1
|
Pochivalov A, Fedorova A, Yakimova N, Safonova E, Bulatov A. Primary amine citrate-based supramolecular designer solvent: Preconcentration of ochratoxin A for determination in foods by liquid chromatography. Anal Chim Acta 2024; 1285:341991. [PMID: 38057045 DOI: 10.1016/j.aca.2023.341991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Supramolecular solvents are nanostructured liquids that are separated from colloidal solutions of amphiphilic compounds as a result of self-assembly of amphiphiles and coacervation under changing conditions. They are considered to be designer solvents as their properties can be tailored to a specific analytical task by controlling the conditions of their formation (amphiphile, coacervation inducer, medium, concentration of components). The discovery of new extraction systems based on supramolecular solvents and their application to relevant analytical tasks are of great importance for the advancement of environmentally-friendly sample preparation. RESULTS A novel green liquid-phase microextraction approach involving in situ formation of 1-octylamine citrate followed by preconcentration of ochratoxin A from aqueous extract of food sample in supramolecular solvent droplets was developed. The extraction system was carefully characterized. The density of the solvent allowed it to be to retrieved from the extraction system by its solidification. The alkaline nature of the obtained extract allowed the use of acetic acid for its dissolution instead of more toxic organic solvents followed by high-performance liquid chromatography with fluorometric detection. An excellent extraction recovery of 99 % and a satisfactory enrichment factor of 8.3 were achieved. The limit of detection was 0.5 μg kg-1, while the calibration plot was linear over the range of 1.5-50 μg kg-1. Cereal and roasted coffee bean samples were successfully analyzed with a relative bias less than 20 %. SIGNIFICANCE In the present work, a phenomenon of supramolecular solvent formation based on primary amine citrate was presented for the first time. Tetrabutylammonium bromide was investigated as a coacervation agent in an extraction system, and possible interactions responsible for its ability to induce phase separation in a micellar solution of primary amine citrate were described. The critical micelle concentration of 1-octylamine citrate in aqueous solution of tetrabutylammonium bromide was firstly determined.
Collapse
Affiliation(s)
- Aleksei Pochivalov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St, Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.
| | - Anastasia Fedorova
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St, Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Nina Yakimova
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St, Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Evgenia Safonova
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St, Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St, Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
2
|
Li X, Ma W, Ma Z, Zhang Q, Li H. Recent progress in determination of ochratoxin a in foods by chromatographic and mass spectrometry methods. Crit Rev Food Sci Nutr 2021; 62:5444-5461. [PMID: 33583259 DOI: 10.1080/10408398.2021.1885340] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ochratoxin A is a highly toxic mycotoxin and has posed great threat to human health. Due to its serious toxicity and wide contamination, great efforts have been made to develop reliable determination methods. In this review, analytical methods are comprehensively summarized in terms of sample preparation strategy and instrumental analysis. Detailed method is described according to the food commodities in the order of cereal, wine, coffee, beer, cocoa, dried fruit and spice. This review mainly focuses on the recent advances, especially reported in the last decade. At last, challenges and perspectives are also discussed to achieve better advancement and promote practical application in this field.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| |
Collapse
|
3
|
Lyu H, Sun H, Zhu Y, Wang J, Xie Z, Li J. A double-recognized aptamer-molecularly imprinted monolithic column for high-specificity recognition of ochratoxin A. Anal Chim Acta 2019; 1103:97-105. [PMID: 32081193 DOI: 10.1016/j.aca.2019.12.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
In this study, a double-recognized aptamer-molecularly imprinted monolithic column (Apt-MIP monolithic column) was prepared by introducing both aptamer and MIP to reduce non-specific adsorption. Its preparation parameters such as the time of photo-initiation, the dosage of photo-initiator and the concentration of aptamer were investigated in detail. The recovery ratios of ochratoxin A (OTA) to ochratoxin B (OTB) on Apt-MIP monolithic column, Apt monolithic column and MIP monolithic column were 116.1, 40.8 and 69, respectively. Even if the concentration of OTB was 10 times that of OTA, the recovery of OTB was only about 2.9%. Applied to beer samples, the prepared Apt-MIP monolithic column drastically resisted background adsorption and the high-specificity recognition for OTA was obtained with the recoveries of 95.5-105.9%. This work provided a simple and effective method to selectively identify OTA from complex samples.
Collapse
Affiliation(s)
- Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Haoran Sun
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yimen Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jun Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zenghong Xie
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Jinxia Li
- Lanzhou Uranium Enrichment Plant, Lanzhou, 730065, China
| |
Collapse
|
4
|
Qu J, Xie H, Zhang S, Luo P, Guo P, Chen X, Ke Y, Zhuang J, Zhou F, Jiang W. Multiplex Flow Cytometric Immunoassays for High-Throughput Screening of Multiple Mycotoxin Residues in Milk. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-018-01412-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Huertas-Pérez JF, Arroyo-Manzanares N, García-Campaña AM, Gámiz-Gracia L. Solid phase extraction as sample treatment for the determination of Ochratoxin A in foods: A review. Crit Rev Food Sci Nutr 2018; 57:3405-3420. [PMID: 26744990 DOI: 10.1080/10408398.2015.1126548] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by two main types of fungi, Aspergillus and Penicillium species. OTA is a natural contaminant found in a large number of different matrices and is considered as a possible carcinogen for humans. Hence, low maximum permitted levels in foods have been established by competent authorities around the world, making essential the use of very sensitive analytical methods for OTA detection. Sample treatment is a crucial step of analytical methodology to get clean and concentrated extracts, and therefore low limits of quantification. Solid phase extraction (SPE) is a useful technique for rapid and selective sample preparation. This sample treatment enables the concentration and purification of analytes from the sample solution or extract by sorption on a solid sorbent. This review is focused on sample treatment procedures based on SPE prior to the determination of OTA in food matrices, published from 2010.
Collapse
Affiliation(s)
- J Fernando Huertas-Pérez
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Natalia Arroyo-Manzanares
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Ana M García-Campaña
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Laura Gámiz-Gracia
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| |
Collapse
|
6
|
Clemente I, Aznar M, Nerín C. Effect of an active label based on benzyl isothiocyanate on the morphology and ochratoxins production of Aspergillus ochraceus. Food Res Int 2017; 101:61-72. [DOI: 10.1016/j.foodres.2017.08.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/31/2017] [Accepted: 08/27/2017] [Indexed: 11/24/2022]
|
7
|
Homogeneous Electrochemical Method for Ochratoxin A Determination Based on Target Triggered Aptamer Hairpin Switch and Exonuclease III-Assisted Recycling Amplification. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0771-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
|
9
|
Berthiller F, Brera C, Crews C, Iha M, Krsha R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stroka J, Whitaker T. Developments in mycotoxin analysis: an update for 2013-2014. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1840] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights developments in the determination of mycotoxins over a period between mid-2013 and mid-2014. It continues in the format of the previous articles of this series, emphasising on analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone. The importance of proper sampling and sample preparation is briefly addressed in a dedicated section, while another chapter summarises new methods used to analyse botanicals and spices. As LC-MS/MS instruments are becoming more and more widespread in the determination of multiple classes of mycotoxins, another section is focusing on such newly developed multi-mycotoxin methods. While the wealth of published methods during the 12 month time span makes it impossible to cover every single one, this exhaustive review nevertheless aims to address and briefly discuss the most important developments and trends.
Collapse
Affiliation(s)
- F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - C. Brera
- Department of Veterinary Public Health and Food Safety — GMO and Mycotoxins Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.H. Iha
- Laboratório I de Ribeiro Preto, Instituto Adolfo Lutz, CEP 14085-410, Ribeiro Preto, SP, Brazil
| | - R. Krsha
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola, 122/O, 70126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N University St, Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola, 122/O, 70126 Bari, Italy
| | - J. Stroka
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, 2440 Geel, Belgium
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, Raleigh, NC 27695-7625, USA
| |
Collapse
|