1
|
Liu L, Chen M, Zhao T, Yuan L, Mi Z, Bai Y, Fei P, Liu Z, Li C, Wang L, Feng F. Ratiometric fluorescence and smartphone-assisted sensing platform based on dual-emission carbon dots for brilliant blue detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124782. [PMID: 38991616 DOI: 10.1016/j.saa.2024.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In this study, an innovative ratiometric fluorescence and smartphone-assisted visual sensing platform based on blue-yellow dual-emission carbon dots (BY-CDs) was constructed for the first time to determine brilliant blue. The BY-CDs was synthesized via a facile one-step hydrothermal process involving propyl gallate and o-phenylenediamine. The synthesized BY-CDs exhibit favorable water solubility and exceptional fluorescence stability. Under excitation at 370 nm, BY-CDs show two distinguishable fluorescence emission bands (458 and 558 nm). Upon addition of brilliant blue, the fluorescence intensity at 558 nm exhibited a significant quenching effect attributed to fluorescence resonance energy transfer (FRET), while the fluorescence intensity at 458 nm was basically unchanged. The prepared BY-CDs can effectively serve as a ratiometric nanosensor for determining brilliant blue with the ratio of fluorescence intensities at 458 and 558 nm (F458/F558) as response signal. In addition, the developed ratiometric fluorescence sensor exhibits a noticeable alteration in color from yellow to green under UV light with a wavelength of 365 nm upon addition of varying concentrations of brilliant blue, which provides the possibility of visual detection of brilliant blue by a smartphone application. Finally, the BY-CDs based dual-mode sensing platform successfully detected brilliant blue in actual food samples and achieved a desirable recovery rate. This study highlights the merits of fast, convenient, economical, real-time, visual, high accuracy, excellent precision, good selectivity and high sensitivity for brilliant blue detection, and paves new paths for the monitoring of brilliant blue in real samples.
Collapse
Affiliation(s)
- Lizhen Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Meng Chen
- Shanxi Datong University, Datong 037009, PR China
| | - Ting Zhao
- Shanxi Datong University, Datong 037009, PR China
| | - Lin Yuan
- Shanxi Normal University, Taiyuan 030032, PR China
| | - Zhi Mi
- Shanxi Datong University, Datong 037009, PR China.
| | - Yunfeng Bai
- Shanxi Datong University, Datong 037009, PR China
| | - Peng Fei
- Shanxi Datong University, Datong 037009, PR China
| | - Zhixiong Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Caiqing Li
- Shanxi Datong University, Datong 037009, PR China
| | - Ligang Wang
- Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- Shanxi Datong University, Datong 037009, PR China; Shanxi Normal University, Taiyuan 030032, PR China.
| |
Collapse
|
2
|
Park J, Cho YS, Seo DW, Choi JY. An update on the sample preparation and analytical methods for synthetic food colorants in food products. Food Chem 2024; 459:140333. [PMID: 38996638 DOI: 10.1016/j.foodchem.2024.140333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Colorants, especially synthetic colorants, play a crucial role in enhancing the aesthetic qualities of food owing to their cost-effectiveness and stability against environmental factors. Ensuring the safe and regulated use of colorants is essential for maintaining consumer trust in food safety. Various preparation and analytical technologies, which are continuously undergoing improvement, are currently used to quantify of synthetic colorants in food products. This paper reviews recent developments in analytical techniques for synthetic food colorants, detection and compares the operational principles, advantages, and disadvantages of each technology. Additionally, it also explores advancements in these technologies, discussing several invaluable tools of analysis, such as high-performance liquid chromatography, liquid chromatography-tandem mass spectrometry, electrochemical sensors, digital image analysis, near-infrared spectroscopy, and surface-enhanced Raman spectroscopy. This comprehensive overview aims to provide valuable insights into current progress and research in the field of food colorant analysis.
Collapse
Affiliation(s)
- Juhee Park
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Yong Sun Cho
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Dong Won Seo
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Ji Yeon Choi
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
3
|
Li J, Huang H, Xie S, Zhang H, Huang X, Yue R, Xu J, Duan X. Portable electrochemical sensing platform based on amidated GO-MOF and PEDOT:PSS for high-efficient detection of ponceau 4R. Mikrochim Acta 2024; 191:382. [PMID: 38858269 DOI: 10.1007/s00604-024-06409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/04/2024] [Indexed: 06/12/2024]
Abstract
A promising electrochemical sensing platform for the detection of ponceau 4R in food has been fabricated based on the carboxylated graphene oxide (GO-COOH), metal-organic framework (MOF) UIO-66-NH2, and poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). To this end GO-COOH was covalently coupled with UIO-66-NH2 through amide reaction, endowing the material (GO-CONH-UIO-66) unique hierarchical pores and high chemical stability and as a result improving the conductivity of MOF and the dispersion of GO. After the addition of PEDOT:PSS into GO-CONH-UIO-66, the continuity and conductivity of the composite (PEDOT:PSS/GO-CONH-UIO-66) have been further enhanced, due to the high conductivity, favorable film-forming, and hydrophilic properties of PEDOT:PSS. Systematic electrochemical experiments confirm that the PEDOT:PSS/GO-CONH-UIO-66/GCE shows satisfactory electrochemical sensing properties towards the detection of ponceau 4R, with a wide linear detection range of 0.01-30 μM, a low limit of detection of 3.33 nM, and a high sensitivity of 0.606 μA μM-1 cm-2. The PEDOT:PSS/GO-CONH-UIO-66 sensing platform was successfully used to detect ponceau 4R in beverage, and the detection results were compared with high-performance liquid chromatography. As a result, the PEDOT:PSS/GO-CONH-UIO-66 composite shows a promising application prospect for rapid detection of ponceau 4R in food and will play significant role in food safety detection and supervision.
Collapse
Affiliation(s)
- Junhong Li
- College of Pharmacy, Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Hui Huang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Shuqian Xie
- College of Pharmacy, Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Huan Zhang
- College of Pharmacy, Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Xinyu Huang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Ruirui Yue
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Jingkun Xu
- College of Pharmacy, Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Xuemin Duan
- College of Pharmacy, Jiangxi Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| |
Collapse
|
4
|
Ion BC, van Staden JKF, Georgescu-State R, Comnea-Stancu IR. An ultrasensitive electrochemical platform based on copper oxide nanoparticles and poly (crystal violet) for the detection of brilliant blue FCF from soft drinks. Food Chem 2024; 437:137751. [PMID: 37907001 DOI: 10.1016/j.foodchem.2023.137751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
In this study, a highly sensitive and quick electrochemical platform based on poly (crystal violet) film and copper oxide nanoparticles for the detection of brilliant blue FCF from various soft beverages was developed. The synthesized copper oxide nanoparticles were investigated with Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray. Further, crystal violet was electropolymerized on the surface of the carbon paste electrode modified with copper oxide nanoparticles. The electrochemical properties of poly (crystal) violet/copper oxide nanoparticles modified carbon paste electrode were assessed through the utilization of cyclic voltammetry and electrochemical impedance spectroscopy. Furthermore, the signal towards the oxidation of brilliant blue was examined using the differential pulse voltammetry method. Under ideal experimental conditions, the peak current exhibited a linear relationship with the brilliant blue concentration within the range of 0.01-1.00 nmol/L, with a sensitivity of 294.55 µA nmol/L cm-2 and a significant detection limit of 3 pmol/L. In the presence of other dyes and other food additives, the developed platform showed greater selectivity in detecting brilliant blue. The reliability of the designed platform was demonstrated by the 99.19 - 100.67 recovery percentage for the identification of BB in various soft drink samples.
Collapse
Affiliation(s)
- Bianca-Cristina Ion
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Jacobus Koos Frederick van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania.
| | - Ramona Georgescu-State
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Ionela-Raluca Comnea-Stancu
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
5
|
Luo S, Sun X, Zhang L, Miao Y, Yan G. Preparation of room-temperature phosphorescence-ratiometric fluorescence magnetic mesoporous imprinted microspheres and its application in detection of malachite green and tartrazine in multimatrix. Food Chem 2024; 430:137096. [PMID: 37562263 DOI: 10.1016/j.foodchem.2023.137096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
The photoluminescent properties of Mn-doped ZnS quantum dots were fully exploited, and room-temperature phosphorescence (RTP)-ratiometric fluorescence (RF) magnetic mesoporous molecularly imprinted polymers (PFMM-MIPs) were prepared by integrating molecular imprinting technology. RTP was used to detect malachite green (MG). The fluorescence at 420 nm and the peak at 590 nm in the fluorescence mode were used as the response reference signals respectively to detect tartrazine (TZ). The linear responsive range and detection limit of MG were 0.01-150 μM and 4.3 nM, and these of TZ were 0.05-80 μM and 23.7 nM. RTP, which can avoid the interference of background fluorescence, and RF with self-calibration ability can both largely weaken the matrix effect. This work enables single-probe-type MIPs to achieve dual-target analysis via RTP and RF. This method provides excellent sensitivity, specificity, recovery and recyclability, and is expected to be prospectively applied in the fields of food, environment and biological analyses.
Collapse
Affiliation(s)
- Shiqing Luo
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030000, China
| | - Xiaojie Sun
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030000, China
| | - Lifang Zhang
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030000, China; Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Taiyuan 030000, China.
| | - Yanming Miao
- School of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Guiqin Yan
- School of Life Science, Shanxi Normal University, Taiyuan 030000, China
| |
Collapse
|
6
|
Martínez-Moro R, Del Pozo M, Casero E, Petit-Domínguez MD, Quintana C. MoS 2 quantum dots-based optical sensing platform for the analysis of synthetic colorants. Application to quinoline yellow determination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123042. [PMID: 37356389 DOI: 10.1016/j.saa.2023.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
In this work, a novel fluorescence sensor has been designed to solve the actual need of new fast and inexpensive sensing platforms for the analysis of synthetic colorants. It is based on MoS2 quantum dots obtained by a hydrothermal method and incorporated as fluorophore into the matrix of PVC membranes, which are deposited on quartz substrates by spin-coating. It was proven, as in these conditions, MoS2 quantum dots maintain the fluorescent properties that they present in solution. Experiments carried out in solution displayed a maximum emission when they were excited under 310 nm. This initial fluorescence decreases linearly in presence of increasing concentrations of various synthetic colorants namely quinoline yellow, tartrazine, sunset yellow, allura red, ponceau 4R and carmoisine. The two possible mechanisms that can explain this quenching effect, colorants absorbing photons emitted by quantum dots and/or competing with the nanomaterial for photons coming from the excitation source, were evaluated. The most pronounced effect was observed with quinoline yellow, as a result of a mixed mechanism. The optimized methodology developed for the determination of quinoline yellow showed a linear concentration range between 5.4 and 55.0 µg with a limit of detection of 1.6 µg. The sensor was applied to the determination of quinoline yellow in a food colour paste obtaining results in good agreement with those obtained by HPLC-UV-vis measurements.
Collapse
Affiliation(s)
- Rut Martínez-Moro
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. c/ Francisco Tomás y Valiente, N°7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Del Pozo
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. c/ Francisco Tomás y Valiente, N°7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. c/ Francisco Tomás y Valiente, N°7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Dolores Petit-Domínguez
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. c/ Francisco Tomás y Valiente, N°7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. c/ Francisco Tomás y Valiente, N°7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Garsed R, Vázquez L, Casero E, Petit-Domínguez MD, Quintana C, Del Pozo M. 2D-ReS 2 & diamond nanoparticles-based sensor for the simultaneous determination of sunset yellow and tartrazine in a multiple-pulse amperometry FIA system. Talanta 2023; 265:124842. [PMID: 37393712 DOI: 10.1016/j.talanta.2023.124842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
We present a flow injection system with a multiple pulse amperometric detection (FIA-MPA)-based methodology for the simultaneous analysis of sunset yellow and tartrazine. As transducer, we have developed a novel electrochemical sensor based on the synergistic effect of ReS2 nanosheets and diamond nanoparticles (DNPs). Among several transition dichalcogenides for the sensor development, we have selected ReS2 nanosheets since it yields a better response towards both colourants. Scanning probe microscopy characterization shows that the surface sensor is composed by scattered and stacked ReS2 flakes and large aggregates of DNPs. With this system, the gap between the oxidation potential values of sunset yellow and tartrazine is wide enough to allow the simultaneous determination of both dyes. Under the optimum potential pulse conditions (0.8 and 1.2 V) during 250 ms, a flow rate of 3 mL/min and a volume injection of 250 μL, detection limits of 3.51 × 10-7 M and 2.39 × 10-7 M for sunset yellow and tartrazine, respectively, were obtained. This method exhibits good accuracy and precision with Er minor than 13% and RSD lower than 8% with a sampling frequency of 66 samples per hour. Pineapple jelly samples were analyzed by the standard addition method, obtaining 53.7 mg/kg and 29.0 mg/kg of sunset yellow and tartrazine, respectively. From the analysis of fortified samples, recoveries of 94% and 105% were obtained.
Collapse
Affiliation(s)
- Ricardo Garsed
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid. Campus de Excelencia de La Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain
| | - Luis Vázquez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Campus de Excelencia de La Universidad Autónoma de Madrid, C/ Sor Juana Inés de La Cruz Nº3, 28049, Madrid, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid. Campus de Excelencia de La Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain
| | - M Dolores Petit-Domínguez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid. Campus de Excelencia de La Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid. Campus de Excelencia de La Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain
| | - María Del Pozo
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid. Campus de Excelencia de La Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Jenisha Daisy Priscillal I, Wang SF. Designing nano ranged electrode modifier comprised of samarium niobate anchored carbon nanofibers for trace level detection of food colourant: Tartrazine. Food Chem 2023; 422:136230. [PMID: 37141761 DOI: 10.1016/j.foodchem.2023.136230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Tartrazine (TRZ) is a predominantly used food color in food processing industries which is soluble in water to produce a orange colour. This food colorant is categorized under the mono-azo pyrazolone dye group known for the perilous azo group (-NN-) attached to the aromatic ring that threatens human health. In consideration of these aspects, a novel TRZ sensing platform with advanced electrode material is designed by incorporating nanotechnology with chemical engineering. This innovative sensor is prepared by electrode modification through a nano ranged electrode modifier of SmNbO4 decorated on the enmeshed carbon nanofibers. This is the first report on the investigation of SmNbO4/f-CNF as an electrode modifier to extricate the superlative electrochemical properties towards TRZ detection and protracted its practicality to food samples with a lower limit of detection (2 nmolL-1), broad linear range, good selectivity, and functional stability.
Collapse
Affiliation(s)
- I Jenisha Daisy Priscillal
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| |
Collapse
|
9
|
Gimadutdinova L, Ziyatdinova G, Davletshin R. Selective Voltammetric Sensor for the Simultaneous Quantification of Tartrazine and Brilliant Blue FCF. SENSORS (BASEL, SWITZERLAND) 2023; 23:1094. [PMID: 36772133 PMCID: PMC9920251 DOI: 10.3390/s23031094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Tartrazine and brilliant blue FCF are synthetic dyes used in the food, cosmetic and pharmaceutical industries. The individual and/or simultaneous control of their concentrations is required due to dose-dependent negative health effects. Therefore, the paper presents experimental results related to the development of a sensing platform for the electrochemical detection of tartrazine and brilliant blue FCF based on a glassy carbon electrode (GCE) modified with MnO2 nanorods, using anodic differential pulse voltammetry. Homogeneous and stable suspensions of MnO2 nanorods have been obtained involving cetylpyridinium bromide solution as a cationic surfactant. The MnO2 nanorods-modified electrode showed a 7.9-fold increase in the electroactive surface area and a 72-fold decrease in the electron transfer resistance. The developed sensor allowed the simultaneous quantification of dyes for two linear domains: in the ranges of 0.10-2.5 and 2.5-15 μM for tartrazine and 0.25-2.5 and 2.5-15 μM for brilliant blue FCF with detection limits of 43 and 41 nM, respectively. High selectivity of the sensor response in the presence of typical interference agents (inorganic ions, saccharides, ascorbic and sorbic acids), other food dyes (riboflavin, indigo carmine, and sunset yellow), and vanillin has been achieved. The sensor has been tested by analyzing soft and isotonic sports drinks and the determined concentrations were close to those obtained involving the chromatography technique.
Collapse
Affiliation(s)
- Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Rustam Davletshin
- Department of High Molecular and Organoelement Compounds, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|
10
|
Development of Stripping Voltammetry using Glassy Carbon Electrode Modified with Electrochemical Reduced Graphene Oxide for the Determination of Amaranth in Soft Drink and Candy Samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Wang S, Wang H, Ding Y, Li W, Gao H, Ding Z, Lin P, Gu J, Ye M, Yan T, Chen H, Ye J. Filter paper- and smartphone-based point-of-care tests for rapid and reliable detection of artificial food colorants. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Arabkhani P, Sadegh N, Asfaram A. Nanostructured magnetic graphene oxide/UIO-66 sorbent for ultrasound-assisted dispersive solid-phase microextraction of food colorants in soft drinks, candies, and pastilles prior to HPLC analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Figueira Alves G, Vinícius de Faria L, Pedrosa Lisboa T, Cunha de Souza C, Luiz Mendes Fernandes B, Auxiliadora Costa Matos M, Camargo Matos R. A portable and affordable paper electrochemical platform for the simultaneous detection of sunset yellow and tartrazine in food beverages and desserts. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Rapid and sensitive electrochemical determination of tartrazine in commercial food samples using IL/AuTiO2/GO composite modified carbon paste electrode. Food Chem 2022; 385:132616. [DOI: 10.1016/j.foodchem.2022.132616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
15
|
Chen H, Lu M, Huang X. Task specific adsorbent based on porous monolith for efficient capture of synthetic colorants in beverages and preserved fruits prior to chromatographic analysis. J Chromatogr A 2022; 1675:463144. [DOI: 10.1016/j.chroma.2022.463144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
16
|
Baytak A, Aslanoglu M. Praseodymium doped dysprosium oxide‐carbon nanofibers based voltammetric platform for the simultaneous determination of sunset yellow and tartrazine. ELECTROANAL 2022. [DOI: 10.1002/elan.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Moradpour H, Beitollahi H, Nejad FG, Di Bartolomeo A. Glassy Carbon Electrode Modified with N-Doped Reduced Graphene Oxide Sheets as an Effective Electrochemical Sensor for Amaranth Detection. MATERIALS 2022; 15:ma15093011. [PMID: 35591345 PMCID: PMC9105645 DOI: 10.3390/ma15093011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Amaranth is one of the synthetic azo colorants used to improve the appearance and to increase the appeal of some foods and soft drinks. The excessive consumption of amaranth can be associated with health side effects, emphasizing the need to monitor this food dye. Accordingly, the present study aimed to introduce an electrochemical sensor of glassy carbon electrode (GCE) modified with N-doped reduced graphene oxide (N-rGO), N-rGO/GCE, to detect the amaranth sensitively and rapidly. Several electrochemical techniques such as differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), chronoamperometry (CHA), and cyclic voltammetry (CV) are exploited for the evaluation of the efficiency of the developed electrode for the detection of amaranth. We found that N-rGO/GCE enhanced amaranth oxidation, thus significantly elevating the current signal. Amaranth showed that calibration curves ranged from 0.1 to 600.0 µM, and the limit of detection (LOD) (S/N = 3) was 0.03 μM. Finally, the developed sensor was effectively applied for real samples (tap water, apple juice, and orange juice) with acceptable recovery values from 96.0 to 104.3%.
Collapse
Affiliation(s)
- Hediyeh Moradpour
- Department of Chemistry, Graduate University of Advanced Technology, Kerman 7631885356, Iran; (H.M.); (F.G.N.)
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
- Correspondence: (H.B.); (A.D.B.)
| | - Fariba Garkani Nejad
- Department of Chemistry, Graduate University of Advanced Technology, Kerman 7631885356, Iran; (H.M.); (F.G.N.)
| | - Antonio Di Bartolomeo
- Department of Physics “E.R. Caianaiello”, University of Salerno, 84084 Fisciano, Salerno, Italy
- Correspondence: (H.B.); (A.D.B.)
| |
Collapse
|
18
|
Wu J, Wan S, Xu O, Song H, Yang J, Zhu X. Pyridine ionic liquid functionalized bimetallic MOF solid-phase extraction coupled with high performance liquid chromatography for separation/analysis sunset yellow. RSC Adv 2022; 12:30928-30935. [PMID: 36349023 PMCID: PMC9614776 DOI: 10.1039/d2ra05980k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An effective method based on the pyridine ionic liquid functionalized bimetallic MOF solid-phase extractant (Cu/Co-MOF@[PrPy][Br]) coupled with high performance liquid chromatography (HPLC) for the separation/analysis sunset yellow was established. Cu/Co-MOF@[PrPy][Br] was characterized by FTIR, XRD, SEM and TEM. Several important factors, such as pH, amount of extractant, extract time, and types of eluents were investigated in detail. Under the optimal conditions, linear range of the method was 0.05–40.00 μg mL−1, the detection limit was 0.02 μg mL−1, and the linear correlation was good (R2 = 0.9992). The analysis of sunset yellow in soda, effervescent tablet and jelly proved that the method was simple and effective. An effective method based on the pyridine ionic liquid functionalized bimetallic MOF solid-phase extractant (Cu/Co-MOF@[PrPy][Br]) coupled with high performance liquid chromatography (HPLC) for the separation/analysis sunset yellow was established.![]()
Collapse
Affiliation(s)
- Jun Wu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| | - Shuyu Wan
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| | - Ouwen Xu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| | - Hanyang Song
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| | - Jing Yang
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, College of Guangling, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
19
|
Capillary and microchip electrophoresis with contactless conductivity detection for analysis of foodstuffs and beverages. Food Chem 2021; 375:131858. [PMID: 34923397 DOI: 10.1016/j.foodchem.2021.131858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
The paper provides a comprehensive survey of the use of capillary and microchip electrophoresis in combination with contactless conductivity detection (C4D) for the analysis of drinking water, beverages and foodstuffs. The introduction sets forth the fundamentals of conductivity detection anddescribes an axialC4Dversion. There is also a detailed discussion of the determination of inorganic ions, organic acids, fatty acids, amino acids, amines, carbohydrates, foreign substances and poisons from the standpoint of separation conditions, sample treatment and detection limits. Special attention is paid to the analysis of foodstuffs at microchips with emphasis on the employed material and connection of the microchip with the C4D. The review attempts to draw attention to modern trends, such as dual-opposite injection, field-enhanced sample injection, electromembrane extraction and on-line combination of microdialysis with CE. CE/C4D is characterised by high universality, high speed of analysis, simple sample preparation, small consumption of sample and other chemicals.
Collapse
|
20
|
[Progress of sample preparation and analytical methods of dried fruit foods]. Se Pu 2021; 39:958-967. [PMID: 34486835 PMCID: PMC9404242 DOI: 10.3724/sp.j.1123.2021.06030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
坚果、果脯等干果类食品含有丰富的营养成分,深受国内外广大消费者的喜爱。但这些食品在果实生产、加工、储运时会使用农药或产生霉变等,造成干果中农药、重金属、霉菌毒素或添加剂等有害成分残留,甚至超过国家限量要求,带来严重的食品安全问题。因此,加强干果类食品的质量监督具有重要的经济和社会意义。但干果类食品基质复杂,有害物质种类多,结构和性质差异大,含量低,其分析检测需要快速高效的样品前处理技术和准确灵敏的分析检测方法。该文主要综述了近十年来干果类食品中有害物质的样品前处理及分析检测方法研究进展。其中样品前处理方法主要包括各种场辅助萃取法、相分离法和衍生化萃取方法等。场辅助萃取法主要是借助超声波和微波场等外场(协同)作用加快干果中有害物质的溶出速度,提高其萃取效率。相分离法,包括固相(微)萃取、分散固相萃取和液相(微)萃取法等,具有溶剂消耗少、分离富集效率高的优势,是干果样品分析中较常使用的前处理方法。该文还重点介绍了干果中各类有害成分分析检测技术,主要包括色谱、原子光谱、无机质谱、电化学分析等常规实验室方法,以及一些适用于现场分析的快速检测技术,并以此为基础,展望了干果类食品中有害物质分析检测技术的发展趋势。
Collapse
|
21
|
Meral S, Elik A. Ultrasonic-assisted cloud point microextraction and spectrophotometric determination of Ponceau 4R in various beverage samples using Non-ionic surfactant PONPE 7.5. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:573-585. [PMID: 33596154 DOI: 10.1080/19440049.2021.1873427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the current study, a simple, cheap, and fast analytical procedure, termed ultrasonic-assisted cloud point microextraction (UA-CPME), combined with UV-VIS spectrophotometry, was developed for the pre-concentration and identification of Ponceau 4R in some beverage samples. Ponceau 4R was extracted from aqueous solution using polyethylene glycol mono-p-nonylphenyl ether (PONPE 7.5) as extraction solvent in the presence of Cu(II) at pH 6.0. Variables influencing the UA-CPME extraction efficiency such as pH, metal type and amount, temperature, ultrasonic effect, solvent type, non-ionic surfactant type and concentration were optimised in detail. Under optimum conditions, the analytical properties of the developed method were as follows: linear working range, 20-750 μg L-1; limit of detection, 6.5 µg L-1; and the pre-concentration factor, 200. The relative standard deviation (RSD%) obtained for 50 µg L-1 (n = 5) of Ponceau 4R was 2.9%. The accuracy and precision of the method were evaluated by intra-day and inter-day studies. Finally, the developed method has been successfully applied to the separation and identification of Ponceau 4R in the selected samples and the recoveries ranged from 94.3 to 104.2.
Collapse
Affiliation(s)
- Serhan Meral
- Faculty of Sciences, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| | - Adil Elik
- Faculty of Sciences, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
22
|
Shi Z, Li X, Wu Y, Chen M, Zhang H. Determination of Synthetic Colorants in Beverages by Deep Eutectic Solvent-Based Effervescence-Assisted Dispersive Liquid-Liquid Microextraction Coupled with High-Performance Liquid Chromatography. J Chromatogr Sci 2021; 59:887-897. [PMID: 33529307 DOI: 10.1093/chromsci/bmab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/26/2020] [Indexed: 11/14/2022]
Abstract
In this paper, a deep eutectic solvent (DES)-based effervescence-assisted dispersive liquid-liquid microextraction method was proposed for the determination of four synthetic colorants in beverages by high-performance liquid chromatography. In this method, DES synthesized from choline chloride and phenol was used as extractant. The dispersion of DES was assisted by in situ CO2 produced from the effervescence reaction between NaH2PO4 and Na2CO3 without using any organic solvent or auxiliary equipment. Furthermore, phase separation occurred naturally in the presence of the salt products of effervescence reaction, without the addition of any other salting out reagents. Some important parameters, such as species, molar ratio and volume of DES, composition and amount of effervescent agents, were optimized to achieve the best extraction efficiency. Under the optimal conditions, extraction recoveries were obtained for the analytes in the range of 83.5-114.8%. The limits of detection were in the range of 0.6-3.0 ng/mL. Relative standard deviations for intra- and interday precision were <4.68 and 6.08%, respectively. This simple, rapid, cost-effective and environmentally friendly method has been successfully applied to the analysis of synthetic colorants in 10 kinds of beverage samples.
Collapse
Affiliation(s)
- Zhihong Shi
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Xinye Li
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Yifan Wu
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Man Chen
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| | - Hongyi Zhang
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China
| |
Collapse
|
23
|
Development of a highly sensitive fluorescence method for tartrazine determination in food matrices based on carbon dots. Anal Bioanal Chem 2021; 413:1485-1492. [PMID: 33462660 DOI: 10.1007/s00216-020-03118-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
In this work, an ultrasensitive sensing system based on fluorescent carbon dots (CDs) was developed for the tartrazine (Tar) determination. The CDs were prepared via a simple one-pot hydrothermal method with m-phenylenediamine as the only precursor. The physical and chemical properties were in detail characterized by transmission electron microscopy (TEM), MALDI-TOF MS, UV-vis absorption and photoluminescence (PL) spectroscopy, elemental analysis, and Fourier transform infrared spectroscopy (FTIR). Upon exposure to Tar, the fluorescence of CDs was efficiently quenched via the dynamic interaction between CDs and Tar as well as the inner filter effect (IFE). With this information, the CDs were proposed as a fluorescence probe for Tar detection. It was found that CDs had high sensitivity and selectivity for Tar sensing, and the linear relationship was observed in the range of 0.01-25.0 μM with the corresponding detection limit (3σ/k) of 12.4 nM, which is much more sensitive than any of the existed CD-based sensing platform. The investigated sensing system was finally utilized for Tar sensing in various food matrices with a high degree of accuracy. The spiked recoveries were in a range of 96.4-105.2%, and the relative standard deviations (RSDs) were lower than 4.13%. This work highlights the great application prospects of CDs for Tar sensing in a rapid, simple, and sensitive way.
Collapse
|
24
|
Han Q, Sun Y, Shen K, Yan Y, Kang X. Rapid determination of seven synthetic dyes in casual snacks based on packed-fibers solid-phase extraction coupled with HPLC-DAD. Food Chem 2021; 347:129026. [PMID: 33465694 DOI: 10.1016/j.foodchem.2021.129026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 11/18/2022]
Abstract
Based on packed-fiber solid-phase extraction and HPLC-DAD, a simple analytical method for the determination of seven synthetic dyes has been successfully developed. Polystyrene/polypyrrole (PS/PPy) fibers were obtained via electro-spinning of polystyrene skeletal nanofibers, followed by the oxidation with FeCl3 to trigger the polymerization of pyrrole and the deposition of polypyrrole coatings on PS fibrous skeleton fibers. The relationship between the extraction performance of the fibers and the electrospinning process at different humidities was investigated based on morphologic study and BET surface area. In the extraction process, purification, concentration, and desorption could be accomplished in one step. The established method exhibited good sensitivity, selectivity, reproducibility, and good efficiency for synthetic dyes in casual snacks (preserved fruit, flavored yogurt, and fruity hard candy) samples. With optimal conditions, the LODs (S/N = 3) were 2.4 to 21.09 ng mL-1, and linearities were acceptable in liquid matrix and solid matrices. The recoveries were 93.9-103.9%.
Collapse
Affiliation(s)
- Qing Han
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center For Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ying Sun
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center For Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Kangwei Shen
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center For Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Yan
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education), School of Public Health, Southeast University, Nanjing 210096, China
| | - Xuejun Kang
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center For Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
25
|
Kartsova LA, Makeeva DV, Bessonova EA. Current Status of Capillary Electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Ścigalski P, Kosobucki P. Recent Materials Developed for Dispersive Solid Phase Extraction. Molecules 2020; 25:E4869. [PMID: 33105561 PMCID: PMC7659476 DOI: 10.3390/molecules25214869] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022] Open
Abstract
Solid phase extraction (SPE) is an analytical procedure developed with the purpose of separating a target analyte from a complex sample matrix prior to quantitative or qualitative determination. The purpose of such treatment is twofold: elimination of matrix constituents that could interfere with the detection process or even damage analytical equipment as well as enriching the analyte in the sample so that it is readily available for detection. Dispersive solid phase extraction (dSPE) is a recent development of the standard SPE technique that is attracting growing attention due to its remarkable simplicity, short extraction time and low requirement for solvent expenditure, accompanied by high effectiveness and wide applicability. This review aims to thoroughly survey recently conducted analytical studies focusing on methods utilizing novel, interesting nanomaterials as dSPE sorbents, as well as known materials that have been only recently successfully applied in dSPE techniques, and evaluate their performance and suitability based on comparison with previously reported analytical procedures.
Collapse
Affiliation(s)
- Piotr Ścigalski
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| | | |
Collapse
|
27
|
Tahtaisleyen S, Gorduk O, Sahin Y. Electrochemical Determination of Sunset Yellow Using an Electrochemically Prepared Graphene Oxide Modified – Pencil Graphite Electrode (EGO-PGE). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1767120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Selen Tahtaisleyen
- Faculty of Arts & Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Ozge Gorduk
- Faculty of Arts & Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Yucel Sahin
- Faculty of Arts & Science, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
28
|
Yang S, Ma S, Zhu K, Wang M, Li J, Arabi M, Liu H, Li Y, Chen L. Simultaneous enrichment/determination of six sulfonamides in animal husbandry products and environmental waters by pressure-assisted electrokinetic injection coupled with capillary zone electrophoresis. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Maria de Souza Santos Cheibub A, Silva Bahiense de Lyra E, Jardim Alves B, Andrade Donagemma R, Duarte Pereira Netto A. Development and validation of a multipurpose and multicomponent method for the simultaneous determination of six synthetic dyes in different foodstuffs by HPLC-UV-DAD. Food Chem 2020; 323:126811. [PMID: 32330650 DOI: 10.1016/j.foodchem.2020.126811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/12/2019] [Accepted: 04/13/2020] [Indexed: 01/22/2023]
Abstract
A simple and low-cost multipurpose analytical method using HPLC-UV-DAD was developed and validated, following international guidelines, for the determination of six synthetic food dyes: Tartrazine, Sunset Yellow, Amaranth, Allura Red, Indigotine, and Brilliant Blue. The method required a simple sample preparation step that consisted of dissolution or dilution of the samples in water, followed by pH adjustment and filtering through PVDF filters. No significant matrix effect was verified. Linear working ranges varied from 0.25 to 6.0 mg L-1. Appropriate limits of quantification (0.10 to 0.15 mg L-1), mean recoveries (90.2 to 106.6%), and repeatability and intermediate precision (<4.5%) were obtained. Sixty-one samples of different types of foodstuffs were analyzed: jelly and juice powder, jelly candy, jujube candy, hard candy, ice cream syrup, sports drinks, soft drinks, energy drinks, artificially colored ready-to-drink fruit juices and flavored alcoholic beverages. All studied samples showed dye levels in conformity with Brazilian regulations.
Collapse
Affiliation(s)
- Ana Maria de Souza Santos Cheibub
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University (UFF), Outeiro de São João Batista, s/n, 24020-141, Valonguinho, Centro, Niterói, RJ, Brazil; Graduate Program in Chemistry, Institute of Chemistry, Fluminense Federal University, Outeiro de São João Batista, s/n, 24020-141, Valonguinho, Centro, Niterói, RJ, Brazil
| | - Eduardo Silva Bahiense de Lyra
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University (UFF), Outeiro de São João Batista, s/n, 24020-141, Valonguinho, Centro, Niterói, RJ, Brazil
| | - Barbara Jardim Alves
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University (UFF), Outeiro de São João Batista, s/n, 24020-141, Valonguinho, Centro, Niterói, RJ, Brazil
| | - Raquel Andrade Donagemma
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University (UFF), Outeiro de São João Batista, s/n, 24020-141, Valonguinho, Centro, Niterói, RJ, Brazil
| | - Annibal Duarte Pereira Netto
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University (UFF), Outeiro de São João Batista, s/n, 24020-141, Valonguinho, Centro, Niterói, RJ, Brazil; Graduate Program in Chemistry, Institute of Chemistry, Fluminense Federal University, Outeiro de São João Batista, s/n, 24020-141, Valonguinho, Centro, Niterói, RJ, Brazil.
| |
Collapse
|
30
|
Dinç-Zor Ş, Dönmez ÖA, Aşçı B, Pingo E. Chemometric optimization of an HPLC method for the simultaneous analysis of a multi component drug product by the help of central composite design. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Lhotská I, Solich P, Šatínský D. A Comparative Study of Advanced Stationary Phases for Fast Liquid Chromatography Separation of Synthetic Food Colorants. Molecules 2018; 23:E3335. [PMID: 30558325 PMCID: PMC6321072 DOI: 10.3390/molecules23123335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
Food analysis demands fast methods for routine control and high throughput of samples. Chromatographic separation enables simultaneous determination of numerous compounds in complex matrices, several approaches increasing separation efficiency and speed of analysis were involved. In this work, modern types of column with monolithic rod or superficially porous particles were employed and compared for determination of eight synthetic food dyes, their chromatographic performance was evaluated. During method optimization, cyano stationary phase Chromolith Performance CN 100 × 4.6 mm and Ascentis Express ES-CN 100 × 4.6 mm, 5 µm were selected for the separation of polar colorants. The separation was performed by gradient elution of acetonitrile/methanol and 2% water solution of ammonium acetate at flow rate 2.0 mL min-1. Mobile phase composition and the gradients were optimized in order to enable efficient separation on both columns. The method using fused-core particle column provided higher separation efficiency, narrow peaks of analytes resulted in increased peak capacity and shortening of analysis time. After the validation, the method was applied for analysis of coloured beers, soft drinks and candies.
Collapse
Affiliation(s)
- Ivona Lhotská
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, Hradec Králové 50005, Czech Republic.
| | - Petr Solich
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, Hradec Králové 50005, Czech Republic.
| | - Dalibor Šatínský
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, Hradec Králové 50005, Czech Republic.
| |
Collapse
|
32
|
Breadmore MC, Grochocki W, Kalsoom U, Alves MN, Phung SC, Rokh MT, Cabot JM, Ghiasvand A, Li F, Shallan AI, Keyon ASA, Alhusban AA, See HH, Wuethrich A, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016-2018). Electrophoresis 2018; 40:17-39. [PMID: 30362581 DOI: 10.1002/elps.201800384] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
One of the most cited limitations of capillary and microchip electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of online/in-line concentration methods in capillaries and microchips, covering the period July 2016-June 2018. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to online or in-line extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Wojciech Grochocki
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Umme Kalsoom
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Mónica N Alves
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Sui Ching Phung
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Joan M Cabot
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Chemistry, Lorestan University, Khoramabad, Iran
| | - Feng Li
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Aliaa I Shallan
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, Australia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Aemi S Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Hong Heng See
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
33
|
Šlampová A, Malá Z, Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis 2018; 40:40-54. [PMID: 30073675 DOI: 10.1002/elps.201800261] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
Electrophoretic sample stacking comprises a group of capillary electrophoretic techniques where trace analytes from the sample are concentrated into a short zone (stack). This paper is a continuation of our previous reviews on the topic and brings a survey of more than 120 papers published approximately since the second quarter of 2016 till the first quarter of 2018. It is organized according to the particular stacking principles and includes chapters on concentration adjustment (Kohlrausch) stacking, on stacking techniques based on pH changes, on stacking in electrokinetic chromatography and on other stacking techniques. Where available, explicit information is given about the procedure, electrolyte(s) used, detector employed and sensitivity reached. Not reviewed are papers on transient isotachophoresis which are covered by another review in this issue.
Collapse
Affiliation(s)
- Andrea Šlampová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Zdena Malá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
34
|
Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques: Developments from 2016 to 2018. Electrophoresis 2018; 40:124-139. [PMID: 30010203 DOI: 10.1002/elps.201800248] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023]
Abstract
The publications concerning capacitively coupled contactless conductivity detection for the 2-year period from mid-2016 to mid-2018 are covered in this update to the earlier reviews of the series. Relatively few reports on fundamental investigations or new designs have appeared in the literature in this time interval, but the development of new applications with the detection method has continued strongly. Most often, contactless conductivity measurements have been employed for the detection of inorganic or small organic ions in conventional capillary electrophoresis, less often in microchip electrophoresis. A number of other uses, such as detection in chromatography or the gauging of bubbles in streams have also been reported.
Collapse
Affiliation(s)
- Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Peter C Hauser
- Department of Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|