1
|
Zhang Z, Chen Y, Deng P, He Z, Qin F, Chen Q, Wang Z, Pan H, Chen J, Zeng M. Research progress on generation, detection and inhibition of multiple hazards - acrylamide, 5-hydroxymethylfurfural, advanced glycation end products, methylimidazole - in baked goods. Food Chem 2024; 431:137152. [PMID: 37603996 DOI: 10.1016/j.foodchem.2023.137152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
While baking produces attractive flavors for foods, it also generates various endogenous by-products, including acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), advanced glycation end products (AGEs) and methylimidazole (MI). This review briefly presents the recent studies on the above hazards, and research progress on the formation and control of the above substances in detail. There have been more detailed studies on a single category of hazards. However, few studies and reports have considered the integrated prevention and control of multiple hazards, which is related to the difficulty of analyzing the reaction mechanisms of multiple hazards at multiple scales and under multiple phases in complex food matrices. In this regard, the sample pretreatment methods are a crucial step in achieving simultaneous detection. The coordinated implementation of various methods, including reducing precursor levels, modifying baking conditions and equipment, and incorporating exogenous additives, is necessary to achieve a synchronized reduction in multiple hazardous substances.
Collapse
Affiliation(s)
- Zening Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Peng Deng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Hongyang Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Atkinson R, Berru S, Delgado L, Yovera F, Berru J, Robledo Y, Cruz G. Identifying the origin of acrylamide in Peruvian panela production to inform strategies for its reduction. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:508-517. [PMID: 36919530 DOI: 10.1080/19440049.2023.2187646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Maximum levels of acrylamide have been set by the European Commission (EU) 2017/2158 for several food products due to its carcinogenic properties. Although not regulated yet, European buyers are requesting maximum levels of 0.8 mg kg-1 in artisanal panela (raw cane sugar) from northern Peru. Panela in this area is produced by 600 small holder farmers and exportation guarantees a respectable price in an area with a high index of poverty. The objective here was to determine the cause of high acrylamide concentrations in panela to inform cost effective minimisation strategies. We monitored panela production from field to final product to understand the scale of the problem, identify the cause of acrylamide formation, as well as the effect of storage on its concentration. We also determined the utility of rapid kits for asparagine quantification. Our results indicate that high acrylamide levels are a widespread problem (85% of samples analysed) and there was a correlation between acrylamide and asparagine of R2 = 0.58 (p < 0.001), but not with any post-harvest processing variable. We estimate that with a concentration of asparagine of <0.1 g l-1 in sugarcane juice, the threshold set by buyers for acrylamide can be met. Potential solutions to reduce asparagine include varietal selection, improved agronomic practices and the use of asparaginase during panela production. However, any proposed measure should be applicable in the context of the rural Peru. Additionally, we confirm the utility of rapid and low-cost kits for measuring asparagine. This pioneering study provides a baseline for effective management for acrylamide minimization in panela.
Collapse
Affiliation(s)
- Rachel Atkinson
- Multifunctional Landscapes, Alliance of Bioversity International and CIAT, Lima, Peru
| | | | - Laura Delgado
- Universidad de Piura, Departamento de Ciencias de la Ingenieria, Piura, Peru
| | - Fredy Yovera
- Multifunctional Landscapes, Alliance of Bioversity International and CIAT, Lima, Peru
| | | | | | - Gaston Cruz
- Universidad de Piura, Departamento de Ciencias de la Ingenieria, Piura, Peru
| |
Collapse
|
3
|
Zhang Y, Zhao H, Sun S, Lu L, Xue X, Su S, Gong P, Zheng W, Wang M, Wang J, Zhu J, Liu Y, Zhang F. Efficient optimization and development of two methods for the determination of acrylamide in deep-frying oil by liquid chromatography-tandem mass spectrometry: Application of multifactor analysis assessment strategy. J Sep Sci 2023; 46:e2200631. [PMID: 36427354 DOI: 10.1002/jssc.202200631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
A new multifactor analysis assessment strategy was developed for evaluating, optimizing, and comparing analytical techniques for acrylamide in frying oils. Based on five indices (absolute recovery, absolute matrix effect, the intensity of the full ion scan, and the precursor ion scan to m/z 184 and m/z 241), the proposed strategy was performed with radar analysis, relative contribution analysis, and the entropy-weighted technique for order performance by similarity to ideal solution analysis. Two novel methods based on quick, easy, cheap, effective, rugged, and safe extraction methodology and gel permeation chromatography-liquid-liquid extraction followed by liquid chromatography-tandem mass spectrometry have been developed for the analysis of acrylamide in frying oils. Two methods were suitable for rapid and sensitive analysis of acrylamide in oils in different laboratories, with a limit of quantitation at 2 μg/kg, and the average recovery ranging from 92.5% to 107.8%, with relative standard deviations below 10%. When considering automation efficiency and matrix effects, gel permeation chromatography is the most efficient method, whereas the other method has an advantage when analyzing large samples. The developed methods were used in a pilot study to analyze frying oils with acrylamide content below 9.82 μg/kg, showing that the repeated frying process did not produce significant content of acrylamide in oils.
Collapse
Affiliation(s)
- Yanxia Zhang
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Huinan Zhao
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Shanshan Sun
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Lanxiang Lu
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Xia Xue
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Shufang Su
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Pixue Gong
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Wenjing Zheng
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Mingdong Wang
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Jun Wang
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Jianhua Zhu
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Yanming Liu
- Shandong Research Center of Engineering and Technology for Quality Control of Food for Special Medical Purposes, Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, P. R. China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| |
Collapse
|
4
|
Delatour T, Desmarchelier A, Stadler RH. Challenges in the measurement of acrylamide in food by confirmatory methods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Sáez-Hernández R, Ruiz P, Mauri-Aucejo AR, Yusa V, Cervera M. Determination of acrylamide in toasts using digital image colorimetry by smartphone. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Risk Evaluation of Acrylamide in Powder Infant Formula Based on Ingredient and Formulation in Three Critical Age Groups of Children Below 2 Years Old: Efficient Microextraction Followed by GC–MS Analysis Based on CCD. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Idris AO, Alabi QK, Ologe MF, Oluogun WA, Akanbi MHJ, Iwalewa EO. Evaluation of acrylamide exposure in pregnant Wistar rats as a risk of developing renal disease in their litters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39680-39691. [PMID: 33763836 DOI: 10.1007/s11356-021-13580-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
This study was designed at evaluating the acrylamide (ACR) exposure in pregnant Wistar rats as a risk of developing renal disease in their litters. Four groups of pregnant female rats were used. Group 1 control animals were given 2 ml/kg/day of distilled water. Groups 2, 3, and 4 animals were given oral gavage doses of 2, 5, and 10 mg/kg/day of ACR respectively immediately pregnancy was confirmed. Mother rats were sacrificed 10 weeks after delivery and litters were sacrificed at 13 weeks. Proteinuria was observed in ACR-treated mother rats and their litters. Serum electrolytes, urea, and creatinine values observed in the treated group were deranged for both the mothers and litters respectively. Disruption of nephrogenesis was observed in the litters of ACR-treated mother compared to the control. The results of the effect of ACR on lipid profile indicated a significant elevation in the LDL, cholesterol, and triglyceride compared to the control. There was significant reduction in the SOD, catalase, GSH, and significant elevation in the C-reactive protein and malondialdehyde. Conclusively, exposure to acrylamide during pregnancy is a risk factor for the development of renal disease in the mother rats and their litters.
Collapse
Affiliation(s)
- Adeoye Oyewole Idris
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, P.M.B 250, Ede, Osun State, Nigeria.
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B 1515, Ilorin, Nigeria.
| | - Quadri Kunle Alabi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, P.M.B 250, Ede, Osun State, Nigeria.
| | - Mary Funmilayo Ologe
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B 1515, Ilorin, Nigeria
| | - Waheed Akanni Oluogun
- Department of Morbid Anatomy and Histopathology, Ladoke Akintola University of Technology Teaching Hospital, Osogbo, Osun State, Nigeria
| | - Marijke Haas Jimoh Akanbi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B 1515, Ilorin, Nigeria
- BiOMaDe Technology Foundation, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Ezekiel Olugbenga Iwalewa
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
8
|
Wang Y, Liu Y, Huang X, Xiao Z, Yang Y, Yu Q, Chen S, He L, Liu A, Liu S, Zou L, Yang Y. A Review on Mechanistic Overview on the Formation of Toxic Substances during the Traditional Fermented Food Processing. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1933021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yilun Wang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Yuxuan Liu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Xiaohong Huang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Zihan Xiao
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Yifang Yang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Qinxin Yu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu PR China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an PR China
| |
Collapse
|
9
|
Artavia G, Cortés-Herrera C, Granados-Chinchilla F. Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis. Foods 2021; 10:1081. [PMID: 34068197 PMCID: PMC8152966 DOI: 10.3390/foods10051081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
This review presents an overall glance at selected instrumental analytical techniques and methods used in food analysis, focusing on their primary food science research applications. The methods described represent approaches that have already been developed or are currently being implemented in our laboratories. Some techniques are widespread and well known and hence we will focus only in very specific examples, whilst the relatively less common techniques applied in food science are covered in a wider fashion. We made a particular emphasis on the works published on this topic in the last five years. When appropriate, we referred the reader to specialized reports highlighting each technique's principle and focused on said technologies' applications in the food analysis field. Each example forwarded will consider the advantages and limitations of the application. Certain study cases will typify that several of the techniques mentioned are used simultaneously to resolve an issue, support novel data, or gather further information from the food sample.
Collapse
Affiliation(s)
- Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | | |
Collapse
|
10
|
Mollakhalili-Meybodi N, Khorshidian N, Nematollahi A, Arab M. Acrylamide in bread: a review on formation, health risk assessment, and determination by analytical techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15627-15645. [PMID: 33548042 DOI: 10.1007/s11356-021-12775-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Acrylamide is a water-soluble toxicant found in high-protein and carbohydrate-containing foods exposed to high temperature like bread as the staple foodstuff. This toxicant is mainly formed via Maillard reaction. The potential adverse effects of acrylamide especially possible carcinogenicity in human through dietary exposure necessitate its monitoring. Regarding the existence of its precursors in wheat bread formulation as well as extreme consumption of bread by most population and diversity of bread types, its acrylamide level needs to be investigated. The indicative value for acrylamide in wheat bread is set at 80 μg/kg. Consequently, its determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS), or capillary electrophoresis can be helpful considering both the risk assessment and quality control aspects. In this respect, methods based on LC-MS/MS show good recovery and within laboratory repeatability with a limit of detection of 3-20 μg/kg and limit of quantification of 10-50 μg/kg which is suitable for the immediate requirements for food product monitoring and calculation of consumer exposure.
Collapse
Affiliation(s)
- Neda Mollakhalili-Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran.
| | - Masoumeh Arab
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
11
|
Investigation of Composition, Temperature, and Heating Time in the Formation of Acrylamide in Snack: Central Composite Design Optimization and Microextraction Coupled with Gas Chromatography-Mass Spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01849-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Michalak J, Czarnowska-Kujawska M, Klepacka J, Gujska E. Effect of Microwave Heating on the Acrylamide Formation in Foods. Molecules 2020; 25:molecules25184140. [PMID: 32927728 PMCID: PMC7570677 DOI: 10.3390/molecules25184140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Acrylamide (AA) is a neurotoxic and carcinogenic substance that has recently been discovered in food. One of the factors affecting its formation is the heat treatment method. This review discusses the microwave heating as one of the methods of thermal food processing and the influence of microwave radiation on the acrylamide formation in food. In addition, conventional and microwave heating were compared, especially the way they affect the AA formation in food. Available studies demonstrate differences in the mechanisms of microwave and conventional heating. These differences may be beneficial or detrimental depending on different processes. The published studies showed that microwave heating at a high power level can cause greater AA formation in products than conventional food heat treatment. The higher content of acrylamide in microwave-heated foods may be due to differences in its formation during microwave heating and conventional methods. At the same time, short exposure to microwaves (during blanching and thawing) at low power may even limit the formation of acrylamide during the final heat treatment. Considering the possible harmful effects of microwave heating on food quality (e.g., intensive formation of acrylamide), further research in this direction should be carried out.
Collapse
|
13
|
Wongthanyakram J, Kheamphet P, Masawat P. Fluorescence Determination of Acrylamide in Snack, Seasoning, and Refreshment Food Samples with an iOS Gadget–Based Digital Imaging Colorimeter. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01835-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Mousavi Khaneghah A, Fakhri Y, Nematollahi A, Seilani F, Vasseghian Y. The Concentration of Acrylamide in Different Food Products: A Global Systematic Review, Meta-Analysis, and Meta-Regression. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1791175] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Seilani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasser Vasseghian
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
15
|
Desmarchelier A, Hamel J, Delatour T. Sources of overestimation in the analysis of acrylamide-in coffee by liquid chromatography mass spectrometry. J Chromatogr A 2020; 1610:460566. [DOI: 10.1016/j.chroma.2019.460566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 11/15/2022]
|
16
|
Yang S, Li Y, Li F, Yang Z, Quan F, Zhou L, Pu Q. Thiol-ene Click Derivatization for the Determination of Acrylamide in Potato Products by Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8053-8060. [PMID: 31276393 DOI: 10.1021/acs.jafc.9b01525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of analytical methods for acrylamide formed during food processing is of great significance for food safety, but limited by its inherent characteristics, the analysis of acrylamide is a continuing challenge. In this study, an efficient derivatization strategy for acrylamide based on thiol-ene click reaction with cysteine as derivatization reagent was proposed, and the resulting derivative was then analyzed by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D). After systematic investigation including catalyst dosage (0-20 mM), reaction temperature (30-90 °C) and time (1-60 min), and cysteine concentration (0.2-3.6 mM), acrylamide could be efficiently labeled by 2.0 mM cysteine at 70 °C for 10 min using 4 mM n-butylamine as catalyst. Application of 10 mM triethylamine as separation buffer, the labeled acrylamide was analyzed within 2.0 min, and the relative standard deviations of migration time and peak area were less than 0.84% and 5.6%, indicating good precision. The C4D signal of acrylamide derivative showed a good linear relationship with acrylamide concentration in the range of 7-200 μM with the correlation coefficient of 0.9991. The limit of detection and limit of quantification were calculated to be 0.16 μM and 0.52 μM, respectively. Assisted further by the QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample pretreatment, the developed derivatization strategy and subsequent CE-C4D method were successfully applied for the determination of acrylamide in potato products.
Collapse
Affiliation(s)
- Shuping Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Yuting Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Fan Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Zhenyu Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Feifei Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Lei Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
17
|
Detecting the Quantity of Acrylamide in Potato Chips Utilizing CdTe Surface Functionalized Quantum Dots with Fluorescence Spectroscopy. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09889-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Yoshioka T, Izumi Y, Nagatomi Y, Miyamoto Y, Suzuki K, Bamba T. A highly sensitive determination method for acrylamide in beverages, grains, and confectioneries by supercritical fluid chromatography tandem mass spectrometry. Food Chem 2019; 294:486-492. [PMID: 31126491 DOI: 10.1016/j.foodchem.2019.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/21/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Acrylamide (AA) analysis is an important topic in food safety. However, it is difficult to rapidly and accurately analyze low concentrations of AA with currently available methods. In the present study, we introduce a highly sensitive method that enables the determination of AA in beverages, grains, and confectioneries by supercritical fluid chromatography tandem mass spectrometry (SFC/MS/MS). The sensitivity of the SFC/MS/MS technique is 11-times higher than that obtained by ultra-high performance liquid chromatography tandem mass spectrometry. We demonstrated that the highly sensitive SFC/MS/MS method was able to quantify low concentrations of AA in beverages (i.e., roasted barley tea and coffee) extracts at less than 10 µg kg-1 level without solid-phase purification. Furthermore, the simplification of the sample preparation procedure provided an improvement in data acquisition time (60 samples per 12 h). In conclusion, the developed analytical system is a potentially useful tool for practical AA determination.
Collapse
Affiliation(s)
- Toshiaki Yoshioka
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan; Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yasushi Nagatomi
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Yasuhisa Miyamoto
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Koji Suzuki
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
19
|
Chen J, Wu H, Fu Y, Yan M, Xu W, Cao H, He Q, Cheng J. A very sensitive and highly selective organic selector in CNTs composite chemiresistive for efficient differentiation of organic amine vapours. Talanta 2019; 199:698-704. [PMID: 30952317 DOI: 10.1016/j.talanta.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 11/18/2022]
Abstract
With the call for the IoE (Internet of Everything), stable and efficient electric noses/tongues have become the most critical part of the sensor network. Identifying target gases efficiently and rapidly at ambient air becomes a focus on sensor research. We designed a chemiresistive sensor based on a composite of a specific selector and single-walled carbon nanotubes (SWNTs) for the detection and differentiation of organic amine vapours in air (25 ℃, 55% RH). The synergetic combination of F4-TCNQ (2,3,5,6-Tetrafluoro-7,7',8,8'-tetracyanoquinodimethane) and SWCNTs could modulate the electrical properties of sensor leading to the enhancement of response up to ppb-level for primary amine vapor detection. Different from traditional chemiresistive sensor, this sensing materials exhibit unique differences in response to different types of amines thought different mechanisms. We have proven the practical possibilities through the detection of the simulated complexed environmental atmosphere in industrial production. Furthermore, we explored the working mechanism of high-performance sensors, which could provide theoretical guidance for sensor design for more commercial applications. This study provided a simple, convenient, and highly efficient practical method for organic amine detection at ambient air for real-life applications.
Collapse
Affiliation(s)
- Jinming Chen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China; University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Huafeng Wu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Mingzhu Yan
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China; University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Wei Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Huimin Cao
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Qingguo He
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China.
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China.
| |
Collapse
|
20
|
Hai YD, Tran-Lam TT, Nguyen TQ, Vu ND, Ma KH, Le GT. Acrylamide in daily food in the metropolitan area of Hanoi, Vietnam. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 12:159-166. [PMID: 30773119 DOI: 10.1080/19393210.2019.1576774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acrylamide, a colourless and odourless crystalline solid, formed via the Maillard reaction in food, has been reported with harmful properties for humans, such as toxicity and carcinogenicity. Three hundred and four processed food samples from 17 product types, collected in Hanoi, Vietnam, were analyzed by LC-MS/MS to measure the acrylamide concentration. The limit of detection (LOD) and the limit of quantification (LOQ) of acrylamide were 1 µg Kg-1 and 3 µg Kg-1, respectively. Effectively, the highest acrylamide content is usually found in processed food, which is one of the primary reasons of increased acrylamide content in food. All French fried samples contained acrylamide above 500 µg kg-1. Acrylamide concentration in non-fried noodle, vermicelli, rice noodle, phở, dried vegetable, and rice cracker is lower than in potato chips, fried potatoes, fried cake, and fried noodles. The results could be helpful to estimate exposure and risk assessment of acrylamide in Vietnam.
Collapse
Affiliation(s)
- Yen Dao Hai
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) , Hanoi , Vietnam
| | - Thanh-Thien Tran-Lam
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) , Hanoi , Vietnam
| | | | - Nam Duc Vu
- Centre for Research and Technology Transfer (CRETECH) , Hanoi , Vietnam
| | - Kim Hoi Ma
- University of Science, Vietnam National University HCMC , Ho Chi Minh , Vietnam
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) , Hanoi , Vietnam
| |
Collapse
|
21
|
Ultrasensitive immunosensor for acrylamide based on chitosan/SnO2-SiC hollow sphere nanochains/gold nanomaterial as signal amplification. Anal Chim Acta 2019; 1049:188-195. [DOI: 10.1016/j.aca.2018.10.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 12/29/2022]
|
22
|
Martínez E, Rodríguez JA, Bautista M, Rangel-Vargas E, Santos EM. Use of 2-Naphthalenethiol for Derivatization and Determination of Acrylamide in Potato Crisps by High-Performance Liquid Chromatographic with Fluorescence Detection. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1150-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Zokaei M, Abedi AS, Kamankesh M, Shojaee-Aliababadi S, Mohammadi A. Ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as an efficient and sensitive method for determining of acrylamide in potato chips samples. Food Chem 2017; 234:55-61. [DOI: 10.1016/j.foodchem.2017.04.141] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/20/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
|
24
|
Dummy-surface molecularly imprinted polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried) foods. Food Chem 2017; 221:1797-1804. [DOI: 10.1016/j.foodchem.2016.10.101] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2016] [Accepted: 10/22/2016] [Indexed: 11/24/2022]
|
25
|
Surma M, Sadowska-Rociek A, Cieślik E, Sznajder-Katarzyńska K. Optimization of QuEChERS sample preparation method for acrylamide level determination in coffee and coffee substitutes. Microchem J 2017. [DOI: 10.1016/j.microc.2016.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Sobhi HR, Ghambarian M, Behbahani M, Esrafili A. Application of modified hollow fiber liquid phase microextraction in conjunction with chromatography-electron capture detection for quantification of acrylamide in waste water samples at ultra-trace levels. J Chromatogr A 2017; 1487:30-35. [DOI: 10.1016/j.chroma.2017.01.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
|
27
|
Josić D, Peršurić Ž, Rešetar D, Martinović T, Saftić L, Kraljević Pavelić S. Use of Foodomics for Control of Food Processing and Assessing of Food Safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 81:187-229. [PMID: 28317605 DOI: 10.1016/bs.afnr.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Food chain, food safety, and food-processing sectors face new challenges due to globalization of food chain and changes in the modern consumer preferences. In addition, gradually increasing microbial resistance, changes in climate, and human errors in food handling remain a pending barrier for the efficient global food safety management. Consequently, a need for development, validation, and implementation of rapid, sensitive, and accurate methods for assessment of food safety often termed as foodomics methods is required. Even though, the growing role of these high-throughput foodomic methods based on genomic, transcriptomic, proteomic, and metabolomic techniques has yet to be completely acknowledged by the regulatory agencies and bodies. The sensitivity and accuracy of these methods are superior to previously used standard analytical procedures and new methods are suitable to address a number of novel requirements posed by the food production sector and global food market.
Collapse
Affiliation(s)
- D Josić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia.
| | - Ž Peršurić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - D Rešetar
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - T Martinović
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - L Saftić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - S Kraljević Pavelić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| |
Collapse
|
28
|
Gezer PG, Liu GL, Kokini JL. Detection of acrylamide using a biodegradable zein-based sensor with surface enhanced Raman spectroscopy. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Wu M, Chen W, Wang G, He P, Wang Q. Analysis of acrylamide in food products by microchip electrophoresis with on-line multiple-preconcentration techniques. Food Chem 2016; 209:154-61. [DOI: 10.1016/j.foodchem.2016.04.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 04/04/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
|
30
|
Li X, Li J, Cao P, Liu Y. High-efficiency sample preparation approach to determine acrylamide levels in high-fat foods. J Sep Sci 2016; 39:2950-4. [DOI: 10.1002/jssc.201600385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaodan Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| | - Peirang Cao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology; Jiangnan University; Wuxi P.R. China
| |
Collapse
|
31
|
Turetta C, Zangrando R, Barbaro E, Gabrieli J, Scalabrin E, Zennaro P, Gambaro A, Toscano G, Barbante C. Water-soluble trace, rare earth elements and organic compounds in Arctic aerosol. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2016. [DOI: 10.1007/s12210-016-0518-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Abd El-Hady D, Albishri HM. Simultaneous determination of acrylamide, asparagine and glucose in food using short chain methyl imidazolium ionic liquid based ultrasonic assisted extraction coupled with analyte focusing by ionic liquid micelle collapse capillary electrophoresis. Food Chem 2015; 188:551-8. [DOI: 10.1016/j.foodchem.2015.05.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/07/2015] [Accepted: 05/13/2015] [Indexed: 11/26/2022]
|
33
|
|
34
|
Hu Q, Xu X, Fu Y, Li Y. Rapid methods for detecting acrylamide in thermally processed foods: A review. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Lee KJ, Lee GH, Kim H, Oh MS, Chu S, Hwang IJ, Lee JY, Choi A, Kim CI, Park HM. Determination of Heterocyclic Amines and Acrylamide in Agricultural Products with Liquid Chromatography-Tandem Mass Spectrometry. Toxicol Res 2015; 31:255-64. [PMID: 26483884 PMCID: PMC4609972 DOI: 10.5487/tr.2015.31.3.255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022] Open
Abstract
Heterocyclic amines (HCAs) and acrylamide are unintended hazardous substances generated by heating or processing of foods and are known as carcinogenic and mutagenic agents by the animal experiments. A simple method was established for a rapid and accurate determination of 12 types of HCAs (IQ, MeIQ, Glu-P-1, Glu-P-2, MeIQx, Trp-P-1, Trp-P-2, PhIP, AαC, MeAαC, Harman and Norharman) and acrylamide in three food matrices (non-fat liquid, non-fat solid and fat solid) by isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS). In every sample, a mixture of internal standards including IQ-d3, MeIQx-d3, PhIP-d3, Trp-P-2-(13)C2-(15)N and MeAαC-d3 was spiked for quantification of HCAs and (13)C3-acrylamide was also spiked for the analysis of acrylamide. HCAs and acrylamide in sample were extracted with acetonitrile and water, respectively, and then two solid-phase extraction cartridges, ChemElut: HLB for HCAs and Accucat: HLB for acrylamide, were used for efficiently removing interferences such as pigment, lipid, polar, nonpolar and ionic compounds. Established method was validated in terms of recovery, accuracy, precision, limit of detection, limit of quantitation, and linearity. This method showed good precision (RSD < 20%), accuracy (71.8~119.1%) and recovery (66.0~118.9%). The detection limits were < 3.1 ng/g for all analytes. The correlation coefficients for all the HCAs and acrylamide were > 0.995, showing excellent linearity. These methods for the detection of HCAs and acrylamide by LC-MS/MS were applied to real samples and were successfully used for quantitative monitoring in the total diet study and this can be applied to risk assessment in various food matrices.
Collapse
Affiliation(s)
- Kyung-Jun Lee
- Korea Research Institute of Analytical Technology, Daejeon, Korea
- Department of Chemistry, Chungnam National University, Daejeon, Korea
| | - Gae-Ho Lee
- Korea Research Institute of Analytical Technology, Daejeon, Korea
- Department of Chemistry, Chungnam National University, Daejeon, Korea
| | - HaeSol Kim
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Min-Seok Oh
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Seok Chu
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - In Ju Hwang
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Jee-yeon Lee
- Nutrition Policy & Promotion Team, Korea Health Industry Development Institute, Chungcheongbuk-do, Korea
| | - Ari Choi
- Nutrition Policy & Promotion Team, Korea Health Industry Development Institute, Chungcheongbuk-do, Korea
| | - Cho-il Kim
- Bureau of Health Industry Promotion, Korea Health Industry Development Institute, Chungcheongbuk-do, Korea
| | - Hyun-Mee Park
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, Korea
| |
Collapse
|
36
|
Zhang Q, Qin W, Li M, Shen Q, Saleh AS. Application of Chromatographic Techniques in the Detection and Identification of Constituents Formed during Food Frying: A Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12147] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Qing Zhang
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Wen Qin
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Meiliang Li
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Qun Shen
- Natl. Engineering and Technology Research Center for Fruits and Vegetables; College of Food Science and Nutritional Engineering, China Agricultural Univ.; Beijing 100083 China
| | - Ahmed S.M. Saleh
- Dept. of Food Science and Technology; Faculty of Agriculture, Assiut Univ.; Assiut 71526 Egypt
| |
Collapse
|
37
|
Elbashir AA, Omar MMA, Ibrahim WAW, Schmitz OJ, Aboul-Enein HY. Acrylamide analysis in food by liquid chromatographic and gas chromatographic methods. Crit Rev Anal Chem 2015; 44:107-41. [PMID: 25391433 DOI: 10.1080/10408347.2013.829388] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Acrylamide (AA) is a compound classified as carcinogenic to humans by the International Agency for Research on Cancer. It was first discovered to be present in certain heated processed food by the Swedish National Food Administration (SNFA) and University of Stockholm in early 2002. The major pathway for AA formation in food is the Maillard reaction between reducing sugar and the amino acid asparagine at high temperature. Since the discovery of AA's presence in food, many analytical methods have been developed for determination of AA contents in different food matrices. Also, several studies have been conducted to develop extraction procedures for AA from difficult food matrices. AA is a small, highly polar molecule, which makes its extraction and analysis challenging. Many articles and reviews have been published dealing with AA in food. The aim of the review is to discuss AA formation in food, the factors affecting AA formation and removal, AA exposure assessment, AA extraction and cleanup from food samples, and analytical methods used in AA determination, such as high-performance liquid chromatography (HPLC) and gas chromatography (GC). Special attention is given to sample extraction and cleanup procedures and analytical techniques used for AA determination.
Collapse
Affiliation(s)
- Abdalla A Elbashir
- a Department of Chemistry, Faculty of Science , University of Khartoum , Khartoum , Sudan
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Weijun Y. Direct determination of acrylamide in food by gas chromatography with nitrogen chemiluminescence detection. J Sep Sci 2015; 38:2272-7. [PMID: 25894309 DOI: 10.1002/jssc.201500060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/06/2022]
Abstract
A method of gas chromatography with nitrogen chemiluminescence detection and using standard addition is described for the determination of acrylamide in heat-processed foods. Using a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample preparation method removes the acrylamide precursors completely, and the risk of overestimating acrylamide concentration due to additional analyte formation in the hot gas chromatograph inlet is also avoided. Sample preparation is rapid and inexpensive. A Deans switch device is utilized to heart-cut acrylamide and to prevent interferences from the solvent and matrix from reaching the detector. The pre-column is backflushed at high temperature to maintain a clean baseline and shorten the cycle time compared to baking out the column. Quantitation using standard addition is employed for compensation of potential variability in the acrylamide extraction efficiency in acetonitrile. The limit of detection and the limit of the quantification obtained for this method are 27 and 81 μg/kg, respectively, in food samples (equivalent to 3.5 and 10.6 μg/L in acetonitrile, respectively), and the linear range is 76-9697 μg/kg in food samples (equivalent to 10-1280 μg/L in acetonitrile) with an R(2) value of 0.9999.
Collapse
Affiliation(s)
- Yao Weijun
- Agilent Technologies (Shanghai) Co. Ltd, Shanghai, 200131, China
| |
Collapse
|
40
|
Acrylamide in Chips and French Fries: a Novel and Simple Method Using Xanthydrol for Its GC-MS Determination. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-0014-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Mo WM, He HL, Xu XM, Huang BF, Ren YP. Simultaneous determination of ethyl carbamate, chloropropanols and acrylamide in fermented products, flavoring and related foods by gas chromatography–triple quadrupole mass spectrometry. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Vin K, Papadopoulos A, Cubadda F, Aureli F, Oktay Basegmez HI, D'Amato M, De Coster S, D'Evoli L, López Esteban MT, Jurkovic M, Lucarini M, Ozer H, Fernández San Juan PM, Sioen I, Sokolic D, Turrini A, Sirot V. TDS exposure project: relevance of the total diet study approach for different groups of substances. Food Chem Toxicol 2014; 73:21-34. [PMID: 25106751 DOI: 10.1016/j.fct.2014.07.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 01/24/2023]
Abstract
A method to validate the relevance of the Total Diet Study (TDS) approach for different types of substances is described. As a first step, a list of >2800 chemicals classified into eight main groups of relevance for food safety (natural components, environmental contaminants, substances intentionally added to foods, residues, naturally occurring contaminants, process contaminants, contaminants from packaging and food contact materials, other substances) has been established. The appropriateness of the TDS approach for the different substance groups has then been considered with regard to the three essential principles of a TDS: representativeness of the whole diet, pooling of foods and food analyzed as consumed. Four criteria were considered for that purpose (i) the substance has to be present in a significant part of the diet or predominantly present in specific food groups, (ii) a robust analytical method has to be available to determine it in potential contributors to the dietary exposure of the population, and (iii) the dilution impact of pooling and (iv) the impact of everyday food preparation methods on the concentration of the substance are assessed. For most of the substances the TDS approach appeared to be relevant and any precautions to be taken are outlined.
Collapse
Affiliation(s)
- Karine Vin
- French Agency for Food, Environmental and Occupational Health Safety, ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail), 27 avenue du Général Leclerc, F-94701 Maisons-Alfort, France
| | - Alexandra Papadopoulos
- French Agency for Food, Environmental and Occupational Health Safety, ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail), 27 avenue du Général Leclerc, F-94701 Maisons-Alfort, France
| | - Francesco Cubadda
- Istituto Superiore di Sanità - National Health Institute, Department of Food Safety and Veterinary Public Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Federica Aureli
- Istituto Superiore di Sanità - National Health Institute, Department of Food Safety and Veterinary Public Health, Viale Regina Elena 299, 00161 Rome, Italy
| | | | - Marilena D'Amato
- Istituto Superiore di Sanità - National Health Institute, Department of Food Safety and Veterinary Public Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sam De Coster
- Universiteit Gent - Ghent University, Department of Public Health, UZ 2 Block A, De Pintelaan 185, B-9000 Gent, Belgium
| | | | | | - Martina Jurkovic
- Hrvatska agencija za hranu - Croatian Food Agency, Ivana Gundulića 36b, 31000 Osijek, Croatia
| | | | - Hayrettin Ozer
- TÜBİTAK Marmara Research Center, Food Institute, P.O. Box 21, 41470 Gebze, Kocaeli, Turkey
| | | | - Isabelle Sioen
- Universiteit Gent - Ghent University, Department of Public Health, UZ 2 Block A, De Pintelaan 185, B-9000 Gent, Belgium
| | - Darja Sokolic
- Hrvatska agencija za hranu - Croatian Food Agency, Ivana Gundulića 36b, 31000 Osijek, Croatia
| | | | - Véronique Sirot
- French Agency for Food, Environmental and Occupational Health Safety, ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail), 27 avenue du Général Leclerc, F-94701 Maisons-Alfort, France
| |
Collapse
|
43
|
Wu J, Shen YD, Lei HT, Sun YM, Yang JY, Xiao ZL, Wang H, Xu ZL. Hapten synthesis and development of a competitive indirect enzyme-linked immunosorbent assay for acrylamide in food samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7078-7084. [PMID: 24998485 DOI: 10.1021/jf5015395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The high level of acrylamide in widely consumed processed foods poses a potentially significant risk to human health, which has led to an increasing demand for rapid, simple, and selective analytical methods. In the present work, several haptens for acrylamide were designed in an attempt to prepare antibodies with acrylamide affinity, but they failed their purpose. However, a polyclonal antibody was produced against 4-mercaptophenylacetic acid (4-MPA)-derivatized acrylamide, which showed high binding affinity to the derivative. As acrylamide easily reacted with 4-MPA at high derivation yield, a competitive indirect enzyme-linked immunosorbent assay (ciELISA) for acrylamide via a preanalysis derivatization was developed. The derivatization and ELISA conditions were fully optimized to produce a method for acrylamide assay that exhibited an IC50 of 2.86 μg/kg, limit of detection at 0.036 μg/kg, and linear range of 0.25-24.15 μg/kg. The results of preanalysis recovery tests of acrylamide-spiked food samples and screening of blind food samples by both ciELISA and HPLC-MS/MS indicated the proposed ciELISA's good accuracy and reliability. This method was thus deemed suitable for routine acrylamide screening in food samples at low cost.
Collapse
Affiliation(s)
- Jing Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu C, Luo F, Chen D, Qiu B, Tang X, Ke H, Chen X. Fluorescence determination of acrylamide in heat-processed foods. Talanta 2014; 123:95-100. [DOI: 10.1016/j.talanta.2014.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 11/26/2022]
|
45
|
The determination of acrylamide in environmental and drinking waters by large-volume injection – hydrophilic-interaction liquid chromatography and tandem mass spectrometry. J Chromatogr A 2014; 1334:72-8. [DOI: 10.1016/j.chroma.2014.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/27/2014] [Accepted: 02/02/2014] [Indexed: 11/23/2022]
|
46
|
Rapid and simple determination of acrylamide in conventional cereal-based foods and potato chips through conversion to 3-[bis(trifluoroethanoyl)amino]-3-oxopropyl trifluoroacetate by gas chromatography coupled with electron capture and ion trap mass spectrometry detectors. Food Chem 2014; 146:204-11. [DOI: 10.1016/j.foodchem.2013.09.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 08/13/2013] [Accepted: 09/08/2013] [Indexed: 11/19/2022]
|
47
|
Pedreschi F, Mariotti MS, Granby K. Current issues in dietary acrylamide: formation, mitigation and risk assessment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:9-20. [PMID: 23939985 DOI: 10.1002/jsfa.6349] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 05/07/2023]
Abstract
Acrylamide (AA) is known as a neurotoxin in humans and it is classified as a probable human carcinogen by the International Agency of Research on Cancer. AA is produced as by-product of the Maillard reaction in starchy foods processed at high temperatures (>120 °C). This review includes the investigation of AA precursors, mechanisms of AA formation and AA mitigation technologies in potato, cereal and coffee products. Additionally, most relevant issues of AA risk assessment are discussed. New technologies tested from laboratory to industrial scale face, as a major challenge, the reduction of AA content of browned food, while still maintaining its attractive organoleptic properties. Reducing sugars such as glucose and fructose are the major contributors to AA in potato-based products. On the other hand, the limiting substrate of AA formation in cereals and coffee is the free amino acid asparagine. For some products the addition of glycine or asparaginase reduces AA formation during baking. Since, for potatoes, the limiting substrate is reducing sugars, increases in sugar content in potatoes during storage then introduce some difficulties and potentially quite large variations in the AA content of the final product. Sugars in potatoes may be reduced by blanching. Levels of AA in different foods show large variations and no general upper limit is easily applicable, since some formation will always occur. Current policy is that practical measures should be taken voluntarily to reduce AA formation in vulnerable foods since AA is considered a health risk at the concentrations found in foods.
Collapse
Affiliation(s)
- Franco Pedreschi
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago, Chile; ASIS-UC Interdisciplinary Research Program on Tasty and Healthy Foods, Pontificia Universidad Catoĺica de Chile, Santiago, Chile
| | | | | |
Collapse
|
48
|
Michalak J, Gujska E, Kuncewicz A. RP-HPLC-DAD studies on acrylamide in cereal-based baby foods. J Food Compost Anal 2013. [DOI: 10.1016/j.jfca.2013.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Abstract
Acrylamide is considered to be an endogenous contaminant of food and feedstuff. Attention is paid to the acrylamide content in human nutrition products; however, there is lack of data about its concentrations in feedstuff. The aim of this study was to use a newly developed adsorptive stripping voltammetry procedure for determination of acrylamide concentrations in five and three different kinds of dog and cat dry feedstuff, respectively. The applied analytical procedure consists of a solvent extraction in ultrasound bath, followed by voltammetric measurement at the hanging mercury drop electrode in ammonia buffer. The accuracy of the method was verified by use of standard reference materials. The range of acrylamide concentration found in samples of dry dog and cat feedstuff ranged from 106 to 358 μg/kg, and from 66 to 269 μg/kg, respectively. The precision of analyses expressed in form of the relative standard deviations ranged between 0.6–1.7%. The voltammetric procedure appears to be a reliable, sensitive, rapid and low-cost analytical technique for the determination of acrylamide in food and feedstuff. The concentrations of acrylamide found in feedstuff were relatively moderate but it is undoubtedly necessary to monitor its concentrations in future.
Collapse
|
50
|
Zangrando R, Barbaro E, Zennaro P, Rossi S, Kehrwald NM, Gabrieli J, Barbante C, Gambaro A. Molecular markers of biomass burning in arctic aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8565-8574. [PMID: 23808421 DOI: 10.1021/es400125r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biomass burning is one of the most important sources of organic matter in the atmosphere as it affects the absorption and scattering of solar radiation, creates cloud condensation nuclei and possibly influences ice and snow albedo. Here we created and validated an analytical method using HPLC/(-)-ESI-MS/MS to determine phenolic compounds (PCLCs): vanillic acid, isovanillic acid, homovanillic acid, syringic acid, syringaldehyde, ferulic acid, p-coumaric acid, and coniferyl aldehyde at trace levels in particulate matter. We analyzed eighteen high-volume air samples from Ny Ålesund (Svalbard) collected during the boreal spring and summer of 2010. Biomass burning molecules including PCLCs (<0.49 μm, mean atmospheric concentration 6 pg m(-3)), levoglucosan (0.004 to 0.682 ng m(-3)) and acrylamide (32 fg m(-3) to 166 fg m(-3)) were present in the sampled aerosols. Levoglucosan concentrations, an unambiguous cellulose combustion tracer, derived from 2010 Russian fires. PCLCs levels in the Ny Alesund atmosphere in different size fractions reflected both long-range transport linked to biomass burning and a terrigenous local source.
Collapse
Affiliation(s)
- Roberta Zangrando
- Institute for the Dynamics of Environmental Processes-CNR , Venice, 30123 Italy.
| | | | | | | | | | | | | | | |
Collapse
|