1
|
Akbar A, Jabbar Siddiqui A, Tarique Moin S, Noman Khan M, Raza A, Khadim A, Usman M, Iqbal Choudhary M, Ghulam Musharraf S. A rapid colorimetric method for the detection of carminic acid in samples based on visible color change. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122953. [PMID: 37392539 DOI: 10.1016/j.saa.2023.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 07/03/2023]
Abstract
Carminic Acid (CA), an insect-derived red color, is widely used as a colorant and additive in food and non-food items. The detection of CA is of great concern since it is unacceptable for vegetarians and vegans consumers. Therefore, it is important for food authorities to have a rapid detection method for CA. We describe here a simple and rapid method for the qualitative detection of CA, using Pb2+ for complex formation. As a result, the sample solution shows a visible change from pink to purple (bathochromic shift) which could also be analyzed through a spectrophotometer at λmax = 605 nm. The structure of the CA-Pb2+ complex was also studied through advanced spectroscopic techniques. Moreover, the presence of iron results in the formation of a stable CA-Fe2+ complex without any significant color change, as Fe2+ has a stronger binding affinity with CA. Thus, sodium fluoride (NaF) was used to prevent CA-Fe2+ complex formation. Therefore, two methods were developed based on the absence (method I) and presence (method II) of NaF. The LOD and LOQ for the method I was 0.0025 and 0.0076 mg mL-1, and for method II, values were 0.0136 and 0.0415 mg mL-1, respectively. The methods were also validated by intra and inter-day analyses. A total of 45 commercials, including food and non-food samples, were screened for the detection of CA. The developed methods are applicable for the effective and rapid surveillance of CA in various samples without the use of high-tech instruments.
Collapse
Affiliation(s)
- Azra Akbar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Amna Jabbar Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Tarique Moin
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Noman Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ali Raza
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Adeeba Khadim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Usman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Halal Certification, Testing and Research Services (HCTRS), H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Halal Certification, Testing and Research Services (HCTRS), H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Kavieva L, Ziyatdinova G. Sensitive voltammetric quantification of carminic acid in candies using selenium dioxide nanoparticles based electrode. Food Chem 2022; 386:132851. [PMID: 35366626 DOI: 10.1016/j.foodchem.2022.132851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/17/2022] [Accepted: 03/27/2022] [Indexed: 11/27/2022]
Abstract
Carminic acid is a food colorant which concentration has to be controlled due to the possible negative health effects. Sensitive voltammetric method is developed for carminic acid determination using electrode modified with SeO2 nanoparticles (SeO2 NPs) and hexadecyltriphenylphosphonium bromide (HDTPPB) acting as dispersive agent for nanoparticles and electrode surface co-modifier. SeO2 NPs of 37-45 nm are uniformly distributed at the electrode increasing its electroactive area (41 ± 2 vs. 8.9 ± 0.2 mm2 for bare glassy carbon electrode (GCE)). Electrochemical impedance spectroscopy data confirm an 18.3-fold decrease of charge transfer resistance compared to GCE (12.7 ± 0.3 vs. 232 ± 7 kΩ, respectively). In differential pulse mode, the linear dynamic ranges of carminic acid are 0.010-2.5 and 2.5-10 μmol L-1 with a detection limit of 3.4 nmol L-1. The method is successfully employed in candies and lozenges for sore throat treatment. The approach is simple, reliable, and can be used as an alternative to chromatography in routine analysis.
Collapse
Affiliation(s)
- Liya Kavieva
- Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyevskaya 18, 420008 Kazan, Russian Federation
| | - Guzel Ziyatdinova
- Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlyevskaya 18, 420008 Kazan, Russian Federation.
| |
Collapse
|
3
|
Xu L, Yang F, Dias AC, Zhang X. Development of quantum dot-linked immunosorbent assay (QLISA) and ELISA for the detection of sunset yellow in foods and beverages. Food Chem 2022; 385:132648. [DOI: 10.1016/j.foodchem.2022.132648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 11/04/2022]
|
4
|
Pan F, Zhang Y, Yuan Z, Lu C. Sensitive and Selective Carmine Acid Detection Based on Chemiluminescence Quenching of Layer Doubled Hydroxide-Luminol-H 2O 2 System. ACS OMEGA 2018; 3:18836-18842. [PMID: 31458446 PMCID: PMC6643586 DOI: 10.1021/acsomega.8b02342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/09/2018] [Indexed: 05/20/2023]
Abstract
Carminic acid (CA) extracted from cochineal is widely used in food additives as a natural colorant, and its potential risk to human health makes its detection important. In this work, a layered doubled hydroxide (LDH)-luminol-H2O2 system-based chemiluminescence (CL) platform has been successfully applied for CA sensing. The principle detection consists of two steps: first, LDH adsorbs CA onto the surface via electrostatic attraction; second, CA quenches the CL of the LDH-luminol-H2O2 system via the synergistic effect of CL resonance energy transfer, reduction of reactive oxygen species, and occupation of positively charged centers of brucite-like layers. With this CL approach, 0.5 μM CA is detectable using a CL spectrometer, and the limit of detection is 0.03 μM. This CL system exhibited a linear response to CA in the concentration range from 0.5 to 10 μM. In addition, the practical application of the designed CL sensing system is evaluated with dried pork slice samples.
Collapse
Affiliation(s)
- Feng Pan
- School
of Environment, Key Laboratory for Yellow Riverand Huai River Water
Environment and Pollution Control, Ministry of Education, Henan Key
Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yilin Zhang
- School
of Environment, Key Laboratory for Yellow Riverand Huai River Water
Environment and Pollution Control, Ministry of Education, Henan Key
Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiqin Yuan
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- E-mail: . Phone/FaxPhone: +86 10 64411957 (Z.Y.)
| | - Chao Lu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- E-mail: . Phone/Fax: +86 10 64411957 (C.L.)
| |
Collapse
|