096, China
| | - Xuejun Kang
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center For Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
14
|
Wu L, Pu H, Huang L, Sun DW. Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food. Food Chem 2020; 328:127105. [PMID: 32464556 DOI: 10.1016/j.foodchem.2020.127105] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 11/29/2022]
Abstract
Synthetic dyes have been widely applied to food processing, but abuse of colourants in food may pose risks to human health. To analyze new coccine (NC) and orange II (OII) in food, a versatile surface-enhanced Raman scattering (SERS) platform was proposed. A metal-organic framework (MOF, UiO-66(NH2)) with octahedral crystal structure was synthesized and gold nanoparticles were grown on the MOF surface to fabricate UiO-66(NH2)@Au versatile SERS platform. The UiO-66(NH2)@Au displayed much better SERS performance than gold nanoparticles with high R2 of 0.9684 for NC and 0.9912 for OII and low LOD of 0.4015 mg/L for NC and 0.0546 mg/L for OII. The recoveries of NC and OII in Mirinda soft drink and paprika ranged from 82.92 to 109.63%. This study provided a sensitive and rapid method for determination of NC and OII through UiO-66(NH2)@Au, and the proposed SERS platform revealed great potential for analyzing synthetic colourants in food samples.
Collapse
Affiliation(s)
- Leilei Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland. http://www.ucd.ie/refrig
| |
Collapse
|
15
|
Oymak T, Tokalıoğlu Ş, Cam Ş, Demir S. Determination of color additive tartrazine (E 102) in food samples after dispersive solid phase extraction with a zirconium-based metal-organic framework (UiO-66(Zr)-(COOH) 2). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:731-741. [PMID: 32083510 DOI: 10.1080/19440049.2020.1726501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A new and rapid dispersive solid phase extraction method by using a green-synthesised UiO-66(Zr)-(COOH)2 (Zr-BTeC) adsorbent with body-centred cubic (bcu) topology was developed for determination of tartrazine in food samples. Zr-BTeC was used for the first time as an adsorbent for tartrazine. It was synthesised and characterised by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller surface area analysis, and zeta potential measurements. Tartrazine was determined at 405 nm spectrophotometrically. Experimental conditions were optimised in order to achieve quantitative recoveries. The sample acidity was found to be 0.02 mol L-1 HCl. The amount of Zr-BTeC was 10 mg. Both adsorption and elution contact times were only 5 s without the need for vortexing. Elution was with 2 mL of 0.5 mol L-1 NH3. A sample volume of 45 mL was selected as optimum. The adsorption capacity for tartrazine with Zr-BTeC was found to be 185 mg g-1 and the adsorbent was reusable up to 40 cycles. The tartrazine concentrations found by the developed method in food supplements were compared with the results obtained by HPLC method for the same samples. Statistical analysis results showed that there are insignificant differences between the results of the two methods (p = .05). The method was successfully applied to the determination of tartrazine in spiked chewing gums, lemon flavoured icing glaze, and jelly samples.
Collapse
Affiliation(s)
- Tülay Oymak
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Şerife Tokalıoğlu
- Faculty of Science, Chemistry Department, Erciyes University, Kayseri, Turkey
| | - Şafak Cam
- Faculty of Arts and Sciences, Chemistry Department, Recep Tayyip Erdogan University, Rize, Turkey
| | - Selçuk Demir
- Faculty of Arts and Sciences, Chemistry Department, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
16
|
Ntrallou K, Gika H, Tsochatzis E. Analytical and Sample Preparation Techniques for the Determination of Food Colorants in Food Matrices. Foods 2020; 9:E58. [PMID: 31936025 PMCID: PMC7022967 DOI: 10.3390/foods9010058] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 11/20/2022] Open
Abstract
Color additives are widely used by the food industry to enhance the appearance, as well as the nutritional properties of a food product. However, some of these substances may pose a potential risk to human health, especially if they are consumed excessively and are regulated, giving great importance to their determination. Several matrix-dependent methods have been developed and applied to determine food colorants, by employing different analytical techniques along with appropriate sample preparation protocols. Major techniques applied for their determination are chromatography with spectophotometricdetectors and spectrophotometry, while sample preparation procedures greatly depend on the food matrix. In this review these methods are presented, covering the advancements of existing methodologies applied over the last decade.
Collapse
Affiliation(s)
- Konstantina Ntrallou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- BIOMIC AUTH Center for Interdisciplinary Research of the Aristotle University of Thessaloniki, Innovation Area of Thessaloniki, 57001 Thermi, Greece
| | - Emmanouil Tsochatzis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- BIOMIC AUTH Center for Interdisciplinary Research of the Aristotle University of Thessaloniki, Innovation Area of Thessaloniki, 57001 Thermi, Greece
| |
Collapse
|
17
|
Dubenska L, Dmukhailo A, Tvorynska S, Rydchuk P, Dubenska L. Synthetic Food Dyes – Some Aspects Of Use And Methods Of Determination. ACTA ACUST UNITED AC 2020. [DOI: 10.17721/moca.2020.5-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Color is one of the key ingredients for increasing the appetizing of food, so food dyes have become firmly established in food production technologies. However, with the acquisition of toxicity data of synthetic food dyes (SFD), there were restrictions and standards for their content in food have emerged. Numerous papers published in recent years demonstrate the importance of the problem of the use and definition of SFD. The review contains over 180 literary references in the field of usage and methods of determination of synthetic food dyes, among them regulatory documents (regulations), official internet resources of international and Ukrainian organizations, review articles and original works. Varieties of chromatography, enzyme-linked immunoassay, optical and electrochemical methods are used to identify and determine SFD. Special attention was paid to voltammetry (VA) as a method that is cheaper than chromatography and completely satisfies selectivity, sensitivity, reliability requirements and is compatible with the concept of green analytical chemistry, as it doesn't need organic solvents. Moreover, single sweep voltammetry can be considered as a screening method with low limits of determination and rapid respons
Collapse
|
18
|
Construction of effective electrochemical sensor for the determination of quinoline yellow based on different morphologies of manganese dioxide functionalized graphene. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103280] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Liu W, Liu J, Zhang Y, Chen Y, Yang X, Duan L, Dharmarajan R, Wang X, Li L. Simultaneous determination of 20 disperse dyes in foodstuffs by ultra high performance liquid chromatography-tandem mass spectrometry. Food Chem 2019; 300:125183. [PMID: 31336276 DOI: 10.1016/j.foodchem.2019.125183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 11/18/2022]
Abstract
A reasonable, high sensitive and accurate analytical method for the determination of 20 allergenic disperse dyes in foodstuffs was developed and validated. The obtained results showed that an ultra high liquid performance chromatography system - equipped with tandem quadrupole mass spectrometry (UHPLC-MS/MS) proved to be ideal for the selected method enabling multidimensional processing of the samples. Under optimized conditions, validation results showed excellent linearity (5-1000 µg/L, r2 ≥ 0.997), limits of detection (LODs, 1.1-10.8 μg/kg), recoveries (60.2-110.3%) and precision (RSDs ≤ 12.6%) for the twenty disperse dyes under investigation. The developed method was successfully applied to the analysis of 20 disperse dyes in real foodstuffs demonstrating the validity and applicability of the current method for continuing monitoring of the selected dyes. The proposed UHPLC-MS/MS is thus proved to be a convenient, effective, sensitive and timesaving method for the isolation and determination of allergenic disperse dyes in edible packaging and other foodstuffs.
Collapse
Affiliation(s)
- Weiguo Liu
- College of Resources and Environment Science, Xinjiang University, Urumqi, China; Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi, China
| | - Jun Liu
- Department of Technology, Xinjiang Entry-Exit Inspection and Quarantine Bureau, Urumqi, China.
| | - Yu Zhang
- School of Environment Science and Engineering, Tongji University, Shanghai, China
| | - Yinguang Chen
- College of Resources and Environment Science, Xinjiang University, Urumqi, China; School of Environment Science and Engineering, Tongji University, Shanghai, China
| | - Xiaodong Yang
- College of Resources and Environment Science, Xinjiang University, Urumqi, China; Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi, China
| | - Luchun Duan
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rajarathnam Dharmarajan
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Xiyuan Wang
- College of Resources and Environment Science, Xinjiang University, Urumqi, China; Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi, China
| | - Lan Li
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education, Xinjiang University, Urumqi, China
| |
Collapse
|
20
|
Üstün Özgür M, Kasapoğlu M. Development and Validation of a Simple Ultra Fast Liquid Chromatographic Method for the Simultaneous Determination of Aspartame, Acesulfame-K, Caffeine and Sodium Benzoate in Dietic Soft Drinks. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819060133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Zhang X, Zhang J, Li W, Yang Y, Qin P, Zhang X, Lu M. Magnetic graphene oxide nanocomposites as the adsorbent for extraction and pre-concentration of azo dyes in different food samples followed by high-performance liquid chromatography analysis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2099-2110. [PMID: 30352014 DOI: 10.1080/19440049.2018.1526415] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This work presents a method of magnetic solid-phase extraction (MSPE) combined with high-performance liquid chromatography (HPLC) to analyse five synthetic azo dyes (tartrazine, amaranth, carmine, sunset yellow, allura red) in different food samples. The magnetic graphene oxide nanocomposite (GO@Fe3O4) was prepared by a one-step solvothermal method and used as the sorbent for extraction and pre-concentration of azo dyes in food samples. The as-prepared GO@Fe3O4 nanocomposite was characterised by transmission electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and Brunuer-Emmett-Teller analysis. The extraction and desorption parameters were investigated, including the material amount, extraction time, pH of the solution, desorption temperature, and desorption solvents. Under the optimised conditions, the limits of detection (LODs) were 1.14-2.23, 0.36-0.77 and 0.68-1.26 ng/g for candy, jelly, and plum candy, respectively. The limits of quantification (LOQs) were 4.02-7.73, 1.21-2.50 and 2.31-4.20 ng/g for candy, jelly, and plum candy, respectively. For the analysis of spiked jelly, recoveries were between 73.2% and 107.7%, with RSDs lower than 1.34 %. The developed method was successfully applied to the analysis of real samples including jelly, candy and plum candy.
Collapse
Affiliation(s)
- Xiaoting Zhang
- a Institute of Environmental and Analysis Science , School of Chemistry and Chemical Engineering, Henan University , Kaifeng Henan , China
| | - Jing Zhang
- a Institute of Environmental and Analysis Science , School of Chemistry and Chemical Engineering, Henan University , Kaifeng Henan , China
| | - Wenqi Li
- a Institute of Environmental and Analysis Science , School of Chemistry and Chemical Engineering, Henan University , Kaifeng Henan , China
| | - Yixin Yang
- a Institute of Environmental and Analysis Science , School of Chemistry and Chemical Engineering, Henan University , Kaifeng Henan , China
| | - Peige Qin
- a Institute of Environmental and Analysis Science , School of Chemistry and Chemical Engineering, Henan University , Kaifeng Henan , China
| | - Xuebin Zhang
- b Key laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology , School of Life Sciences, Henan University , Kaifeng China
| | - Minghua Lu
- a Institute of Environmental and Analysis Science , School of Chemistry and Chemical Engineering, Henan University , Kaifeng Henan , China
| |
Collapse
|
22
|
Determination of food colorants in a wide variety of food matrices by microemulsion electrokinetic capillary chromatography. Considerations on the found concentrations and regulated consumption limits. Food Chem 2018; 262:129-133. [DOI: 10.1016/j.foodchem.2018.04.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 04/12/2018] [Accepted: 04/21/2018] [Indexed: 10/17/2022]
|
23
|
Simultaneous densitometric determination of eight food colors and four sweeteners in candies, jellies, beverages and pharmaceuticals by normal-phase high performance thin-layer chromatography using a single elution protocol. J Chromatogr A 2018; 1572:152-161. [DOI: 10.1016/j.chroma.2018.08.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 01/01/2023]
|
24
|
Chen X, Yin J, Zhang C, Lu N, Chen Z. Determination of Brilliant Blue FCF by a Novel Solid-state ECL Quenching Sensor of Ru(bpy) 32+-poly(sulfosalicylic acid)/GCE. ANAL SCI 2018; 33:1123-1128. [PMID: 28993585 DOI: 10.2116/analsci.33.1123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel solid-state electrochemiluminescence (ECL) quenching sensor was constructed for determination of brilliant blue FCF (BB FCF). Under a simple electropolymerization step, poly(sulfosalicylic acid) (PSSA) film attached luminophore Ru(bpy)32+ was successfully formed on the surface of a glass carbon electrode [Ru(bpy)32+-PSSA/GCE], which exhibited excellent ECL behavior. A high quenching effect on the ECL signal of the Ru(bpy)32+-PSSA/GCE was obtained with the presence of low concentration of BB FCF. Moreover, the quenched ECL intensity showed a linear relation within the BB FCF concentration range of 0.5 - 7 and 7 - 10 μmol/L, with a detection limit of 57 nmol/L (S/N = 3). Besides, Ru(bpy)32+-PSSA/GCE exhibited good reproducibility and was successfully applied in the practical detection of BB FCF in peppermint candy samples.
Collapse
Affiliation(s)
- Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Vocational Institute of Engineering
| | - Jiahao Yin
- School of Materials Science & Engineering, Changzhou University
| | - Chao Zhang
- School of Materials Science & Engineering, Changzhou University
| | - Nian Lu
- School of Materials Science & Engineering, Changzhou University
| | - Zhidong Chen
- School of Materials Science & Engineering, Changzhou University
| |
Collapse
|
25
|
Dinç Zor Ş, Aksu Dönmez Ö. A Facile HPLC-PDA Method for Simultaneous Determination of Paracetamol, Methyl Paraben, Sunset Yellow and Carmosine in Oral Suspensions. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.403497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
26
|
A Core-Shell Column Approach to Fast Determination of Synthetic Dyes in Foodstuffs by High-Performance Liquid Chromatography. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-017-1138-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Yang H, Ran G, Yan J, Zhang H, Hu X. A sensitive fluorescence quenching method for the detection of tartrazine with acriflavine in soft drinks. LUMINESCENCE 2017; 33:349-355. [DOI: 10.1002/bio.3420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Huan Yang
- Key Laboratory of Luminescent and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
| | - Guihua Ran
- Key Laboratory of Luminescent and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
| | - Jingjing Yan
- Key Laboratory of Luminescent and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
| | - Hui Zhang
- Key Laboratory of Luminescent and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
| | - Xiaoli Hu
- Key Laboratory of Luminescent and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
| |
Collapse
|
28
|
Šuleková M, Smrčová M, Hudák A, Heželová M, Fedorová M. Organic Colouring Agents in the Pharmaceutical Industry. FOLIA VETERINARIA 2017. [DOI: 10.1515/fv-2017-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract
Food dyes are largely used in the process of manufacturing pharmaceutical products. The aim of such a procedure is not only to increase the attractiveness of products, but also to help patients distinguish between pharmaceuticals. Various dyes, especially organic colouring agents, may in some cases have a negative impact on the human body. They are incorporated into pharmaceutical products including tablets, hard gelatine capsules or soft gelatine capsules, lozenges, syrups, etc. This article provides an overview of the most widely used colouring agents in pharmaceuticals, their characteristics and the EU legislation which regulates their use.
Collapse
Affiliation(s)
- M. Šuleková
- Department of Chemistry, Biochemistry and Biophysics, Institute of Pharmaceutical Chemistry , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| | - M. Smrčová
- Department of Chemistry, Biochemistry and Biophysics, Institute of Pharmaceutical Chemistry , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| | - A. Hudák
- Department of Chemistry, Biochemistry and Biophysics, Institute of Pharmaceutical Chemistry , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| | - M. Heželová
- Faculty of Metallurgy, Institute of Recycling Technologies , Technical University in Košice , Letná 9, 042 00 Košice , Slovakia
| | - M. Fedorová
- Department of Pharmacy and Social Pharmacy , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| |
Collapse
|
29
|
Tikhomirova TI, Ramazanova GR, Apyari VV. Adsorption preconcentration of synthetic anionic food dyes. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817090118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Tikhomirova TI, Ramazanova GR, Apyari VV. A hybrid sorption – Spectrometric method for determination of synthetic anionic dyes in foodstuffs. Food Chem 2017; 221:351-355. [DOI: 10.1016/j.foodchem.2016.10.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/25/2016] [Accepted: 10/10/2016] [Indexed: 11/26/2022]
|
31
|
Oplatowska-Stachowiak M, Elliott CT. Food colors: Existing and emerging food safety concerns. Crit Rev Food Sci Nutr 2017; 57:524-548. [PMID: 25849411 DOI: 10.1080/10408398.2014.889652] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Food colors are added to different types of commodities to increase their visual attractiveness or to compensate for natural color variations. The use of these additives is strictly regulated in the European Union, the United States, and many other countries worldwide. There is a growing concern about the safety of some commonly used legal food colorants and there is a trend to replace the synthetic forms with natural products. Additionally, a number of dyes with known or suspected genotoxic or carcinogenic properties have been shown to be added illegally to foods. Robust monitoring programs based on reliable detection methods are required to assure the food is free from harmful colors. The aim of this review is to present an up to date status of the various concerns arising from use of color additives in food. The most important food safety concerns in the field of food colors are lack of uniform regulation concerning legal food colors worldwide, possible link of artificial colors to hyperactive behavior, replacement of synthetic colors with natural ones, and the presence of harmful illegal dyes-both known but also new, emerging ones in food. The legal status of food color additives in the EU, United States, and worldwide is summarized. The reported negative health effects of both legal and illegal colors are presented. The European Rapid Alert System for Food and Feed notifications and US import alerts concerning food colors are analyzed and trends in fraudulent use of color additives identified. The detection methods for synthetic colors are also reviewed.
Collapse
Affiliation(s)
| | - Christopher T Elliott
- a Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast , Belfast , United Kingdom
| |
Collapse
|
32
|
Rovina K, Siddiquee S, Shaarani SM. A Review of Extraction and Analytical Methods for the Determination of Tartrazine (E 102) in Foodstuffs. Crit Rev Anal Chem 2017; 47:309-324. [PMID: 28128965 DOI: 10.1080/10408347.2017.1287558] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tartrazine is an azo food dye, which is orange-colored and water soluble. It is usually used in foods, pharmaceuticals, cosmetics, and textiles. Tartrazine has the potential to cause an adverse health effect on humans, such as hyperactivity in children, allergy, and asthma. Joint FAO/WHO Expert Committee on Food Additive and EU Scientific Committee for Food have standardized the acceptable daily intake for tartrazine that is 7.5 mg kg-1 body weight. Many researchers have detected the presence of tartrazine for monitoring the quality and safety of food products. In this review paper, we highlighted various tartrazine detection and extraction methods. Some of the analytical methods are available such as high-performance liquid chromatography, electrochemical sensor, thin-layer chromatography, spectrophotometry, capillary electrophoresis, and liquid chromatography-tandem mass spectrometry. Also, we discuss following extraction steps: liquid-liquid extraction, solid-phase extraction, membrane filtration, cloud point extraction, and other extraction method. In addition, a brief overview is presented explaining the synthesis process and metabolism of tartrazine and the maximum permitted level in different countries. This review paper will give an insight into different extraction and analytical methods for the determination of tartrazine in healthy foods, which will attract the attention of public toward food safety and quality, and also the interest of food industry and government bodies.
Collapse
Affiliation(s)
- Kobun Rovina
- a Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS , Sabah , Malaysia.,b Faculty of Food Science and Nutrition , Universiti Malaysia Sabah, Jalan UMS , Sabah , Malaysia
| | | | - Sharifudin Md Shaarani
- b Faculty of Food Science and Nutrition , Universiti Malaysia Sabah, Jalan UMS , Sabah , Malaysia
| |
Collapse
|
33
|
Rovina K, Prabakaran PP, Siddiquee S, Shaarani SM. Methods for the analysis of Sunset Yellow FCF (E110) in food and beverage products- a review. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Rovina K, Acung LA, Siddiquee S, Akanda JH, Shaarani SM. Extraction and Analytical Methods for Determination of Sunset Yellow (E110)—a Review. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0645-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Yaripour S, Mohammadi A, Nojavan S. Electromembrane extraction of tartrazine from food samples: Effects of nano-sorbents on membrane performance. J Sep Sci 2016; 39:2642-51. [DOI: 10.1002/jssc.201600071] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Saeid Yaripour
- Department of Drug and Food Control, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Ali Mohammadi
- Department of Drug and Food Control, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
- Nanotechnology Research Centre, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Saeed Nojavan
- Faculty of Chemistry; Shahid Beheshti University; Evin Tehran Iran
| |
Collapse
|
36
|
Rovina K, Siddiquee S, Shaarani SM. Extraction, Analytical and Advanced Methods for Detection of Allura Red AC (E129) in Food and Beverages Products. Front Microbiol 2016; 7:798. [PMID: 27303385 PMCID: PMC4882322 DOI: 10.3389/fmicb.2016.00798] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 05/11/2016] [Indexed: 11/30/2022] Open
Abstract
Allura Red AC (E129) is an azo dye that widely used in drinks, juices, bakery, meat, and sweets products. High consumption of Allura Red has claimed an adverse effects of human health including allergies, food intolerance, cancer, multiple sclerosis, attention deficit hyperactivity disorder, brain damage, nausea, cardiac disease and asthma due to the reaction of aromatic azo compounds (R = R′ = aromatic). Several countries have banned and strictly controlled the uses of Allura Red in food and beverage products. This review paper is critically summarized on the available analytical and advanced methods for determination of Allura Red and also concisely discussed on the acceptable daily intake, toxicology and extraction methods.
Collapse
Affiliation(s)
- Kobun Rovina
- Biotechnology Research Institute, Universiti Malaysia Sabah Kota Kinabalu, Malaysia
| | | | - Sharifudin M Shaarani
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah Kota Kinabalu, Malaysia
| |
Collapse
|
37
|
Methods for the analysis of azo dyes employed in food industry – A review. Food Chem 2016; 192:813-24. [DOI: 10.1016/j.foodchem.2015.07.085] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 11/23/2022]
|
38
|
Fu L, Zheng Y, Wang A, Cai W, Lin H. Sensitive determination of quinoline yellow using poly (diallyldimethylammonium chloride) functionalized reduced graphene oxide modified grassy carbon electrode. Food Chem 2015; 181:127-32. [DOI: 10.1016/j.foodchem.2015.02.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
|
39
|
|
40
|
Bismuth and Bismuth-Chitosan modified electrodes for determination of two synthetic food colorants by net analyte signal standard addition method. OPEN CHEM 2014. [DOI: 10.2478/s11532-014-0529-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn this paper, an electrochemical application of bismuth film modified glassy carbon electrode for azo-colorants determination was investigated. Bismuth-film electrode (BiFE) was prepared by ex-situ depositing of bismuth onto glassy carbon electrode. The plating potential was −0.78 V (vs. SCE) in a solution of 0.15 mg mL−1 Bi(III) and 0.05 mg mL−1 KBr for 180 s. In the next step, a thin film of chitosan was deposited on the surface of bismuth modified glassy carbon electrode, thus the bismuth-chitosan thin film modified glassy carbon electrode (Bi-CHIT/GCE) was fabricated and compared with bare GCE and bismuth modified GCE.Azo-colorants such as Sunset Yellow and Carmoisine were determined on these electrodes by differential pulse voltammetry. Due to overlapping peaks of Sunset Yellow and Carmoisine, simultaneous determination of them is not possible, so net analyte signal standard addition method (NASSAM) was used for this determination. The results showed that coated chitosan can enhance the bismuth film sensitivity, improve the mechanical stability without caused contamination of surface electrode. The Bi-CHIT/GC electrode behaved linearly to Sunset Yellow and Carmoisine in the concentration range of 5×10−6 to 2.38×10−4 M and 1×10−6 to 0.41×10−4 M with a detection limit of 10 µM (4.52 µg mL−1) and 10 µM (5.47 µg mL−1), respectively
Collapse
|
41
|
Zhang Y, Zhou H, Wang Y, Wu X, Zhao Y. Simultaneous Determination of Seven Synthetic Colorants in Wine by Dispersive Micro-Solid-Phase Extraction Coupled with Reversed-Phase High-Performance Liquid Chromatography. J Chromatogr Sci 2014; 53:210-8. [DOI: 10.1093/chromsci/bmu042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Hamedpour V, Amjadi M. Application of Box–Behnken Design in the Optimization of In Situ Surfactant-Based Solid Phase Extraction Method for Spectrophotometric Determination of Quinoline Yellow in Food and Water Samples. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9724-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Gumustas M, Kurbanoglu S, Uslu B, Ozkan SA. UPLC versus HPLC on Drug Analysis: Advantageous, Applications and Their Validation Parameters. Chromatographia 2013. [DOI: 10.1007/s10337-013-2477-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Li Z, Song S, Xu L, Kuang H, Guo S, Xu C. Development of an ultrasensitive immunoassay for detecting tartrazine. SENSORS 2013; 13:8155-69. [PMID: 23799494 PMCID: PMC3758588 DOI: 10.3390/s130708155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 11/16/2022]
Abstract
We have developed an ultrasensitive indirect competitive enzyme-linked immunosorbent assay for the determination of tartrazine. Two carboxylated analogues of tartrazine with different spacer lengths, and one derivative from commercial tartrazine after a little chemical modification, were synthesized as haptens in order to produce antibodies specific to tartrazine. The effect of sulfonic acid groups on the hapten structure of tartrazine was also studied carefully for the first time. A most specific monoclonal antibody against tartrazine was created and exhibited an IC50 value of 0.105 ng/mL and a limit of detection of 0.014 ng/mL, with no cross-reactivity to other structurally-related pigments. The established immunoassay was applied to the determination of tartrazine in fortified samples of orange juice and in real positive samples of carbonated beverages.
Collapse
Affiliation(s)
- Zhuokun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| | | | | | | | | | | |
Collapse
|
45
|
Hajimahmoodi M, Afsharimanesh M, Moghaddam G, Sadeghi N, Oveisi MR, Jannat B, Pirhadi E, Zamani Mazdeh F, Kanan H. Determination of eight synthetic dyes in foodstuffs by green liquid chromatography. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:780-5. [DOI: 10.1080/19440049.2013.774465] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Tavakoli M, Shemirani F, Hajimahmoodi M. Magnetic Mixed Hemimicelles Solid-Phase Extraction of Three Food Colorants from Real Samples. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9603-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Gan T, Sun J, Zhu H, Zhu J, Liu D. Synthesis and characterization of graphene and ordered mesoporous TiO2 as electrocatalyst for the determination of azo colorants. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2080-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Carbon Nanotube–Ionic Liquid (CNT–IL) Nanocamposite Modified Sol-Gel Derived Carbon-Ceramic Electrode for Simultaneous Determination of Sunset Yellow and Tartrazine in Food Samples. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9556-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Medeiros RA, Lourencao BC, Rocha-Filho RC, Fatibello-Filho O. Flow injection simultaneous determination of synthetic colorants in food using multiple pulse amperometric detection with a boron-doped diamond electrode. Talanta 2012; 99:883-9. [DOI: 10.1016/j.talanta.2012.07.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 11/15/2022]
|
50
|
Simultaneous voltammetric determination of synthetic colorants in food using a cathodically pretreated boron-doped diamond electrode. Talanta 2012; 97:291-7. [DOI: 10.1016/j.talanta.2012.04.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 11/21/2022]
|