1
|
Identification of Candidate Genes Associated with Trichothecene Biosynthesis in Fusarium graminearum Species Complex Combined with Transcriptomic and Proteomic Analysis. Microorganisms 2022; 10:microorganisms10081479. [PMID: 35893537 PMCID: PMC9332169 DOI: 10.3390/microorganisms10081479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
The Fusarium graminearum species complex is the main causal agent of wheat head blight worldwide. Trichothecenes produced by the pathogen in infected grains have important food safety implications. Previously reported studies on trichothecene production have all focused on the conditions conducive to mycotoxin production, while the molecular mechanisms of trichothecene biosynthesis in Fusarium strains under normal or non-inducing conditions are still unclear. Here, a global analysis of the fungal gene expression of three strains using the Affymetrix Fusarium GeneChip under non-inducing conditions is reported. Differentially expressed genes were identified among strains with different trichothecene-production ability, and some novel genes associated with trichothecene biosynthesis were found by bioinformatics analysis. To verify the transcriptome results, proteomic analyses of the three strains were conducted under the same culture conditions. In total, 69 unique fungal proteins were identified in 77 protein spots. Combined with transcriptome and proteome analysis, 27 novel genes were predicted to be associated with trichothecene mycotoxin production. A protein, encoded by FGSG_01403, was found to be associated with trichothecene production via proteome analysis. Gene knock-out mutations of FGSG_01403 resulted in mutants with increased production of trichothecenes. Future functional analysis of the candidate genes identified in this study may reveal new insights into the negative regulation of trichothecene production in the Fusarium graminearum species complex.
Collapse
|
2
|
Li Q, Zhao Y, Zuo X, Guo F, Li Y, Xie Y. Paeonol inhibits Aspergillus flavus via disrupting ergosterol biosynthesis, redox metabolism, and aflatoxin biosynthesis on rice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Kasonga TK, Coetzee MAA, Kamika I, Momba MNB. Assessing the Fungal Simultaneous Removal Efficiency of Carbamazepine, Diclofenac and Ibuprofen in Aquatic Environment. Front Microbiol 2021; 12:755972. [PMID: 34966363 PMCID: PMC8710540 DOI: 10.3389/fmicb.2021.755972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Unused pharmaceutical compounds (PhCs) discharged into the aquatic environment have been regarded as emerging pollutants due to potential harmful effects on humans and the environment. Microbial bioremediation is considered as a viable option for their removal from wastewater. The aim of this study was to assess the simultaneous removal of carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBP) by previously isolated fungi (Aspergillus niger, Mucor circinelloides, Trichoderma longibrachiatum, Trametes polyzona, and Rhizopus microsporus). The tolerance to PhCs was conducted by tracking the fungal mycelium mat diameters in solid media and its dry biomass in liquid media, at the drug concentration range of 0.1 to 15 mg/L. The fungal enzymatic activities were determined for lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac), respectively. The PhC removal efficiency of the fungi was assessed in aerated batch flasks and the drug concentrations and intermediate compounds formation were determined by using SPE-UPLC/MS. A tolerance over 70% was recorded for all the fungi at drug concentration of 0.1 mg/L. Manganese peroxidase was produced by all the fungi with very low amount of LiP, while all the enzymes were produced by T. polyzona. The pH of 4.3, temperature 37 ± 1.5°C and incubation time of 6 days were the optimum parameters for the fungal enzymatic activities. The best removal of CBZ (87%) was achieved by R. microsporus after 10 days. Between 78 and 100% removal of DCF was observed by all the fungi after 24 h, while 98% of IBP was removed after 2 days by M. circinelloides. Only a few intermediate compounds were identified after 3 days and disappeared after 10 days of incubation. This study demonstrated that apart from the basidiomycetes, the ascomycetes and zygomycetes are also producers of ligninolytic enzymes and have the ability to biodegrade emerging pollutants such as PhCs.
Collapse
Affiliation(s)
- Teddy K. Kasonga
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Martie A. A. Coetzee
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability, School of Science, College of Science, Engineering and Technology, University of South Africa, Roodepoort, South Africa
| | - Maggy N. B. Momba
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
5
|
Development and Validation of a UHPLC-MS/MS Method for the Analysis of Fusarium Mycotoxins in Onion. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01992-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractFusarium basal rot (FBR) of onion is a serious disease problem worldwide. The Fusarium species causing FBR can also produce mycotoxins that are potentially harmful to humans and animals. In this study, a multiple reaction monitoring technique with ultra-high-performance liquid chromatography–tandem mass spectrometry (MRM UHPLC-MS/MS) was developed and validated for onion matrix to study Fusarium mycotoxins in the harvested onions. This study was focused on fumonisins B1, B2, and B3 (FB1, FB2, and FB3), beauvericin (BEA), and moniliformin (MON), which are the main mycotoxins produced by Fusarium oxysporum and Fusarium proliferatum. In the in-house validated protocol, the onion samples were extracted with methanol:water (3:1) using magnetic stirring for 15 min. FBs and BEA were determined directly from the filtered extracts, whereas MON required sample concentration prior to analysis. No cleanup of extracts was needed prior to analysis. The target mycotoxins were separated on an Acquity UPLC system BEH C18 column with gradient elution. Mycotoxins were identified and quantified using 13C-FB1 as internal standard. Minor matrix effect was compensated using multi-point matrix-matched calibration curves with uninfected onion sample. For the mycotoxins studied, a good linearity was obtained (R2 ≥ 0.99) and the recoveries were in the range of 67–122%, with the highest standard deviation for MON, 22%. The limits of quantification were from 2.5 to 10 ng g−1 in onion matrix. The method was successfully employed for the analysis of mycotoxins in harvested onions showing FBR symptoms and found to be infected with F. oxysporum and F. proliferatum.
Collapse
|
6
|
Ouakhssase A, Ait Addi E. Mycotoxins in food: a review on liquid chromatographic methods coupled to mass spectrometry and their experimental designs. Crit Rev Food Sci Nutr 2020; 62:2606-2626. [PMID: 33287555 DOI: 10.1080/10408398.2020.1856034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of a multi-mycotoxins method using LC-MS/MS is necessary and it is clear that the development of such method involves many compromises in the choice of the different parameters. This review summarizes applications using conventional experimental designs and some recent studies using response surface methodology (RSM) as a mathematical modeling tool for the optimization of extraction procedures. The authors also discuss pros and cons of the different procedures. To our knowledge, it is the first review on experimental design for the development of multi-mycotoxin methods. This review could be useful in the development and optimization of LC-MS/MS methods with the aim of describing experimental design and variables (factors) that are likely to affect sensitivity and specificity.
Collapse
Affiliation(s)
- Abdallah Ouakhssase
- Research group: Génie des procédés et Ingénierie Chimique, Ecole Supérieure de Technologie d'Agadir, Université Ibn Zohr, Agadir, Morocco
| | - Elhabib Ait Addi
- Research group: Génie des procédés et Ingénierie Chimique, Ecole Supérieure de Technologie d'Agadir, Université Ibn Zohr, Agadir, Morocco
| |
Collapse
|
7
|
Wang J, Wang S, Zhao Z, Lin S, Van Hove F, Wu A. Species Composition and Toxigenic Potential of Fusarium Isolates Causing Fruit Rot of Sweet Pepper in China. Toxins (Basel) 2019; 11:toxins11120690. [PMID: 31771308 PMCID: PMC6950595 DOI: 10.3390/toxins11120690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022] Open
Abstract
Apart from causing serious yield losses, various kinds of mycotoxins may be accumulated in plant tissues infected by Fusarium strains. Fusarium mycotoxin contamination is one of the most important concerns in the food safety field nowadays. However, limited information on the causal agents, etiology, and mycotoxin production of this disease is available on pepper in China. This research was conducted to identify the Fusarium species causing pepper fruit rot and analyze their toxigenic potential in China. Forty-two Fusarium strains obtained from diseased pepper from six provinces were identified as F. equiseti (27 strains), F. solani (10 strains), F. fujikuroi (five strains). This is the first report of F. equiseti, F. solani and F. fujikuroi associated with pepper fruit rot in China, which revealed that the population structure of Fusarium species in this study was quite different from those surveyed in other countries, such as Canada and Belgium. The mycotoxin production capabilities were assessed using a well-established liquid chromatography mass spectrometry method. Out of the thirty-six target mycotoxins, fumonisins B1 and B2, fusaric acid, beauvericin, moniliformin, and nivalenol were detected in pepper tissues. Furthermore, some mycotoxins were found in non-colonized parts of sweet pepper fruit, implying migration from colonized to non-colonized parts of pepper tissues, which implied the risk of mycotoxin contamination in non-infected parts of food products.
Collapse
Affiliation(s)
- Jianhua Wang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.W.); (Z.Z.); (S.L.)
| | - Shuangxia Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200000, China;
| | - Zhiyong Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.W.); (Z.Z.); (S.L.)
| | - Shanhai Lin
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China; (J.W.); (Z.Z.); (S.L.)
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - François Van Hove
- Mycothèque de l’UCL catholique de Louvain (BCCMTM/MUCL), Applied Microbiology (ELIM), Earth and Life Institute (ELI), Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve, Belgium;
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200000, China;
- Correspondence: ; Tel.: +86-21-5492-0926
| |
Collapse
|
8
|
Data on UPLC/MS method validation for the biodegradation of pharmaceuticals and intermediates by a fungal consortium and on T47DK-Bluc reporter gene assay to assess the reduction of their estrogenic activity. Data Brief 2019; 25:104336. [PMID: 31453302 PMCID: PMC6702386 DOI: 10.1016/j.dib.2019.104336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/28/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
In term of pharmaceutical and their intermediate compounds analysis, UPLC/MS method is a valuable equipment to achieve better confirmation on their biodegradation by fungi. The T47D-KBluc reporter gene assay is an appropriate tool to investigate to removal of estrogenic and antiestrogenic activities of pharmaceuticals and their metabolites from a synthetic wastewater. A consortium of isolated South African indigenous fungi Aspergillus niger, Mucor circinelloides, Trichoderma longibrachiatum, Trametes polyzona and Rhizopus microspores was found to perform a removal of pharmaceuticals and their metabolites and to reduce their estrogenic activity below the limit of detection in a sequencing batch reactor. Here are presented data regarding the phenolic compounds list and the method validation for UPLC/MS analysis used for selected pharmaceutical compounds namely carbamazepine, diclofenac, ibuprofen and their metabolites, as well as the T47D-KBluc bioassay using as positive control, the agonist E2 for estrogenic activity and the antagonist ICI 182,780 for antiestrogenic activity. For better understanding of the data presented in this paper, please see the research paper “Removal of pharmaceutical’ estrogenic activity of sequencing batch reactor effluents assessed in the T47DK-Bluc reporter gene assay” [1].
Collapse
|
9
|
Kasonga TK, Coetzee MAA, Van Zijl C, Momba MNB. Removal of pharmaceutical' estrogenic activity of sequencing batch reactor effluents assessed in the T47D-KBluc reporter gene assay. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 240:209-218. [PMID: 30939401 DOI: 10.1016/j.jenvman.2019.03.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Various water treatment processes may be ineffective to remove pharmaceutical compounds (PhCs) and their by-products, leading to endocrine-disruptive activity that might be detrimental to wildlife and human health. This study investigated the degradation of carbamazepine (CBZ), diclofenac (DCF), ibuprofen (IBP), and their intermediates, as well as estrogenic activity that is not effectively removed by conventional methods. A consortium of isolated South African indigenous fungi A. niger, M. circinelloides, T. polyzona, T. longibrachiatum and R. microsporus, was used in a sequencing batch reactor (SBR) to remove PhCs, their intermediates and strongly reduce their estrogenic activity. The fungal ligninolytic enzymatic activity was determined for laccase (Lac), manganese peroxidase (MnP) and lignin peroxidase (LiP) using a spectrophotometric method. The biodegradation of PhCs and their intermediates was monitored by SPE-UPLC/MS. The in vitro estrogenic activity was assessed in the T47D-KBluc reporter gene assay. Lac, MnP and LiP production appeared to be biomass growth dependent. During a lag phase of growth, a constant biomass of about 122.04 mg/100 mL was recorded with average enzymatic activity around 63.62 U/L for Lac, 151.91 U/L for MnP and 42.12 U/L for LiP. The exponential growth phase from day 7 to day 17, was characterised by a biomass increase of 124.46 units, and an increase in enzymatic activity of 9.91 units for Lac, 99.03 units for MnP and 44.24 units for LiP. These enzymes played an important synergistic role in PhCs degradation in the cytochrome P450 system. A decrease of 13.89%, 29.7% and 16.15% in PhC concentrations was observed for CBZ, DCF and IBP, respectively, and their intermediates were identified within 4 h of incubation. The removal efficiency achieved after 24 h in the SBR was about 89.77%, 95.8% and 91.41% for CBZ, DCF and IBP, respectively. The estradiol equivalent (EEq) values of 1.71 ± 0.30 ng/L and 2.69 ± 0.17 ng/L were recorded at the start-up time and after 4 h, respectively. The presence of intermediates was found to induce estrogenic activity. The EEq values after 24 h incubation was found to be below the LoQ and below the LoD of the assay. None of the samples exhibited any anti-estrogenic activity. The fungal consortium inoculum was found to induce toxicity at a 0.4× concentration, as observed under a microscope. This study revealed that the use of the fungal consortium can remove the estrogenic activity of pharmaceutical metabolites, which appeared to be the most significant contributors to the endocrine-disrupting activity of the wastewater treatment plant effluents.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa.
| | - Martie A A Coetzee
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa.
| | - Catherina Van Zijl
- Department of Urology, University of Pretoria, Private Bag X323, Arcadia, 0007, Pretoria, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa
| |
Collapse
|
10
|
Presence of mycotoxins in ready-to-eat food and subsequent risk assessment. Food Chem Toxicol 2018; 121:558-565. [PMID: 30266314 DOI: 10.1016/j.fct.2018.09.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/18/2022]
Abstract
A study on a set of ready-to-eat meals (n = 328) based on cereals, legumes, vegetables, fish and meat was carried out to determine the natural presence of twenty-seven mycotoxins by both liquid chromatography and gas chromatography coupled mass spectrometry in tandem (MS/MS) after QuEChERS extraction. The occurrence of mycotoxins was headed by cereal samples with 35% of samples contaminated by at least one mycotoxin followed by vegetables (32%), legumes (15%) and lastly, 9% of fish and meat samples were contaminated. DON was the most detected mycotoxin in vegetables, meat, fish and cereals with an incidence of 13% 18% 19% and 60%, respectively, and the highest mean levels were found in fish (1.19 μg/kg) and vegetable (1.53 μg/kg), respectively. The highest levels means were for HT-2 toxin ranging from 4.03 to 7.79 μg/kg, in cereal and legume samples respectively. In this last, HT-2 toxin was also the most prevalent (54%). In meat samples, OTA resulted with highest value with 8.09 μg/kg. Likewise, PCA analysis revealed a high correlation between the mycotoxins and the food groups analyzed. The findings indicate that there is no toxicological concern associated with exposure to mycotoxins for consumers as all levels were in accordance with the legislation.
Collapse
|