1
|
Li J, Liu B, Liu L, Zhang N, Liao Y, Zhao C, Cao M, Zhong Y, Chai D, Chen X, Zhang D, Wang H, He Y, Li Z. Fluorescence-based aptasensors for small molecular food contaminants: From energy transfer to optical polarization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121872. [PMID: 36152504 DOI: 10.1016/j.saa.2022.121872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Small molecular food contaminants, such as mycotoxins, pesticide residues and antibiotics, are highly probable to be passively introduced in food at all stages of its processing, including planting, harvest, production, transportation and storage. Owing to the high risks caused by the unknowing intake and accumulation in human, there is an urgent need to develop rapid, sensitive and efficient methods to monitor them. Fluorescence-based aptasensors provide a promising platform for this area owing to its simple operation, high sensitivity, wide application range and economical practicability. In this paper, the common sorts of small molecular contaminants in foods, namely mycotoxins, pesticides, antibiotics, etc, are briefly introduced. Then, we make a comprehensive review, from fluorescence resonance energy transfer (in turn-on, turn-off, and ratiometric mode, as well as energy upconversion) to fluorescence polarization, of the fluorescence-based aptasensors for the determination of these food contaminants reported in the last five years. The principle of signal generation, the advances of each sort of fluorescent aptasensors, as well as their applications are introduced in detail. Additionally, we also discussed the challenges and perspectives of the fluorescent aptasensors for small molecular food contaminants. This work will offer systematic overview and inspiration for amateurs, researchers and developers of fluorescence-based aptasensors for the detection of small molecules.
Collapse
Affiliation(s)
- Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Li Liu
- Library of Tianjin Medical University, Tianjin 300070, China
| | - Nan Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yumeng Liao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunyu Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manzhu Cao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxuan Zhong
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danni Chai
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Quantum-Dot-Bead-Based Fluorescence-Linked Immunosorbent Assay for Sensitive Detection of Cry2A Toxin in Cereals Using Nanobodies. Foods 2022; 11:foods11182780. [PMID: 36140908 PMCID: PMC9497650 DOI: 10.3390/foods11182780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 12/29/2022] Open
Abstract
In this study, a quantum-dot-bead (QB)-based fluorescence-linked immunosorbent assay (FLISA) using nanobodies was established for sensitive determination of the Cry2A toxin in cereal. QBs were used as the fluorescent probe and conjugated with a Cry2A polyclonal antibody. An anti-Cry2A nanobody P2 was expressed and used as the capture antibody. The results revealed that the low detection limit of the developed QB-FLISA was 0.41 ng/mL, which had a 19-times higher sensitivity than the traditional colorimetric ELISA. The proposed assay exhibited a high specificity for the Cry2A toxin, and it had no evident cross-reactions with other Cry toxins. The recoveries of Cry2A from the spiked cereal sample ranged from 86.6–117.3%, with a coefficient of variation lower than 9%. Moreover, sample analysis results of the QB-FLISA and commercial ELISA kit correlated well with each other. These results indicated that the developed QB-FLISA provides a potential approach for the sensitive determination of the Cry2A toxin in cereals.
Collapse
|
3
|
Rahi S, Lanjekar V, Ghormade V. Development of a rapid dot-blot assay for ochratoxin A (OTA) detection using peptide conjugated gold nanoparticles for bio-recognition and detection. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Peltomaa R, Barderas R, Benito-Peña E, Moreno-Bondi MC. Recombinant antibodies and their use for food immunoanalysis. Anal Bioanal Chem 2022; 414:193-217. [PMID: 34417836 PMCID: PMC8380008 DOI: 10.1007/s00216-021-03619-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Antibodies are widely employed as biorecognition elements for the detection of a plethora of compounds including food and environmental contaminants, biomarkers, or illicit drugs. They are also applied in therapeutics for the treatment of several disorders. Recent recommendations from the EU on animal protection and the replacement of animal-derived antibodies by non-animal-derived ones have raised a great controversy in the scientific community. The application of recombinant antibodies is expected to achieve a high growth rate in the years to come thanks to their versatility and beneficial characteristics in comparison to monoclonal and polyclonal antibodies, such as stability in harsh conditions, small size, relatively low production costs, and batch-to-batch reproducibility. This review describes the characteristics, advantages, and disadvantages of recombinant antibodies including antigen-binding fragments (Fab), single-chain fragment variable (scFv), and single-domain antibodies (VHH) and their application in food analysis with especial emphasis on the analysis of biotoxins, antibiotics, pesticides, and foodborne pathogens. Although the wide application of recombinant antibodies has been hampered by a number of challenges, this review demonstrates their potential for the sensitive, selective, and rapid detection of food contaminants.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Life Sciences, University of Turku, 20014, Turku, Finland
- Turku Collegium for Science and Medicine, University of Turku, 20014, Turku, Finland
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Samuel MS, Jeyaram K, Datta S, Chandrasekar N, Balaji R, Selvarajan E. Detection, Contamination, Toxicity, and Prevention Methods of Ochratoxins: An Update Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13974-13989. [PMID: 34783556 DOI: 10.1021/acs.jafc.1c05994] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ochratoxins (OTs) with nephrotoxic, immunosuppressive, teratogenic, and carcinogenic properties are thermostable fungal subordinate metabolites. OTs contamination can occur before or after harvesting, during the processing, packing, distribution, and storage of food. Mold development and mycotoxin contamination can occur in any crop or cereal that has not been stored properly for long periods of time and is subjected to high levels of humidity and temperature. Ochratoxin A (OTA) presents a significant health threat to creatures and individuals. There is also a concern of how human interaction with OTA will also express the remains of OTA from feedstuffs into animal-derived items. Numerous approaches have been studied for the reduction of the OTA content in agronomic products. These methods can be classified into two major classes: inhibition of OTA adulteration and decontamination or detoxification of food. A description of the various mycotoxins, the organism responsible for the development of mycotoxins, and their adverse effects are given. In the current paper, the incidence of OTA in various fodder and food materials is discussed, which is accompanied by a brief overview of the OTA mode of synthesis, physicochemical properties, toxic effects of various types of ochratoxins, and OTA decontamination adaptation methods. To our knowledge, we are the first to report on the structure of many naturally accessible OTAs and OTA metabolism. Finally, this paper seeks to be insightful and draw attention to dangerous OTA, which is too frequently neglected and overlooked in farm duplication from the list of discrepancy studies.
Collapse
Affiliation(s)
- Melvin S Samuel
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Kanimozhi Jeyaram
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Saptashwa Datta
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Narendhar Chandrasekar
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore 641022, Tamil Nadu, India
| | - Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan 106, ROC
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
6
|
Yang J, Si R, Wu G, Wang Y, Fang R, Liu F, Wang F, Lei H, Shen Y, Zhang Q, Wang H. Preparation of Specific Nanobodies and Their Application in the Rapid Detection of Nodularin-R in Water Samples. Foods 2021; 10:2758. [PMID: 34829042 PMCID: PMC8622565 DOI: 10.3390/foods10112758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Nanobodies have several advantages, including great stability, sensibility, and ease of production; therefore, they have become important tools in immunoassays for chemical contaminants. In this manuscript, nanobodies for the detection of the toxin Nodularin-r (NOD-R), a secondary metabolite of cyanobacteria that could cause a safety risk for drinks and food for its strong hepatotoxicity, were for the first time selected from an immunized Bactrian camel VHH phage display library. Then, a sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) for NOD-R, based on the nanobody N56 with great thermostability and organic solvent tolerance, was established under optimized conditions. The results showed that the limit of detection for NOD-R was 0.67 µg/L, and the average spike recovery rate was between 84.0 and 118.3%. Moreover, the ic-ELISA method was validated with spiked water sample and confirmed by UPLC-MS/MS, which indicated that the ic-ELISA established in this work is a reproducible detection assay for nodularin residues in water samples.
Collapse
Affiliation(s)
- Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Rui Si
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Guangpei Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China;
| | - Ruyu Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Fei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Yudong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road No. 2, Wuchang District, Wuhan 430062, China;
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.Y.); (R.S.); (G.W.); (R.F.); (F.L.); (F.W.); (H.L.); (Y.S.)
| |
Collapse
|
7
|
Zhang C, Wu X, Li D, Hu J, Wan D, Zhang Z, Hammock BD. Development of nanobody-based flow-through dot ELISA and lateral-flow immunoassay for rapid detection of 3-phenoxybenzoic acid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1757-1765. [PMID: 33861243 PMCID: PMC8442667 DOI: 10.1039/d1ay00129a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a major metabolite of pyrethroid pesticides, 3-phenoxybenzoic acid (3-PBA) can be an indicator of health risk and human exposure assessment. Based on nanobodies (Nbs), we have developed a rapid flow-through dot enzyme linked immunosorbent assay (dot ELISA) and gold nanoparticle (GNP) lateral-flow immunoassay for detecting 3-PBA. The limit of detection (LOD) values for detecting 3-PBA by flow-through dot ELISA and GNP lateral-flow immunoassay were 0.01 ng mL-1 and 0.1 ng mL-1, respectively. The samples (urine and lake water) with and without 3-PBA were detected by both nanobody-based flow-through dot ELISA and GNP lateral-flow immunoassay, as well as liquid chromatography-mass spectrometry (LC-MS) for validation. There was good consistency between the results of the immunoassays. This demonstrated that the two developed nanobody-based immunoassays are suitable for rapid detection of 3-PBA.
Collapse
Affiliation(s)
- Can Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food Chem Toxicol 2021; 149:112030. [DOI: 10.1016/j.fct.2021.112030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/22/2022]
|
9
|
Application of phage-display developed antibody and antigen substitutes in immunoassays for small molecule contaminants analysis: A mini-review. Food Chem 2020; 339:128084. [PMID: 33152875 DOI: 10.1016/j.foodchem.2020.128084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Toxic small molecule contaminants (SMCs) residues in food threaten human health. Immunoassays are popular and simple techniques for SMCs analysis. However, immunoassays based on polyclonal antibodies, monoclonal antibodies and chemosynthetic antigens have some defects, such as complicated preparation of antibodies, risk of toxic haptens using for antigen chemosynthesis and so on. Phage-display technique has been proven to be an attractive alternative approach to producing antibody and antigen substitutes of SMCs, and opened up new realms for developing immunoassays of SMCs. These substitutes contain five types, including anti-idiotypic recombinant antibody (AIdA), anti-immune complex peptide (AIcP), anti-immune complex recombinant antibody (AIcA) and anti-SMC recombinant antibody (anti-SMC RAb). In this review, the principle of immunoassays based on the five types of substitutes, as well as their application and advantages are summarized and discussed.
Collapse
|
10
|
Jiang YY, Zhao X, Chen LJ, Yang C, Yin XB, Yan XP. Persistent luminescence nanorod based luminescence resonance energy transfer aptasensor for autofluorescence-free detection of mycotoxin. Talanta 2020; 218:121101. [PMID: 32797868 DOI: 10.1016/j.talanta.2020.121101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Serious ochratoxin A (OTA) contamination necessitates the development of rapid, sensitive and selective analytical methods for its determination in food safety. Herein, we report a persistent luminescence resonance energy transfer (LRET) based aptasensor for the autofluorescence-free detection of OTA. OTA aptamer functionalized persistent luminescence nanorod (PLNR) Zn2GeO4:Mn2+ and the aptamer complementary DNA modified gold nanoparticle (AuNP) were used as the donor and the acceptor, respectively. The developed LRET aptasensor integrated the advantages of the long-lasting persistent luminescence of PLNR, the high selectivity of aptamer and the low probe background of LRET sensors, allowing autofluorescence-free detection of OTA in biological samples with high sensitivity and selectivity. The developed LRET aptasensor gave an excellent linearity in the range of 0.01-10 ng mL-1, the detection limit of 3 pg mL-1 and the precision of 2.7% (RSD, n = 11) at 1 ng mL-1 level. The applicability of the developed aptasensor was demonstrated by analyzing beer samples for OTA with the recoveries of 92.3%-104%.
Collapse
Affiliation(s)
- Yuan-Yuan Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xue-Bo Yin
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
11
|
Wang X, Chen Q, Sun Z, Wang Y, Su B, Zhang C, Cao H, Liu X. Nanobody affinity improvement: Directed evolution of the anti-ochratoxin A single domain antibody. Int J Biol Macromol 2020; 151:312-321. [DOI: 10.1016/j.ijbiomac.2020.02.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 01/17/2023]
|
12
|
Tang Z, Liu X, Su B, Chen Q, Cao H, Yun Y, Xu Y, Hammock BD. Ultrasensitive and rapid detection of ochratoxin A in agro-products by a nanobody-mediated FRET-based immunosensor. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121678. [PMID: 31753666 PMCID: PMC7990105 DOI: 10.1016/j.jhazmat.2019.121678] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 05/04/2023]
Abstract
Ochratoxin A (OTA) is a major concern for public health and the rapid detection of trace OTA in food is always a challenge. To minimize OTA exposure to consumers, a nanobody (Nb)-mediated förster resonance energy transfer (FRET)-based immunosensor using quantum dots (Nb-FRET immunosensor) was proposed for ultrasensitive, single-step and competitive detection of OTA in agro-products at present work. QDs of two sizes were covalently labeled with OTA and Nb, acting as the energy donor and acceptor, respectively. The free OTA competed with the donor to bind to acceptor, thus the FRET efficiency increased with the decrease of OTA concentration. The single-step assay could be finished in 5 min with a limit of detection of 5 pg/mL, which was attributed to the small size of Nb for shortening the effective FRET distance and improving the FRET efficiency. The Nb-FRET immunosensor exhibited high selectivity for OTA. Moreover, acceptable accuracy and precision were obtained in the analysis of cereals and confirmed by the liquid chromatography-tandem mass spectrometry. Thus the developed Nb-FRET immunosensor was demonstrated to be an efficient tool for ultrasensitive and rapid detection of OTA in cereals and provides a detection model for other toxic small molecules in food and environment.
Collapse
Affiliation(s)
- Zongwen Tang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China.
| | - Benchao Su
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Yonghuan Yun
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, PR China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| |
Collapse
|
13
|
Zhang JR, Wang Y, Dong JX, Yang JY, Zhang YQ, Wang F, Si R, Xu ZL, Wang H, Xiao ZL, Shen YD. Development of a Simple Pretreatment Immunoassay Based on an Organic Solvent-Tolerant Nanobody for the Detection of Carbofuran in Vegetable and Fruit Samples. Biomolecules 2019; 9:biom9100576. [PMID: 31591300 PMCID: PMC6843801 DOI: 10.3390/biom9100576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Nanobodies are one-tenth the size of conventional antibodies and are naturally obtained from the atypical heavy-chain-only antibodies present in camelids. Their small size, high solubility, high stability, and strong resilience to organic solvents facilitate their use as novel analytical reagents in immunochemistry. In this study, specific nanobodies against pesticide carbofuran were isolated and characterized from an immunized library via phage display platform. We further established an indirect competitive enzyme-linked immunosorbent assay (ELISA) using nanobody Nb316 to detect carbofuran in vegetable and fruit samples. The results showed a half-maximal inhibitory concentration (IC50) of 7.27 ng/mL and a detection limit of 0.65 ng/mL. A simplified sample pretreatment procedure omitting the evaporation of organic solvent was used. The averaged recovery rate of spiked samples ranged between 82.3% and 103.9%, which correlated with that of standard UPLC–MS/MS method. In conclusion, a nanobody with high specificity for carbofuran was characterized, and a nanobody-based sensitive immunoassay for simple and rapid detection of carbofuran in real samples was validated.
Collapse
Affiliation(s)
- Jin-ru Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Yu Wang
- Guangzhou Institute of Food Inspection, Guangzhou 510080, China;
| | - Jie-xian Dong
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
- Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616, USA
| | - Jin-yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Yu-qi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Rui Si
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Zhen-lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
- Correspondence: (Z.-l.X.); (H.W.); Tel.: +86-20-85283448 (H.W.); Fax: +86-20-85280270 (H.W.)
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
- Correspondence: (Z.-l.X.); (H.W.); Tel.: +86-20-85283448 (H.W.); Fax: +86-20-85280270 (H.W.)
| | - Zhi-li Xiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| | - Yu-dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.-r.Z.); (J.-y.Y.); (Y.-q.Z.); (F.W.); (R.S.); (Z.-l.X.); (Y.-d.S.)
| |
Collapse
|
14
|
Tang Z, Liu X, Wang Y, Chen Q, Hammock BD, Xu Y. Nanobody-based fluorescence resonance energy transfer immunoassay for noncompetitive and simultaneous detection of ochratoxin a and ochratoxin B. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:238-245. [PMID: 31082608 PMCID: PMC7103568 DOI: 10.1016/j.envpol.2019.04.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 05/21/2023]
Abstract
A noncompetitive and homogeneous fluorescence resonance energy transfer (FRET) immunoassay was developed using a nanobody (Nb) for highly sensitive and simultaneous detection of ochratoxin A (OTA) and ochratoxin B (OTB). The promoted intrinsic fluorescence (λex: 280 nm) of tryptophan residues (donor) in Nb can excite the fluorescence of OTA and OTB (acceptor) for detection (λem: 430 nm). Using optimal conditions, the limits of detection of the Nb-based FRET immunoassay were 0.06 and 0.12 ng/mL for OTA and OTB, respectively. Minimal cross reactivity was detected for several analogues of OTA and OTB as well as nonspecific proteins and antibodies. Acceptable accuracy and precision were obtained in the spike and recovery study, and the results correlated well with those by HPLC. These results demonstrated that the developed method could be a useful tool for noncompetitive, homogeneous, and simultaneous detection of OTA and OTB as well as other environmental analytes with similar fluorescence properties.
Collapse
Affiliation(s)
- Zongwen Tang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China.
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, PR China
| |
Collapse
|
15
|
Sun Z, Wang X, Tang Z, Chen Q, Liu X. Development of a biotin-streptavidin-amplified nanobody-based ELISA for ochratoxin A in cereal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:382-388. [PMID: 30616155 DOI: 10.1016/j.ecoenv.2018.12.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/10/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
A biotin-streptavidin-amplified enzyme-linked immunosorbent assay using a biotinylated nanobody (BA-Nb ELISA) was developed to detect ochratoxin A (OTA) in cereal. The limit of detection (LOD) of the BA-Nb ELISA, which equals to 10% maximal inhibitory concentration, was 0.011 ng/mL for OTA in buffer, and the sensitivity was approximately improved by one order of magnitude compared with the traditional Nb ELISA (LOD = 0.112 ng/mL). Under optimal conditions, the developed assay could be accomplished in 40 min with maximal inhibitory concentration of 0.138 ng/mL and the linear detection range of 0.034-0.460 ng/mL. The average recovery rate of the BA-Nb ELISA ranged from 92.8% to 114%, and the relative standard deviation was in the range of 2.04-9.85%. The developed BA-Nb ELISA was validated by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the results indicated the reliability of BA-Nb ELISA for the detection of OTA in cereal.
Collapse
Affiliation(s)
- Zhichang Sun
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Xuerou Wang
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Zongwen Tang
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Qi Chen
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Xing Liu
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China.
| |
Collapse
|
16
|
Xue W, Zhao Q, Li P, Zhang R, Lan J, Wang J, Yang X, Xie Z, Jiang S. Identification and characterization of a novel nanobody against duck hepatitis A virus type 1. Virology 2019; 528:101-109. [DOI: 10.1016/j.virol.2018.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
|
17
|
Nanobody-Alkaline Phosphatase Fusion Protein-Based Enzyme-Linked Immunosorbent Assay for One-Step Detection of Ochratoxin A in Rice. SENSORS 2018; 18:s18114044. [PMID: 30463338 PMCID: PMC6263964 DOI: 10.3390/s18114044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 01/23/2023]
Abstract
Ochratoxin A (OTA) has become one a focus of public concern because of its multiple toxic effects and widespread contamination. To monitor OTA in rice, a sensitive, selective, and one-step enzyme-linked immunosorbent assay (ELISA) using a nanobody-alkaline phosphatase fusion protein (Nb28-AP) was developed. The Nb28-AP was produced by auto-induction expression and retained an intact antigen-binding capacity and enzymatic activity. It exhibited high thermal stability and organic solvent tolerance. Under the optimal conditions, the developed assay for OTA could be finished in 20 min with a half maximal inhibitory concentration of 0.57 ng mL-1 and a limit of detection of 0.059 ng mL-1, which was 1.1 times and 2.7 times lower than that of the unfused Nb28-based ELISA. The Nb28-AP exhibited a low cross-reactivity (CR) with ochratoxin B (0.92%) and ochratoxin C (6.2%), and an ignorable CR (<0.10%) with other mycotoxins. The developed Nb-AP-based one-step ELISA was validated and compared with a liquid chromatography-tandem mass spectrometry method. The results show the reliability of Nb-AP-based one-step ELISA for the detection of OTA in rice.
Collapse
|
18
|
Tang Z, Wang X, Lv J, Hu X, Liu X. One-step detection of ochratoxin A in cereal by dot immunoassay using a nanobody-alkaline phosphatase fusion protein. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Sun Z, Lv J, Liu X, Tang Z, Wang X, Xu Y, Hammock BD. Development of a Nanobody-AviTag Fusion Protein and Its Application in a Streptavidin-Biotin-Amplified Enzyme-Linked Immunosorbent Assay for Ochratoxin A in Cereal. Anal Chem 2018; 90:10628-10634. [PMID: 30092629 DOI: 10.1021/acs.analchem.8b03085] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ochratoxin A (OTA) is a common food contaminant that threatens consumers' safety and health. A sensitive and selective biotin-streptavidin-amplified enzyme-linked immunosorbent assay (BA-ELISA) for OTA using a nanobody-AviTag fusion protein (Nb-AviTag) was developed in this study. The prokaryotic expression vector Nb28-AviTag-pAC6 for Nb-AviTag was constructed, followed by transformation to the AVB101 cells for antibody expression and in vivo biotinylation. The purified Nb28-AviTag was used to establish the BA-ELISA and the procedures for this Nb-AviTag-based BA-ELISA were optimized. The Nb-AviTag-based BA-ELISA exhibited the half maximal inhibitory concentration (IC50) of 0.14 ng mL-1 and the limit of detection (LOD = IC10) of 0.028 ng mL-1 for OTA basing on the optimized experiment parameters. The assay sensitivity was improved 4.6 times and 4.3 times compared to Nb-based ELISA, respectively. This method had LODs of 1.4 μg kg-1 in barley, 0.56 μg kg-1 in oats, and 0.84 μg kg-1 in rice for OTA. The average recovery percent was in a range of 84-137%, and the relative standard derivation percent ranged from 0.64% to 7.8%. The content of OTA in contaminated cereal samples was determined by both the developed Nb-AviTag-based method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results demonstrated that the Nb-AviTag was a robust and promising bioreceptor in highly sensitive detection of OTA and other low molecular weight compounds using BA system.
Collapse
Affiliation(s)
- Zhichang Sun
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Jingwen Lv
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Xing Liu
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Zongwen Tang
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Xuerou Wang
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , P. R. China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center , University of California , Davis , California 95616 , United States
| |
Collapse
|
20
|
Wei M, Zhang W. The determination of Ochratoxin A based on the electrochemical aptasensor by carbon aerogels and methylene blue assisted signal amplification. Chem Cent J 2018; 12:45. [PMID: 29691678 PMCID: PMC5915985 DOI: 10.1186/s13065-018-0415-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/19/2018] [Indexed: 01/13/2023] Open
Abstract
In this work, a novel aptamer-based electrochemical biosensor was developed for the determination of Ochratoxin A (OTA) by using carbon aerogels (CAs) and methylene blue (MB) as signal amplification strategy. CAs was used as carrier to load the abundant of complementary DNA (cDNA), which could enhance the hybridization between CAs-cDNA and aptamer immobilized on the electrode surface, thus provide more double-stranded DNA for MB intercalation. The current of MB on the CAs-cDNA/apt/AuE sensor was twice that on the cDNA/apt/AuE sensor, which indicated that the CAs with high surface area enabled a higher loading of the cDNA and absorbed more MB, thus realized the signal amplification strategy. The optimum experimental conditions including MB incubation time of 15 min, aptamer concentration of 4.0 μmol/L, hybridization time of 2.0 h, and OTA incubation time of 18 min were obtained. The change of peak current was linearly proportional to the OTA concentration in the range of 0.10–10 ng/mL with the actual detection limit of 1.0 × 10−4 ng/mL. The experimental results showed that the prepared CAs-cDNA/apt/AuE exhibited good specificity, acceptable reproducibility and repeatability. This sensor was applied to detect OTA in the spiked corn samples, and obtained an acceptable average recovery of 89%.
Collapse
Affiliation(s)
- Min Wei
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China. .,Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| | - Wenyang Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
21
|
Wang J, Mukhtar H, Ma L, Pang Q, Wang X. VHH Antibodies: Reagents for Mycotoxin Detection in Food Products. SENSORS 2018; 18:s18020485. [PMID: 29415506 PMCID: PMC5855929 DOI: 10.3390/s18020485] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 01/23/2023]
Abstract
Mycotoxins are the toxic secondary metabolites produced by fungi and they are a worldwide public health concern. A VHH antibody (or nanobody) is the smallest antigen binding entity and is produced by heavy chain only antibodies. Compared with conventional antibodies, VHH antibodies overcome many pitfalls typically encountered in clinical therapeutics and immunodiagnostics. Likewise, VHH antibodies are particularly useful for monitoring mycotoxins in food and feedstuffs, as they are easily genetic engineered and have superior stability. In this review, we summarize the efforts to produce anti-mycotoxins VHH antibodies and associated assays, presenting VHH as a potential tool in mycotoxin analysis.
Collapse
Affiliation(s)
- Jia Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hina Mukhtar
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lan Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qian Pang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Peltomaa R, Benito-Peña E, Moreno-Bondi MC. Bioinspired recognition elements for mycotoxin sensors. Anal Bioanal Chem 2017; 410:747-771. [PMID: 29127461 DOI: 10.1007/s00216-017-0701-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022]
Abstract
Mycotoxins are low molecular weight molecules produced as secondary metabolites by filamentous fungi that can be found as natural contaminants in many foods and feeds. These toxins have been shown to have adverse effects on both human and animal health, and are the cause of significant economic losses worldwide. Sensors for mycotoxin analysis have traditionally applied elements of biological origin for the selective recognition purposes. However, since the 1970s there has been an exponential growth in the use of genetically engineered or synthetic biomimetic recognition elements that allow some of the limitations associated with the use of natural receptors for the analyses of these toxins to be circumvented. This review provides an overview of recent advances in the application of bioinspired recognition elements, including recombinant antibodies, peptides, aptamers, and molecularly imprinted polymers, to the development of sensors for mycotoxins based on different transduction elements. Graphical abstract Novel analytical methods based on bioinspired recognition elements, such as recombinant antibodies, peptides, aptamers, and molecularly imprinted polymers, can improve the detection of mycotoxins and provide better tools than their natural counterparts to ensure food safety.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|