1
|
Maneeratanachot S, Kanatharana P, Thammakhet-Buranachai C, Wattanasin P. A polypyrrole-cotton pad sorbent as micro-solid phase extractor enclosed in tea bag envelope for determination of synthetic antioxidants in non-alcoholic beverage products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:334-344. [PMID: 36974485 DOI: 10.1080/03601234.2023.2192635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A polypyrrole (PPy)-cotton pad sorbent enclosed in tea bag envelope was developed and used in micro-solid phase extraction (µ-SPE) for the determination of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). After extraction, the extract was qualified and quantified by a gas chromatograph equipped with a flame ionization detector (GC-FID). Parameters influencing this developed method and the efficiency of µ-SPE were studied and optimized. Under the optimal conditions, the developed method provided good linearity in a concentration range of 0.100-100 µg L-1 for BHA and 0.050-50 µg L-1 for BHT, respectively. The limits of detection were 39.27 ± 0.52 ng L-1 for BHA and 16.96 ± 0.17 ng L-1 for BHT. Satisfactory relative recoveries of BHA and BHT were achieved in the range from 86.8 ± 1.9 to 117.1 ± 2.3% with acceptable relative standard deviation (RSD) below 8.1%. Good reproducibility was obtained with RSDs < 3.1%, for n = 6. The developed adsorbent is easy to operate, low cost, eco-friendly, reusable, with high extraction efficiency, and was successfully applied in the simultaneous synthetic antioxidant determination of non-alcoholic beverage samples.
Collapse
Affiliation(s)
- Suwatchanee Maneeratanachot
- Faculty of Science, Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Proespichaya Kanatharana
- Faculty of Science, Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Chongdee Thammakhet-Buranachai
- Faculty of Science, Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Panwadee Wattanasin
- Faculty of Science, Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
2
|
Zhavoronok MF, Vakh C, Bulatov A. Automated primary amine-based supramolecular solvent microextraction with monoterpenoid as coacervation agent before high-performance liquid chromatography. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Lakeev AP, Yanovskaya EA, Yanovsky VA, Andropov MO, Frelikh GA, Yu Chukicheva I, Kutchin AV. LC-MS/MS method for the determination of a semi-synthetic phenolic antioxidant 2,6-diisobornyl-4-methylphenol in rats after different administration routes. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1213:123537. [PMID: 36455390 DOI: 10.1016/j.jchromb.2022.123537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
IBP (2,6-diisobornyl-4-methylphenol) is a small drug molecule with antioxidant properties considered to be a promising neuro-, cardio-, and retinoprotective agent. In this study, a bioanalytical LC-MS/MS method for its determination in rat plasma was developed using 11H-indeno[1,2-b]quinoxalin-11-one oxime as an internal standard (IS). The analytes were extracted from plasma by liquid-liquid extraction technique using isopropyl alcohol:chloroform mixture (1:5, v/v) followed by evaporation and reconstitution of the residues in acetonitrile. The chromatographic separation was carried out on the EC Nucleodur C8 ec column (150 × 4.6 mm, 5 μm) under an isocratic elution mode using acetonitrile and water containing 0.1% (v/v) formic acid (97:3, v/v) as a mobile phase at a flow rate of 0.55 mL/min (40 °C). The IS and IBP were eluted at 3.79 ± 0.02 and 6.30 ± 0.02 min, respectively. The total analysis time was 7.00 min. Multiple reaction monitoring was used to conduct the MS/MS detection in the negative ion mode with transitions at m/z 245.9 → 214.9 (IS) and 379.2 → 256.0 (IBP). Validation studies of the developed method revealed good linearity over the range of 10-5,000 ng/mL. Within- and between-run accuracy was in the range of 92-110%, while within- and between-run precision was below 8%. Additionally, low matrix effects and high recovery (above 98%) were observed. IBP remained stable in rat plasma at room temperature for 4 h, at -80 °C for 21 days, over three freeze-thaw cycles, under vacuum concentrator (45 °C, dried residues) and auto-sampler (15 °C, processed samples) temperatures for 1 h and 24 h, respectively. Subsequently, the validated LC-MS/MS method has been successfully applied to quantitate IBP in actual plasma samples after a single oral, intramuscular, and subcutaneous dose of IBP (10 mg/kg in the peach oil) to rats. Pharmacokinetic studies show that more rapid and complete IBP absorption with a satisfactory excretion rate were observed after oral administration route compared to the intramuscular and subcutaneous ones.
Collapse
Affiliation(s)
- Alexander P Lakeev
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia; Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Elena A Yanovskaya
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia; Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Vyacheslav A Yanovsky
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia
| | - Mikhail O Andropov
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia
| | - Galina A Frelikh
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia
| | - Irina Yu Chukicheva
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar 167000, Russia
| | - Aleksandr V Kutchin
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar 167000, Russia
| |
Collapse
|
4
|
Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207137. [PMID: 36296730 PMCID: PMC9611030 DOI: 10.3390/molecules27207137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Antioxidants are food additives largely employed to inhibit oxidative reactions in foodstuffs rich in oils and fat lipids, extending the shelf life of foodstuffs and inhibiting alterations in color, flavor, smell, and loss of nutritional value. However, various research has demonstrated that the inadequate use of synthetic antioxidants results in environmental and health problems due to the fact that some of these compounds present toxicity, and their presence in the human body, in high concentrations, is related to the development of some cancer types and other diseases. Therefore, the development of analytical methods for identifying and quantifying synthetic antioxidants in foodstuffs is fundamental to quality control and in ensuring consumer food safety. This review describes the recent chromatographic and electrochemical techniques used in the detection of synthetic phenolic antioxidants in foodstuffs, highlighting the main characteristics, advantages and disadvantages of these methods, and specific typical features, which include extraction methods for sample preparation and materials used in the working electrode construction, considering chromatographic and voltammetric methods, since these specific features influence the efficiency in the analysis.
Collapse
|
5
|
Wang H, Liu X, Tu M, Xu X, Yang S, Chen D. Current Sample Preparation Methods and Analytical Techniques for the Determination of Synthetic Antioxidants in Edible Oils. J Sep Sci 2022; 45:3874-3886. [PMID: 35984364 DOI: 10.1002/jssc.202200358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Synthetic antioxidants play a critical role in the storage and process of edible oil due to that they can retard lipid oxidation, maintain the quality of oils, and prolong the shelf life. However, a series of studies have proved the potential risks of synthetic antioxidants for human health when consumed in excess, and many countries have established the permitted amounts of synthetic antioxidants in oils. Thus, the accurate quantification of synthetic antioxidants in edible oils is necessary, and there have developed various analytical methods involved in chromatographical, electrochemical, and spectroscopic methods. Owing to the complex matrix and the incompatibility between the oil sample and the detection instrument, sample preparation is usually adopted prior to the instrument detection to improve the detection effectiveness. The current review aims to provide a comprehensive overview of the recently developed sample preparation methods and analytical techniques applied to determine synthetic antioxidants in edible oils from 2010 to present, with emphasis on the sample preparation methods combined with separation-based analytical techniques such CE and LC with various detectors. The advantages and limitations of some typical analytical methods are discussed and some insights in the future perspectives are also provided in this review. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Honglei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xueting Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menglin Tu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xia Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Occurrence of synthetic phenolic antioxidants in foodstuffs from ten provinces in China and its implications for human dietary exposure. Food Chem Toxicol 2022; 165:113134. [PMID: 35588985 DOI: 10.1016/j.fct.2022.113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022]
Abstract
Synthetic phenolic antioxidants (SPAs) are widely used as food additives to delay the oxidation rate of oils and oil products. The concentrations and compositions of SPAs in Chinese residents' most popular daily foods and the resulting exposure risk of SPAs are not clear. Therefore, this study collected food samples in 13 food categories (n = 289) from 10 provinces in China. At least one of the SPAs was detected in approximately 99.7% of foodstuffs, and the concentration of ∑SPAs ranged from not detected to 7830 (geometric mean (GM): 296 ng/g wet weight). 2,6-2 tert butyl p-1,4-benzoquinone (BHT-Q) was the main transformation product, but SPAs in food tend to exist in the parent form. A significant difference between food categories was analyzed. The highest GM of ΣSPAs occurred in cereals and cereal products, which was approximately 8 times higher than that in beverages. The estimated daily intakes of ΣSPAs in Chinese preschoolers, school-age children, adults and elderly individuals were 22200, 9970, 7540 and 7700 ng/kg bw/day, respectively. The exposure risks of SPAs decreased with age. This is the first simultaneous analysis of SPAs in multiple provinces and multiple categories of foodstuffs.
Collapse
|
7
|
Li Y, Min Q, Wang Y, Zhuang X, Hao X, Tian C, Fu X, Luan F. A portable visual coffee ring based on carbon dot sensitized lanthanide complex coordination to detect bisphenol A in water. RSC Adv 2022; 12:7306-7312. [PMID: 35424689 PMCID: PMC8982287 DOI: 10.1039/d2ra00039c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, a ratiometric fluorescence sensor along with a portable coffee ring visualized detection method for bisphenol A (BPA) was developed based on carbon dots. The probe was formed by the coordination polymerization of Eu3+ and 5'-adenosine monophosphate on the surface of carbon dots containing a large number of hydroxyl and carbonyl groups. The results showed that the fluorescence intensity ratio and the concentration of BPA had a good linear relationship in a wide range of 0.1-100 μM with a detection limit of 20 nM (S/N = 3). The recoveries of the added standard BPA in water samples ranged from 91.80 to 102.7% with relative standard deviation values no more than 1.84% (n = 3). In addition, the changes of the fluorescence color of the CDs@Eu-AMP suspension with different BPA concentrations can be easily visualized under a UV lamp by the naked eye, which highlights the great potential of the coffee ring detection method for the fast and convenient monitoring of BPA in real water samples.
Collapse
Affiliation(s)
- Yixiao Li
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Qi Min
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Yunfei Wang
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xiaowen Hao
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xiuli Fu
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| |
Collapse
|
8
|
Du B, Shen M, Pan Z, Zhu C, Luo D, Zeng L. Trace analysis of multiple synthetic phenolic antioxidants in foods by liquid chromatography-tandem mass spectrometry with complementary use of electrospray ionization and atmospheric pressure chemical ionization. Food Chem 2021; 375:131663. [PMID: 34848092 DOI: 10.1016/j.foodchem.2021.131663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/20/2022]
Abstract
This study presented a universal LC-MS/MS method for trace analysis of multiple synthetic phenolic antioxidants (SPAs) in foods by complementary use of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). The analytes included not only the well-known BHT and BHA but also 18 high molecular weight SPAs. The method utilized APCI to achieve sensitive analysis of BHT, Irganox 1010, Irganox 330, and Irganox 3125 based on the finding that APCI significantly improved the sensitivity of these weakly acidic or slightly polar SPAs, and utilized ESI to obtain sensitive analysis of other SPAs. Additionally, the method avoided background contamination by using effective measures including installation of a trapping column in the LC system. Method performance assessment showed satisfactory sensitivity, linearity, accuracy, and precision for analysis of SPAs in vegetable oil, milk powder, and baby fruit puree. Method application revealed widespread contamination of foods with BHT, Irganox 1010, and Irganox 1076.
Collapse
Affiliation(s)
- Bibai Du
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Mingjie Shen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Zibin Pan
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Chunyou Zhu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Dan Luo
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
9
|
Wang W, Xiong P, Zhang H, Zhu Q, Liao C, Jiang G. Analysis, occurrence, toxicity and environmental health risks of synthetic phenolic antioxidants: A review. ENVIRONMENTAL RESEARCH 2021; 201:111531. [PMID: 34146526 DOI: 10.1016/j.envres.2021.111531] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
The continuous improvement of living standards is related to higher requirements for the freshness and taste of food. For example, synthetic phenolic antioxidants (SPAs) are added to fats and fried foods as food additives to minimize the oxidative rancidity of oils and fats. Hence, the global use of SPAs is increasing year by year. Dibutyl hydroxytoluene is one of the widely used SPAs, often in combination with butyl hydroxyanisole or gallate SPAs. The extensive use of these compounds makes them and their transformation products to be widespread in various environmental matrices, including indoor dust, wastewater, river water, sewage sludge, and sediment, as well as human samples, such as nails and urine, at concentrations varying from nanogram per gram (ng/g) to microgram per gram (μg/g). Animal experiments have shown that high-dose SPA exposure is toxic, which may lead to DNA damage and mismatches and the development of cancerous tumors. Since the biosphere shares the same set of genetic codes, humans and animals have many identical or similar feedback mechanisms and information pathways. Therefore, the damage of SPAs to animals may also threaten human health. This review discusses the properties, occurrence, analysis, and environmental health risks of typical SPAs, including butyl hydroxyanisole, dibutyl hydroxytoluene, tert-butylhydroquinone, propyl gallate, octyl gallate, and lauryl gallate, used as food additives. In addition, AO2246, which is used in food packaging bags, is also considered. Future research directions on SPAs and their transformation products (TPs) are identified and discussed.
Collapse
Affiliation(s)
- Wanyi Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ping Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guibin Jiang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Amino acids- based hydrophobic natural deep eutectic solvents as a green acceptor phase in two-phase hollow fiber-liquid microextraction for the determination of caffeic acid in coffee, green tea, and tomato samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Hu X, Zhang L, Xia H, Peng M, Zhou Y, Xu Z, Peng X. Dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the determination of phenolic compounds in environmental water samples. J Sep Sci 2021; 44:1510-1520. [PMID: 33492709 DOI: 10.1002/jssc.202001055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Dispersive liquid-liquid microextraction has garnered increasing attention in sample preparation due to its rapid and efficient extraction process. In this study, a new terpineol-based hydrophobic deep eutectic solvent was firstly synthesized by mixing α-terpineol with 1-octanoic acid, and then applied to analysis of phenols from water samples by dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and diode array detection. Infrared spectroscopy indicated that hydrogen bonding was responsible for the formation of deep eutectic solvent between α-terpineol and 1-octanoic acid. After optimization of several parameters, such as the type and volume of deep eutectic solvent and the disperser, pH and ionic strength of sample solution, the developed method exhibited excellent extraction performance to the phenols with the enrichment factors from 27 to 32. Good linearity was acquired ranging from 5 to 5000 μg/L, and detection of limits of the proposed method for the phenols ranged from 0.15 to 0.38 μg/L. The recoveries measured by spiked samples at three concentration levels ranged from 81.6 to 99.3%, and precision was found with intra- and inter-day relative standard deviations less than 8.7 and 9.2%, respectively. Finally, the proposed method was successfully applied to the determination of the phenols in environmental water samples.
Collapse
Affiliation(s)
- Xizhou Hu
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, P. R. China.,School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Luyun Zhang
- College of Basic Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Hong Xia
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, P. R. China
| | - Maoming Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, P. R. China
| | - Youxiang Zhou
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, P. R. China
| | - Zhimin Xu
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Xitian Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, P. R. China
| |
Collapse
|
12
|
Gupta MK, Anand A, Asati A, Thati R, Katragunta K, Agarwal R, Mudiam MKR. Quantitative determination of phenolic antioxidants in fruit juices by GC-MS/MS using automated injector port silylation after QuEChERS extraction. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Development of microwave-assisted extraction and dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry for the determination of organic additives in biodegradable mulch films. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Zhao W, Jing X, Tian Y, Feng C. Magnetic Fe3O4 @ porous activated carbon effervescent tablet-assisted deep eutectic solvent-based dispersive liquid–liquid microextraction of phenolic endocrine disrupting chemicals in environmental water. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Bodur S, Erarpat S, Dalgıç Bozyiğit G, Selali Chormey D, Öz E, Özdoğan N, Bakırdere S. A sensitive determination method for trace bisphenol A in bottled water and wastewater samples: Binary solvent liquid phase microextraction-quadrupole isotope dilution-gas chromatography-mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Mir-Michael Mousavi, Javanmardi F, Andishmand H, Momeni M, Mahmoudpour M. Vortex and Ultrasound-Assisted Surfactant-Enhanced Emulsification Microextraction for the Determination of Pesticide Residues in Honey using Gas Chromatography–Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820090142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Afshar Mogaddam MR, Farajzadeh MA, Mohebbi A, Nemati M. Hollow fiber–liquid phase microextraction method based on a new deep eutectic solvent for extraction and derivatization of some phenolic compounds in beverage samples packed in plastics. Talanta 2020; 216:120986. [DOI: 10.1016/j.talanta.2020.120986] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 11/15/2022]
|
18
|
Abstract
In order to analyze the mycotoxins in corn, the modified QuEChERS high-performance liquid chromatography was applied to extract, clean up, and detect mycotoxins in a nonpolar system. The impurities such as fat and protein were removed from the corn sample, and the impurities in the sample solution have almost no effect on extraction efficiency. The proposed method leads to a greater choice of mycotoxin-extraction solvents in high-fat-solid samples. An appropriate extraction solvent was selected, the pretreatment conditions were optimized, and the extraction and cleanup of mycotoxins in high-fat solids were enhanced. By changing the experiment parameters, this method can be further used for the extraction and analysis of mycotoxins in complex samples (nonfat, low-fat, or high-fat). This method achieves good linearity in the range of 2.5–1000 μg/kg with the correlation coefficients for all analytes in the range of 0.9975 to 0.9989. The acceptable standard deviations for intraday and interday precision were 1.8–4.3% and 3.2–5.2%, respectively, with recoveries from 89.7 to 105.9%.
Collapse
|
19
|
Naebi M, Jamshidi MA, Farajzadeh MA, Abolhassni J, Mogaddam MRA. In-process prepared deep eutectic solvent based homogeneous liquid-liquid microextraction for the determination of irgaphos 168 and irganox 1010 in polypropylene packed drinks. J Sep Sci 2020; 43:2850-2857. [PMID: 32363747 DOI: 10.1002/jssc.202000148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 11/07/2022]
Abstract
In situ synthesis of a deep eutectic solvent and homogeneous liquid-liquid microextraction performed in a narrow bore tube was developed for efficient extraction of irgaphos 168 and irganox 1010 in doogh and water samples packed in polypropylene packages. First, pH of the aqueous sample solutions containing the analytes is adjusted at 9. Then a hydrogen bond acceptor (choline chloride) and a hydrogen bond donor (oleic acid) are dissolved in the solution and vortexed to obtain a homogeneous solution. The solution is filled into a narrow bore tube, in which its bottom was clogged by a septum. Then hydrochloric acid solution is injected into the solution by a syringe. The tube is placed in an ultrasonic bath. During this step, the droplets of choline chloride:oleic acid deep eutectic solvent are produced. The method indicated high enrichment factor (435 for irgaphos 168 and 488 for irganox 1010), low limits of detection (0.03 and 0.09 ng/mL for irgaphos 168 and irganox 1010, respectively) and quantification (0.13 and 0.29 ng/mL for irgaphos 168 and irganox 1010), good recovery (74 and 83% for irgaphos 168 and irganox 1010, respectively), and satisfactory repeatabilities (relative standard deviations ≤12%) can be obtained using the developed method.
Collapse
Affiliation(s)
- Maryam Naebi
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Arabli Jamshidi
- Department of Analytical Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Near East University, North Cyprus, Turkey
| | - Jafar Abolhassni
- Department of Analytical Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Mokhtari N, Torbati M, Farajzadeh MA, Afshar Mogaddam MR. Synthesis and characterization of phosphocholine chloride-based three-component deep eutectic solvent: application in dispersive liquid-liquid microextraction for determination of organothiophosphate pesticides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2364-2371. [PMID: 31853973 DOI: 10.1002/jsfa.10203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/21/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND A new type of deep eutectic solvent based on three components using phosphate salts has been synthesized, characterized, and applied in the extraction of eight organothiophosphate pesticides from honey samples. In this study, the deep eutectic solvent was prepared from phosphocholine choline chloride as a hydrogen bond acceptor and dichloroacetic acid and decanoic acid as hydrogen bond donors. The method consisted of two steps in which initially the analytes were extracted from the samples into a water-miscible organic solvent. In the second step, the extracted phase was mixed with the prepared deep eutectic solvent and the mixture was used in the following dispersive liquid-liquid microextraction method. RESULTS The method was validated under optimal conditions, and it was found that it has low limits of detection (0.05-0.10 ng g-1 ) and quantification (0.19-0.36 ng g-1 ), good linearity (r2 ≥ 0.994), broad linearity (0.36-1000 ng g-1 ), and satisfactory repeatability (relative standard deviation ≤10% for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 2 ng g-1 of each analyte). CONCLUSION The proposed method was applied in different honey samples, and malathion was found at a concentration of 29 ng g-1 in one sample. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nasser Mokhtari
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Mersin, Turkey
| | | |
Collapse
|
21
|
Analytical Scheme for Simultaneous Determination of Phthalates and Bisphenol A in Honey Samples Based on Dispersive Liquid-Liquid Microextraction Followed by GC-IT/MS. Effect of the Thermal Stress on PAE/BP-A Levels. Methods Protoc 2020; 3:mps3010023. [PMID: 32213842 PMCID: PMC7189663 DOI: 10.3390/mps3010023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/26/2022] Open
Abstract
In this paper, an analytical protocol was developed for the simultaneous determination of phthalates (di-methyl phthalate DMP, di-ethyl phthalate DEP, di-isobutyl phthalate DiBP, di-n-butyl phthalate DBP, bis-(2-ethylhexyl) phthalate DEHP, di-n-octyl phthalate DNOP) and bisphenol A (BPA). The extraction technique used was the ultrasound vortex assisted dispersive liquid–liquid microextraction (UVA-DLLME). The method involves analyte extraction using 75 µL of benzene and subsequent analysis by gas chromatography combined with ion trap mass spectrometry (GC-IT/MS). The method is sensitive, reliable, and reproducible with a limit of detection (LOD) below 13 ng g−1 and limit of quantification (LOQ) below 22 ng g−1 and the intra- and inter-day errors below 7.2 and 9.3, respectively. The method developed and validated was applied to six honey samples (i.e., four single-use commercial ones and two home-made ones. Some phthalates were found in the samples at concentrations below the specific migration limits (SMLs). Furthermore, the commercial samples were subjected to two different thermal stresses (24 h and 48 h at 40 °C) for evidence of the release of plastic from the containers. An increase in the phthalate concentrations was observed, especially during the first phase of the shock, but the levels were still within the limits of the regulations.
Collapse
|
22
|
Farajzadeh MA, Abbaspour M, Kazemian R. Synthesis of a green high density deep eutectic solvent and its application in microextraction of seven widely used pesticides from honey. J Chromatogr A 2019; 1603:51-60. [DOI: 10.1016/j.chroma.2019.06.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
|
23
|
Biosensor design using an electroactive label-based aptamer to detect bisphenol A in serum samples. J Biosci 2019. [DOI: 10.1007/s12038-019-9921-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Xue J, Zhu X, Wu X, Shi T, Zhang D, Hua R. Self-acidity induced effervescence and manual shaking-assisted microextraction of neonicotinoid insecticides in orange juice. J Sep Sci 2019; 42:2993-3001. [PMID: 31301158 DOI: 10.1002/jssc.201900473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 11/07/2022]
Abstract
A novel dispersive liquid-liquid microextraction that combines self-induced acid-base effervescent reaction and manual shaking, coupled with ultra high performance liquid chromatography with tandem mass spectrometry was developed for simultaneous determination of ten neonicotinoid insecticides and metabolites in orange juice. An innovative aspect of this method was the utilization of the acidity of the juice for a self-reaction between acidic components contained in the juice sample and added sodium carbonate which generated carbon dioxide bubbles in situ, accelerating the analytes transfer to the extractant of 1-undecanol. The total acid content of juice sample was measured to produce the maximum amount of bubbles with minimum usage of carbonate. Manual shaking was subsequently adopted and was proven to enhance the extraction efficiency. The factors affecting the performance, including the type and the amount of the carbon dioxide source and extractant, and ionic strength were optimized. Compared with conventional methods, this approach exhibited low limits of detection (0.001-0.1 µg/L), good recoveries (86.2-103.6%), high enrichment factors (25-50), and negligible matrix effects (-12.3-13.7%). The proposed method was demonstrated to provide a rapid, practical, and environmentally friendly procedure due to no acid reagent, toxic solvent, or external energy requirement, giving rise to potential application on other high acid-content matrices.
Collapse
Affiliation(s)
- Jiaying Xue
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Xianbin Zhu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Taozhong Shi
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Dong Zhang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, P. R. China
| |
Collapse
|
25
|
Combination of Vortex-Assisted Liquid–Liquid Extraction and Air-Assisted Liquid–Liquid Microextraction for the Extraction of Bisphenol A and Bisphenol B in Canned Doogh Samples. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1260-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Screening of Phenolic Antioxidants in Edible Oils by HPTLC-DPPH Assay and MS Confirmation. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1295-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
27
|
Li J, Bi Y, Yang H, Wang D. Antioxidative Properties and Interconversion of tert-Butylhydroquinone and tert-Butylquinone in Soybean Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10598-10603. [PMID: 29129059 DOI: 10.1021/acs.jafc.7b04517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During the process of antioxidation of tert-butylhydroquinone (TBHQ) in oil and fat systems, tert-butylquinone (TQ) can be formed, which has higher toxicity than TBHQ. The changes of TBHQ and TQ in edible oils at room temperature (RT) or under thermal treatment were investigated. Under thermal treatment, volatilization was the main pathway of TBHQ loss in edible oils. TQ was the main oxidation product of TBHQ under thermal treatment as well as at RT. The amount of TQ in thermally treated oils was much less than that in oils stored at RT due to the decreased amount of oxygen dissolved in oils and easy volatilization of TQ at high temperature. In addition, TQ can be reduced to TBHQ by reduction components in edible oils, but the conversion amount was very small. Thus, TQ, theoretically having no antioxidative property, presented a very weak antioxidative activity equivalent to that of BHA due to the presence of insignificant amount of TBHQ formed from TQ in edible oils. The narrow potential difference of 0.059 between oxidation and reduction peaks of TBHQ and TQ resulted in easy interconversion of TBHQ and TQ under the action of common oxidation and reduction substances which have a higher oxidation potential or a lower reduction potential than they have.
Collapse
Affiliation(s)
- Jun Li
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology , Lianhua Road, Zhengzhou 450001, Henan China
- Department of Biological and Agricultural Engineering, Kansas State University , Manhattan, Kansas 66506, United States
| | - Yanlan Bi
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology , Lianhua Road, Zhengzhou 450001, Henan China
| | - Huifang Yang
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology , Lianhua Road, Zhengzhou 450001, Henan China
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University , Manhattan, Kansas 66506, United States
| |
Collapse
|
28
|
Faraji M, Noorani M, Nasiri Sahneh B. Quick, Easy, Cheap, Effective, Rugged, and Safe Method Followed by Ionic Liquid-Dispersive Liquid–Liquid Microextraction for the Determination of Trace Amount of Bisphenol A in Canned Foods. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0635-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Mousavi MM, Nemati M, Alizadeh Nabili AA, mahmoudpour M, Arefhosseini S. Application of dispersive liquid–liquid microextraction followed by gas chromatography/mass spectrometry as effective tool for trace analysis of organochlorine pesticide residues in honey samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0939-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Mousavi MM, Arefhosseini S, Alizadeh Nabili AA, Mahmoudpour M, Nemati M. Development of an ultrasound-assisted emulsification microextraction method for the determination of chlorpyrifos and organochlorine pesticide residues in honey samples using gas chromatography with mass spectrometry. J Sep Sci 2016; 39:2815-22. [DOI: 10.1002/jssc.201600197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/01/2016] [Accepted: 05/11/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Mir-Michael Mousavi
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
- Students’ Research Committee, Faculty of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | | | | | - Mansour Mahmoudpour
- Faculty of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
- Students’ Research Committee, Faculty of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mahboob Nemati
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
- Food and Drug control Laboratories; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
31
|
Farajzadeh MA, Afshar Mogaddam MR. Low-density-solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography with flame ionization detection for the determination of synthetic phenolic antioxidants in milk samples. J Sep Sci 2016; 39:1160-7. [DOI: 10.1002/jssc.201501210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/23/2015] [Accepted: 01/02/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | | |
Collapse
|
32
|
Determination of Sudan Dyes in Juice Samples via Solidification of Ionic Liquid in Microwave-Assisted Liquid-Liquid Microextraction Followed by High-Performance Liquid Chromatography. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-015-0389-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|