1
|
Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Hogstrand C, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Vejdovszky K, Viviani B, Barregård L, Benford D, Dogliotti E, Francesconi K, Gómez Ruiz JÁ, Steinkellner H, Schwerdtle T. Risk assessment of complex organoarsenic species in food. EFSA J 2024; 22:e9112. [PMID: 39655151 PMCID: PMC11626214 DOI: 10.2903/j.efsa.2024.9112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The European Commission asked EFSA for a risk assessment on complex organoarsenic species in food. They are typically found in marine foods and comprise mainly arsenobetaine (AsB), arsenosugars and arsenolipids. For AsB, no reference point (RP) could be derived because of insufficient toxicity data. AsB did not show adverse effects in the two available repeat dose toxicity tests in rodents. It has not shown genotoxicity in in vitro assays. There is no indication of an association with adverse outcomes in human studies. The highest 95th percentile exposure for AsB was observed in 'Toddlers' with an estimate of 12.5 μg As/kg bw per day (AsB expressed as elemental arsenic). There is sufficient evidence to conclude that AsB at current dietary exposure levels does not raise a health concern. For glycerol arsenosugar (AsSugOH) a RP of 0.85 mg As/kg bw per day was derived based on the BMDL10 values for cognitive and motor function in mice. A margin of exposure (MOE) of ≥ 1000 would not raise a health concern. The highest 95th percentile estimate of exposure for AsSugOH (for adult consumers of red seaweed Nori/Laver) was 0.71 μg As/kg bw per day (AsSugOH expressed as elemental arsenic), which results in an MOE > 1000, not raising a health concern. Based on qualitative consideration of all identified uncertainties, it is regarded likely that the dietary exposures to AsB and AsSugOH do not raise a health concern. No conclusions could be drawn regarding other arsenosugars. No risk characterisation could be conducted for arsenolipids, due to the lack of data.
Collapse
|
2
|
Sadee BA, Galali Y, Zebari SMS. Recent developments in speciation and determination of arsenic in marine organisms using different analytical techniques. A review. RSC Adv 2024; 14:21563-21589. [PMID: 38979458 PMCID: PMC11228943 DOI: 10.1039/d4ra03000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Marine organisms play a vital role as the main providers of essential and functional food. Yet they also constitute the primary pathway through which humans are exposed to total arsenic (As) in their diets. Since it is well known that the toxicity of this metalloid ultimately depends on its chemical forms, speciation in As is an important issue. Most relevant articles about arsenic speciation have been investigated. This extended not only from general knowledge about As but also the toxicity and health related issues resulting from exposure to these As species from the food ecosystem. There can be enormous side effects originating from exposure to As species that must be measured quantitatively. Therefore, various convenient approaches have been developed to identify different species of As in marine samples. Different extraction strategies have been utilized based on the As species of interest including water, methanol and mixtures of both, and many other extraction agents have been explained in this article. Furthermore, details of hyphenated techniques which are available for detecting these As species have been documented, especially the most versatile and applied technique including inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Bashdar Abuzed Sadee
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Yaseen Galali
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Salih M S Zebari
- Department of Animal Resource, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| |
Collapse
|
3
|
Chen S, Guo Q, Zhou T, Liu L. Levels and Health Risk Assessment of Inorganic Arsenic, Methylmercury, and Heavy Metals in Edible Mushrooms Collected from Online Supermarket in China. Biol Trace Elem Res 2024; 202:1802-1815. [PMID: 37526876 DOI: 10.1007/s12011-023-03779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
Chromium (Cr), total arsenic (As), inorganic arsenic (iAs), cadmium (Cd), mercury (Hg), methylmercury (MeHg), and lead (Pb) were analyzed in in Agaricus blazei, Tricholoma matsutake, Pholiota nameko, agrocybe aegirit, Boletus edulis, Auricularia auricula, and Lentinus edodes collected from online supermarket in China from 2015 to 2017. The order of mean concentrations for the five heavy metals in edible mushrooms was As > Cd > Cr > Pb > Hg. No positive correlation was found between total As and iAs, nor between total Hg and MeHg. The contents of iAs were at a low level except for A. blazei samples. The contents of MeHg were at a low level in all test mushroom samples. And Cr, Cd, and Pb pollution were common problems in the test mushroom samples. The comprehensive factor pollution index was between 0.569 (A. auricula) and 3.056 (B. edulis). The THQ values for the five heavy metals from P. nameko, A. auricula, A. aegirit, and L. edodes samples were less than 1. The hazard index (HI) values of A. blazei, T. matsutake, and B. edulis samples for adults and children were greater than 1, indicating significant health hazard to the adults and children consumers. The cancer risk (CR) values for iAs ranged from 3.82 × 10- 6 (T. matsutake) to 8.61 × 10- 5 (A. blazei), indicating no potential carcinogenic risk to the consumers. The order for carcinogenic risk of each edible mushroom species was A. blazei > L. edodes > P. nameko > A. aegirit > A. auricula > B. edulis > T. matsutake.
Collapse
Affiliation(s)
- Shaozhan Chen
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Tianhui Zhou
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Liping Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
- School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Li M, Chen Z, Xiong Q, Mu Y, Xie Y, Zhang M, Ma LQ, Xiang P. Refining health risk assessment of arsenic in wild edible boletus from typical high geochemical background areas: The role of As species, bioavailability, and enterotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122148. [PMID: 37419204 DOI: 10.1016/j.envpol.2023.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Arsenic (As) is easily accumulated in wild Boletus. However, the accurate health risks and adverse effects of As on humans were largely unknown. In this study, we analyzed the total concentration, bioavailability, and speciation of As in dried wild boletus from some typical high geochemical background areas using an in vitro digestion/Caco-2 model. The health risk assessment, enterotoxicity, and risk prevention strategy after consumption of As-contaminated wild Boletus were further investigated. The results showed that the average concentration of As was 3.41-95.87 mg/kg dw, being 1.29-56.3 folds of the Chinese food safety standard limit. DMA and MMA were the dominant chemical forms in raw and cooked boletus, while their total (3.76-281 mg/kg) and bioaccessible (0.69-153 mg/kg) concentrations decreased to 0.05-9.27 mg/kg and 0.01-2.38 mg/kg after cooking. The EDI value of total As was higher than the WHO/FAO limit value, while the bioaccessible or bioavailable EDI suggested no health risks. However, the intestinal extracts of raw wild boletus triggered cytotoxicity, inflammation, cell apoptosis, and DNA damage in Caco-2 cells, indicating existing health risk assessment models based on total, bioaccessible, or bioavailable As may be not accurate enough. Given that, the bioavailability, species, and cytotoxicity should be systematically considered in accurate risk assessment. In addition, cooking mitigated the enterotoxicity along with decreasing the total and bioavailable DMA and MMA in wild boletus, suggesting that cooking could be a simple and effective way to decrease the health risks of consumption of As-contaminated wild boletus.
Collapse
Affiliation(s)
- Mengying Li
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Qing Xiong
- Environmental Health Institute, Center for Disease Control and Prevention of Yunnan Province, Kunming, 650022, China
| | - Yunzhen Mu
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Yumei Xie
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Mengyan Zhang
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ping Xiang
- Yunnan Provincial Innovative Research Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
5
|
Chen S, Liu L. Species composition and health risk assessment of arsenic in Agaricus blazei Murrill and Tricholoma matsutake from Yunnan Province, China. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Chen S, Liu L. Simultaneous Species Analysis of Arsenic, Selenium, Bromine, and Iodine in Bottled Drinking Water and Fruit Juice by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. ANAL SCI 2021; 37:1241-1246. [PMID: 33518582 DOI: 10.2116/analsci.20p399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A method for the simultaneous determination of arsenobetaine, arsenite, arsenate, dimethylarsinic acid, monomethylarsonic acid, selenite, selenate, bromate, bromide, iodate, and iodide in bottled drinking water and fruit juice samples was established by using high-performance liquid chromatography-inductively coupled plasma mass spectrometry. The separation of eleven compounds was performed on an ion exchange chromatography column (Dionex IonPac AS14) with 20 mmol L-1 (NH4)2CO3 (pH 10) and 50 mmol L-1 (NH4)2CO3 (pH 10) as a mobile phase. The limits of quantification of the method were 0.17 - 1.2 μg L-1 for the test compounds in bottled drinking water and 0.34 - 2.4 μg L-1 in fruit juice. The average recoveries ranged from 85.8 to 102.2%, and the relative standard deviations (RSDs) obtained in fortification recovery studies were generally <4.2% for bottled drinking water samples. The average recoveries ranged from 88.1 to 118.0% (except for iodate) for fruit juice sample.
Collapse
Affiliation(s)
- Shaozhan Chen
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control
| | - Liping Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control
| |
Collapse
|
7
|
Zou H, Zhou C, Li Y, Yang X, Wen J, Song S, Li C, Sun C. Speciation analysis of arsenic in edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. Food Chem 2020; 327:127033. [DOI: 10.1016/j.foodchem.2020.127033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/19/2023]
|
8
|
Zhang J, Barałkiewicz D, Wang Y, Falandysz J, Cai C. Arsenic and arsenic speciation in mushrooms from China: A review. CHEMOSPHERE 2020; 246:125685. [PMID: 31887488 DOI: 10.1016/j.chemosphere.2019.125685] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 05/22/2023]
Abstract
Arsenic (As) is a natural environmental contaminant to which humans are usually exposed in water, air, soil, and food. China is a typical high-As region, and also a great contributor of the world production of cultivated edible mushrooms and a region abundant in wild growing edible mushrooms. Mushrooms can accumulate different amounts of As and different As compounds, so potential health risk of As intake may exist to people who use mushrooms with elevated As contents as food or medicine. A systematic literature search was carried out for studies on As and As compounds in mushrooms from China. We compiled existing data from published sources in English or Chinese and provide an updated review of the findings on As in mushrooms associated with environments and health risks. Future perspectives for studies on As in mushrooms have also been discussed.
Collapse
Affiliation(s)
- Ji Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China; Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Method, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Jerzy Falandysz
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China; Environmental Chemistry & Ecotoxicology, University of Gdańsk, Gdańsk, 80-308, Poland; Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia.
| | - Chuantao Cai
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China.
| |
Collapse
|
9
|
Simultaneous multi-elemental speciation of As, Hg and Pb by inductively coupled plasma mass spectrometry interfaced with high-performance liquid chromatography. Food Chem 2020; 313:126119. [DOI: 10.1016/j.foodchem.2019.126119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
|
10
|
Zhang J, Barałkiewicz D, Hanć A, Falandysz J, Wang Y. Contents and Health Risk Assessment of Elements in Three Edible Ectomycorrhizal Fungi (Boletaceae) from Polymetallic Soils in Yunnan Province, SW China. Biol Trace Elem Res 2020; 195:250-259. [PMID: 31363991 DOI: 10.1007/s12011-019-01843-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Ectomycorrhizal fungi (EcMF) can mobilize mineral elements directly from insoluble mineral sources and accumulate various metallic elements and metalloids from soils to their fruiting bodies. Mushrooms from genus Boletus and its related genus are one of the most important EcMF which are consumed worldwide as wild edible mushrooms. Yunnan province (China) is a high biodiversity of genus Boletus mushrooms but is also an area with potential elevated contents of toxic elements in soil. Total contents of As, Ag, Ba, Cd, Co, Cr, Cs, Cu, Li, Mn, Ni, Pb, Rb, Sb, Sr, Tl, U, V, and Zn in three edible EcMF species collected from five sites of Yunnan were analyzed by inductively coupled plasma mass spectrometer. The highest contents for As, Cd, and Pb were 7.8 mg kg-1 dry weight (dw) in the caps of Butyriboletus roseoflavus, 3.4 mg kg-1 dw in the caps of B. roseoflavus, and 6.4 mg kg-1 dw in the stipes of Hemileccinum impolitum. Health risk assessment of As, Cd, and Pb indicated that the estimated exposure due to intakes of some mushroom samples from the sites were above the limits recommended by the Joint FAO/WHO Expert Committee on Food Additives. Since EcMF were considered as bioexclusors of Cr, higher Cr contents in the mushroom samples, compared with previous studies, indicated high geochemical background value of Cr in the sampling sites. Relatively higher V contents in mushrooms from family Boletaceae could also associate with the high V contents in Yunnan soil. Further work is needed to identify the places in Yunnan with geochemical anomalies resulting in high levels of toxic elements in EcMF.
Collapse
Affiliation(s)
- Ji Zhang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China.
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Method, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Anetta Hanć
- Department of Trace Element Analysis by Spectroscopy Method, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Jerzy Falandysz
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
- Environmental Chemistry & Ecotoxicology, University of Gdańsk, 80-309, Gdańsk, Poland
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| |
Collapse
|
11
|
Luvonga C, Rimmer CA, Yu LL, Lee SB. Analytical Methodologies for the Determination of Organoarsenicals in Edible Marine Species: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1910-1934. [PMID: 31999115 PMCID: PMC7250003 DOI: 10.1021/acs.jafc.9b04525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Setting regulatory limits for arsenic in food is complicated, owing to the enormous diversity of arsenic metabolism in humans, lack of knowledge about the toxicity of these chemicals, and lack of accurate arsenic speciation data on foodstuffs. Identification and quantification of the toxic arsenic compounds are imperative to understanding the risk associated with exposure to arsenic from dietary intake, which, in turn, underscores the need for speciation analysis of the food. Arsenic speciation in seafood is challenging, owing to its existence in myriads of chemical forms and oxidation states. Interconversions occurring between chemical forms, matrix complexity, lack of standards and certified reference materials, and lack of widely accepted measurement protocols present additional challenges. This review covers the current analytical techniques for diverse arsenic species. The requirement for high-quality arsenic speciation data that is essential for establishing legislation and setting regulatory limits for arsenic in food is explored.
Collapse
Affiliation(s)
- Caleb Luvonga
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Catherine A Rimmer
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Lee L Yu
- Analytical Chemistry Division , National Institute of Standards and Technology (NIST) , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Sang Bok Lee
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
12
|
Wang X, Liu L, Wang X, Ren J, Jia P, Fan W. Influence of humic acid on arsenic bioaccumulation and biotransformation to zebrafish: A comparative study between As(III) and As(V) exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113459. [PMID: 31708282 DOI: 10.1016/j.envpol.2019.113459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/27/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have indicated that natural organic matter in the aquatic environment could affect arsenic bioaccumulation and biotransformation to aquatic organisms. However, the differences between the effects of arsenite and arsenate exposure have not been studied and compared in fish exposure models. In this study, adult zebrafish (Danio rerio) were exposed to 5 mg/L inorganic As solutions, in the presence of a range of humic acid (HA) concentrations (1, 2.5, 5, 10, 20 mg/L) in 96 h waterborne exposure. Results showed that in the presence of HA, total As bioaccumulation was significantly reduced in zebrafish following arsenite exposure, while this reduction was not observed during arsenate exposure. The reduction in total arsenic bioaccumulation for arsenite exposure can be explained by the fact that HA forming a surface coating on the cell surface, hindering transport and internalization. However, this reduction in total As was not observed due to differences in uptake pathways for arsenate exposure. Results also showed that Arsenobetaine (AsB) was the main biotransformation product in zebrafish following inorganic As exposure, accounting for 44.8%-64.7% of extracted arsenic species in all exposure groups. The addition of HA caused levels of MMA and As(III) to decrease, while the distribution of AsB significantly increased in arsenite exposure groups. The increase in AsB could be because the As(III)-HA complex was formed, affecting the methylation of As(III). In contrast, the addition of HA to arsenate exposure groups, did not affect the reduction of As(V) to As(III) and therefore, an increase in the distribution of AsB was not observed in arsenate exposure groups. This study provides useful information on the mechanisms of toxicity, for improved risk assessment of As in natural aquatic environments.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Liping Liu
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xiangrui Wang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Jinqian Ren
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Pei Jia
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
13
|
Komorowicz I, Hanć A, Lorenc W, Barałkiewicz D, Falandysz J, Wang Y. Arsenic speciation in mushrooms using dimensional chromatography coupled to ICP-MS detector. CHEMOSPHERE 2019; 233:223-233. [PMID: 31176123 DOI: 10.1016/j.chemosphere.2019.05.130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 05/22/2023]
Abstract
This study concerns total arsenic (TAs) and arsenic species determination in three species of mushrooms collected in Yunnan, China. The purpose of this study was to check concentration level of arsenic in Boletus edulis, Tricholoma matsutake and Suillellus luridus, estimate arsenic bioaccessibility and find out which arsenic species occur in mushrooms to assess if they may pose a threat to human health. An analytical methodology based on ion chromatography (IC) hyphenated to inductively coupled plasma mass spectrometry (ICP-MS) with dynamic reaction cell (DRC) and size exclusion chromatography (SEC) with UV-Vis detection and ICP-DRC-MS detection. Ultrasound assisted extraction (UAE), microwave assisted extraction (MAE) and enzymatic assisted extraction (EAE) were applied. Quantification of As species in extracts was performed by IC/ICP-DRC-MS in the first dimension. Slightly better extraction efficiencies were obtained for MAE (from 75% to 90%) then for UAE. EAE was used for estimation of bioaccessibility by application of a modified BARGE bioaccessibility method (UBM) for in vitro studies. Bioaccessibility values were in the ranges of 73%-102%, 74%-115% and 18%-87% for step 1 (S1), for step 2 (S2) and for step 3 (S3) of EAE, respectively. Extracts obtained after EAE were subjected to SEC-UV-Vis/ICP-DRC-MS analysis as the second dimension. The main signal was obtained in the area of a molecular mass of ∼5 kDa for all mushroom extracts. Monitoring of an 50SO+ ion confirmed that this signal comes from As-protein. In sample of Boletus edulis additional signal occurred which is classified as unknown As-compound. Both signals require identification with another analytical technique.
Collapse
Affiliation(s)
- Izabela Komorowicz
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614, Poznań, Poland.
| | - Anetta Hanć
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614, Poznań, Poland
| | - Wiktor Lorenc
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614, Poznań, Poland
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 89b Umultowska Street, 61-614, Poznań, Poland
| | - Jerzy Falandysz
- Environmental Chemistry and Ecotoxicology, Gdańsk University, 63 Wita Stwosza Str. 80-308 Gdańsk, Poland; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia(1); Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| |
Collapse
|
14
|
Arsenic species in mushrooms, with a focus on analytical methods for their determination – A critical review. Anal Chim Acta 2019; 1073:1-21. [DOI: 10.1016/j.aca.2019.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/06/2023]
|
15
|
Chen S, Kimatu BM, Fang D, Chen X, Chen G, Hu Q, Zhao L. Effect of Ultrasonic Treatment on Transformations of Arsenic Species in Edible Mushrooms. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1639056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shuangyang Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Benard Muinde Kimatu
- Department of Dairy and Food Science and Technology, Egerton University, Egerton, Kenya
| | - Donglu Fang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guitang Chen
- Department of Food Quality and Safety, China Pharmaceutical University, Nanjing, China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Speciation of inorganic and organic species of mercury and arsenic in lotus root using high performance liquid chromatography with inductively coupled plasma mass spectrometric detection in one run. Talanta 2019; 199:620-627. [DOI: 10.1016/j.talanta.2019.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/19/2019] [Accepted: 03/02/2019] [Indexed: 12/13/2022]
|
17
|
Arsenic Species Analysis at Trace Level by High Performance Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometry. Int J Anal Chem 2019; 2019:3280840. [PMID: 31275389 PMCID: PMC6582848 DOI: 10.1155/2019/3280840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/20/2019] [Indexed: 11/17/2022] Open
Abstract
A sensitive and accurate simultaneous continuous analysis for six arsenic species including arsenobetaine (AsB), arsenocholine (AsC), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenite (AsIII), and arsenate (AsV) has been developed by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). An anion-exchange column of Hamilton PRP-X100 (Switzerland) was applied for separation of the six arsenic species with gradient elution of 1.25 mmol/L Na2HPO4 and 11.0 mmol/L KH2PO4 as the mobile phase A and 2.5 mmol/L Na2HPO4 and 22.0 mmol/L KH2PO4 as the mobile phase B. The linearity ranges for AsB, AsC, MMA, DMA, AsIII, and AsV were between 0.5 and 50.0 μg/L, and the detection limits of the six arsenic species were all within 0.01–0.35 ng/L. The relative standard deviations (RSDs) were within 2.26–3.68% and the recovery rates of samples ranged from 95 to 103%. The proposed method was applied for the arsenic speciation analysis of sediment pore-water samples, which were taken from the supernatant after centrifugation and filtration.
Collapse
|
18
|
Yu X, Liu C, Guo Y, Deng T. Speciation Analysis of Trace Arsenic, Mercury, Selenium and Antimony in Environmental and Biological Samples Based on Hyphenated Techniques. Molecules 2019; 24:E926. [PMID: 30866421 PMCID: PMC6429259 DOI: 10.3390/molecules24050926] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
In order to obtain a well understanding of the toxicity and ecological effects of trace elements in the environment, it is necessary to determine not only the total amount, but also their existing species. Speciation analysis has become increasingly important in making risk assessments of toxic elements since the toxicity and bioavailability strongly depend on their chemical forms. Effective separation of different species in combination with highly sensitive detectors to quantify these particular species is indispensable to meet this requirement. In this paper, we present the recent progresses on the speciation analysis of trace arsenic, mercury, selenium and antimony in environmental and biological samples with an emphasis on the separation and detection techniques, especially the recent applications of high performance liquid chromatography (HPLC) hyphenated to atomic spectrometry or mass spectrometry.
Collapse
Affiliation(s)
- Xiaoping Yu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Chenglong Liu
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yafei Guo
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tianlong Deng
- Tianjin Key Laboratory of Marine Resources and Chemistry, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
19
|
Zou H, Zhou C, Li Y, Yang X, Wen J, Hu X, Sun C. Occurrence, toxicity, and speciation analysis of arsenic in edible mushrooms. Food Chem 2019; 281:269-284. [PMID: 30658757 DOI: 10.1016/j.foodchem.2018.12.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/07/2018] [Accepted: 12/22/2018] [Indexed: 11/29/2022]
Abstract
Owing to the strong concentration and biotransformation of arsenic, the influence of some edible mushrooms on human health has attracted widespread attention. The toxicity of arsenic greatly depends on its species, so the speciation analysis of arsenic is of critical importance. The aim of the present review is to highlight recent advances in arsenic speciation analysis in edible mushrooms. We summarized the contents and distribution of arsenic species in some edible mushrooms, the methods of sample preparation, and the techniques for their identification and quantification. Stability of the arsenic species during sample pretreatment and storage is also briefly discussed.
Collapse
Affiliation(s)
- Haimin Zou
- West China School of Public Health, Sichuan University, Chengdu 610041, China; Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610047, China
| | - Chen Zhou
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Yongxin Li
- West China School of Public Health, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China
| | - Xiaosong Yang
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610047, China
| | - Jun Wen
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610047, China
| | - Xiaoke Hu
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610047, China
| | - Chengjun Sun
- West China School of Public Health, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China.
| |
Collapse
|
20
|
Yang JL, Li YJ, Yuan YH, Liang RP, Qiu JD. Target induced aggregation of Ce(III)-based coordination polymer nanoparticles for fluorimetric detection of As(III). Talanta 2018; 190:255-262. [DOI: 10.1016/j.talanta.2018.07.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
|
21
|
Guo LX, Zhang GW, Li QQ, Xu XM, Wang JH. Novel Arsenic Markers for Discriminating Wild and Cultivated Cordyceps. Molecules 2018; 23:molecules23112804. [PMID: 30380635 PMCID: PMC6278644 DOI: 10.3390/molecules23112804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/24/2018] [Accepted: 10/27/2018] [Indexed: 12/26/2022] Open
Abstract
Ophiocordyceps sinensis has been utilized in China and adjacent countries for thousands of years as a rare functional food to promote health and treat diverse chronic diseases. In recent years, adulterants are usually identified in the processed products of wild O. sinensis. However, the effective adulteration examination has to be additionally performed except their routine test, and accordingly is time- and money-consuming. Recently, arsenic determination has become a necessary test for confirming whether the concentrations of inorganic arsenic are over the O. sinensis limit. In this work, the contents of total arsenic and As species in cultivated O. sinensis, Cordyceps militaris, and other edible fungi were determined by ICP-MS and HPLC-ICP-MS. The results suggest that the As speciation exhibits a species-specific behavior, and accompanies the effect of the As background. The proportions of unknown organic As and contents of total As may be considered as sensitive markers for discriminating wild O. sinensis. This result provides a novel clue for discriminating wild and artificially cultivated mushrooms/their products, with emphasis on arsenic markers for authenticating wild O. sinensis.
Collapse
Affiliation(s)
- Lian-Xian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Gui-Wei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China.
| | - Qing-Qing Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Xiao-Ming Xu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
22
|
Enzyme-assisted extraction and liquid chromatography-inductively coupled plasma mass spectrometry for the determination of arsenic species in fish. J Chromatogr A 2018; 1573:48-58. [PMID: 30195857 DOI: 10.1016/j.chroma.2018.08.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 02/05/2023]
Abstract
A sensitive, simple and rapid method for the simultaneous determination of eleven arsenic species has been developed. A high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) technique was used for the analysis of eleven arsenic species in less than 17 min. Different extraction solutions were explored and the recovery results using water and aqueous acidic solvents, aqueous organic solvents and enzymes showed that 40 mg protease with 0.75 mL 0.5% hydrochloric acid (v/v) as the extraction agent gave the best experimental results. Species separation with ammonium carbonate solution as the mobile phase was conducted on an anion-exchange chromatographic column using gradient elution. The column temperature was 20 °C and kinetic energy discrimination (KED) was employed to eliminate spectral interference. The use of KED mode effectively removed interference from 75ArCl. The detection limit (LD) of the method was in the range of 0.11-0.59 μg kg-1. Repeatability values obtained for spiked real fish samples were in the range of 1.1%-7.6%. Accuracy was calculated based on the analysis of spiked real fish samples at five concentration levels. Obtained recoveries were 91%-106%. The validated method was used in a pilot study to analyze real samples of fish, the organic arsenic especially AsB was the major arsenic specie present in the analyzed samples, only trace amount of inorganic arsenic were detected. The analytical method should improve the assessment of human exposure associated with arsenic intake from fish.
Collapse
|
23
|
Seidi S, Alavi L, Jabbari A. Trace determination of cadmium in rice samples using solidified floating organic drop microextraction based on vesicular supramolecular solvent followed by flow-injection analysis–flame atomic absorption spectrometry. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1401-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Guo LX, Zhang GW, Wang JT, Zhong YP, Huang ZG. Determination of Arsenic Species in Ophiocordyceps sinensis from Major Habitats in China by HPLC-ICP-MS and the Edible Hazard Assessment. Molecules 2018; 23:molecules23051012. [PMID: 29701658 PMCID: PMC6100492 DOI: 10.3390/molecules23051012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
This study sought to determine the concentration and distribution of arsenic (As) species in Ophiocordyceps sinensis (O. sinensis), and to assess its edible hazard for long term consumption. The total arsenic concentrations, measured through inductively coupled plasma mass spectrometry (ICP-MS), ranged from 4.00 mg/kg to 5.25 mg/kg. As determined by HPLC-ICP-MS, the most concerning arsenic species—AsB, MMAV, DMAV, AsV, and AsШ—were either not detected (MMAV and DMAV) or were detected as minor As species (AsB: 1.4⁻2.9%; AsV: 1.3⁻3.2%, and AsШ: 4.1⁻6.0%). The major components were a cluster of unknown organic As (uAs) compounds with AsШ, which accounted for 91.7⁻94.0% of the As content. Based on the H₂O₂ test and the chromatography behavior, it can be inferred that, the uAs might not be toxic organic As. Estimated daily intake (EDI), hazard quotient (HQ), and cancer risk (CR) caused by the total As content; the sum of inorganic As (iAs) and uAs, namely i+uAs; and iAs exposure from long term O. sinensis consumption were calculated and evaluated through equations from the US Environmental Protection Agency and the uncertainties were analyzed by Monte-Carlo Simulation (MCS). EDItotal As and EDIi+uAs are approximately ten times more than EDIiAs; HQtotalAs and HQi+uAs > 1 while HQiAs < 1; and CRtotal As and CRi+uAs > 1 × 10−4 while CRiAs < 1 × 10−4. Thus, if the uAs is non-toxic, there is no particular risk to local consumers and the carcinogenic risk is acceptable for consumption of O. sinensis because the concentration of toxic iAs is very low.
Collapse
Affiliation(s)
- Lian-Xian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Gui-Wei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China.
| | - Jia-Ting Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yue-Ping Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Zhi-Gang Huang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
25
|
Cheng H, Shen L, Liu J, Xu Z, Wang Y. Coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry for arsenic speciation. J Sep Sci 2018; 41:1524-1531. [PMID: 29274204 DOI: 10.1002/jssc.201701178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
Abstract
Nanoliter high-performance liquid chromatography shows low consumption of solvents and samples, offering one of the best choices for arsenic speciation in precious samples in combination with inuctively coupled plasma mass spectrometry. A systematic investigation on coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry from instrument design to injected sample volume and mobile phase was performed in this study. Nanoflow mobile phase was delivered by flow splitting using a conventional high-pressure pump with reuse of mobile phase waste. Dead volume was minimized to 60 nL for the sheathless interface based on the previously developed nanonebulizer. Capillary columns for nanoliter high-performance liquid chromatography were found to be sensitive to sample loading volume. An apparent difference was also found between the mobile phases for nanoliter and conventional high-performance liquid chromatography. Baseline separation of arsenite, arsenate, monomethylarsenic, and dimethylarsenic was achieved within 11 min on a 15 cm C18 capillary column and within 12 min on a 25 cm strong anion exchange column. Detection limits of 0.9-1.8 μg/L were obtained with precisions variable in the range of 1.6-4.2%. A good agreement between determined and certified values of a certified reference material of human urine (GBW 09115) validated its accuracy along with good recoveries (87-102%).
Collapse
Affiliation(s)
- Heyong Cheng
- Qianjiang College, Hangzhou Normal University, Hangzhou, China.,College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Lihuan Shen
- Institute of Analytical and Applied Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Jinhua Liu
- Qianjiang College, Hangzhou Normal University, Hangzhou, China.,College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Zigang Xu
- Institute of Analytical and Applied Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yuanchao Wang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|