1
|
Vural N, Algan-Cavuldak Ö, Akay MA. Desirability Function Approach for the Optimization of Hydroalcoholic Solvent Extraction Conditions for Antioxidant Compounds from Olive Leaves. AN ACAD BRAS CIENC 2024; 96:e20230602. [PMID: 38808814 DOI: 10.1590/0001-37652024202306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/28/2023] [Indexed: 05/30/2024] Open
Affiliation(s)
- Nilüfer Vural
- Department of Food Processing-Food Technology, Health Services Vocational School, University of Ankara Yıldırım Beyazıt, 06760, Çubuk, Ankara, Türkiye
- Institute of Public Health, Department of Traditional, Complementary and Integrative Medicine Practice and Research Center, University of Ankara Yıldırım Beyazıt, 06010, Etlik, Ankara, Türkiye
| | - Özge Algan-Cavuldak
- Department of Food Engineering, Faculty of Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Türkiye
| | - M Abdülkadir Akay
- Department of Chemistry, Faculty of Sciences, Ankara University, 06100, Ankara, Türkiye
| |
Collapse
|
2
|
Zhang K, Guo R, Wang Y, Wang J, Nie Q, Zhu G. Terpenes based hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of aliphatic aldehydes in drinking water and alcoholic beverages. CHEMOSPHERE 2024; 354:141706. [PMID: 38484993 DOI: 10.1016/j.chemosphere.2024.141706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Aliphatic aldehydes are a class of organic compounds containing aldehyde groups, which are widespread, and closely related to people's daily life and health. In this work, a series of terpenes based hydrophobic deep eutectic solvents were designed and synthesized using hexafluoroisopropanol as hydrogen bond donor and menthol/thymol as hydrogen bond acceptor. Then they are used as extraction solvent in dispersive liquid-liquid microextraction for extracting and determining seven aliphatic aldehydes from drinking water and alcoholic beverage combined with high performance liquid chromatography-ultraviolet. Due to the fact that these hydrophobic deep eutectic solvents are liquid at the room temperature, a density greater than that of water, a lower viscosity (≤26.10 mPa s, 25 °C), after extraction and centrifugation, the microvolume DES-rich phase in the bottom is convenient for collection and direct analysis without further dissolution or dilution with organic solvents. Some factors affecting the extraction recovery were optimized by one-variable-at-a-time and response surface methodology. Under the optimal conditions, the enrichment factors for the seven aliphatic aldehydes were 48-56. The method had good performance: linear ranges of 1.0-200, 0.5-200, 0.2-200, 0.4-400, 1.0-400, 0.4-400 and 0.4-400 μg L-1 for seven aliphatic aldehydes (r2 ≥ 0.9949), limits of detection of 0.1-0.5 μg L-1, intra-day and inter-day precisions <4.9%. The recoveries of seven aliphatic aldehydes ranged from 76.0 to 119.0%. The proposed dispersive liquid-liquid microextraction method is simple, rapid, highly efficient, and green, which effectively reduces the amount of toxic chemical reagents used and their impact on the environment. Rapid and efficient detection of aliphatic aldehydes helps ensure a healthy diet and has great application prospects in food safety analysis.
Collapse
Affiliation(s)
- Kaige Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Rong Guo
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Yunhe Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Jing Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Qiujun Nie
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
3
|
Zhao H, Kim Y, Avena-Bustillos RJ, Nitin N, Wang SC. Characterization of California olive pomace fractions and their in vitro antioxidant and antimicrobial activities. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Lafeuille JL, Brun M, Lefèvre S, Menezes C, Candalino IF. A validated qualitative method using oleuropein as a robust biomarker to confirm ground black pepper (Piper nigrum L.) adulteration with olive (Olea europaea L.) by-products. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Abstract
Oleuropein, a bitter substance that exists in olive leaves, can be hydrolyzed to hydroxytyrosol. These are the main phenolic compounds, and they have beneficial properties to human bodies. In this study, we established a simple and new method to determine oleuropein and hydroxytyrosol quickly by HPLC. HPLC conditions were set as follows: water (A) acetonitrile (B) as mobile phase, gradient elution orders: 90%A–10%B for 0–10 min, 80%A–20%B for 14–30 min, and then change to 90%A–10%B for 30–33 min; detection wavelength: 280 nm. Compared with other detection methods, the method simplified the elution procedure and shortened the time. Additionally, we provided a better drying method and preservation of olive leaves in tea drinking production that were air-dried at room temperature of 25 °C.
Collapse
|
6
|
Yan XT, Zhang Y, Yang ML, Feng XS, Zhang F. An accurate, rapid, and sensitive method for simultaneous determination of four typical heterocyclic amines in roasted pork patties: Application in the study of inhibitory effects of astaxanthin. J Sep Sci 2021; 44:1833-1842. [PMID: 33586849 DOI: 10.1002/jssc.202001229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/27/2022]
Abstract
Heterocyclic aromatic amines, as a group of mutagenic and carcinogenic compounds, have gained worldwide concern. In this study, an accurate, rapid, and sensitive confirmation and quantification method of four major heterocyclic aromatic amines in roasted pork was developed based on Q-Orbitrap along with Quick, Easy, Cheap, Effective, Rugged, and Safe extraction. The limit of detections and limit of quantitations were found to be 0.2-1.2 μg/kg and 0.6-3.5 μg/kg, respectively, revealing the high sensitivity of this method. Obtained results showed recoveries ranging from 78.1 to 97.4%, depending on the different heterocyclic aromatic amines and spiked levels. Precision was in the range of 2.6-4.5% for four heterocyclic aromatic amines at different levels. In addition, the developed method had been applied to investigate the inhibitory effects of astaxanthin on the above-mentioned heterocyclic aromatic amines in roasted pork. The amount of astaxanthin with the best inhibitory effects was 7.5 mg (0.0375%), which led to significant reduction in heterocyclic aromatic amines levels over 50%.
Collapse
Affiliation(s)
- Xiao-Ting Yan
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China.,School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Min-Li Yang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China
| |
Collapse
|
7
|
Zhang K, Wang Y, Li S, Zhu G. Air-assisted liquid-liquid microextraction based on the solidification of floating deep eutectic solvents for the simultaneous determination of bisphenols and polycyclic aromatic hydrocarbons in tea infusions via HPLC. Food Chem 2021; 348:129106. [PMID: 33516999 DOI: 10.1016/j.foodchem.2021.129106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023]
Abstract
Deep eutectic solvents (DESs) are a new class of green "designer solvent"; its physicochemical properties can be easily tuned by adjusting DES' constituents, chemical ratio and water content. In this study, three hydrophobic DESs with low viscosity, low density, and melting points close to room temperature were designed and synthesized. Based on these DESs, an air-assisted liquid-liquid microextraction technique was developed based on the solidification of floating DESs for the simultaneous determination of bisphenols and polycyclic aromatic hydrocarbons (PAHs) via HPLC. The microextraction parameters were optimized via the Plackett-Burman design and response surface methodologies. The method shows satisfactory linearity (R2 ≥ 0.9928), a low limit of detection (0.16-0.75 μg L-1) and satisfactory precision (≤2.3%), and was successfully applied for the simultaneous determination of bisphenols and PAHs from tea infusions with satisfactory recoveries (82.0-116.6%). This method is simple, rapid, economical, environmentally compatible, dispersive solvent-frees and centrifugation-free, and has promising applications in food safety.
Collapse
Affiliation(s)
- Kaige Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Yunhe Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Shuangying Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
8
|
Tapia-Quirós P, Montenegro-Landívar MF, Reig M, Vecino X, Alvarino T, Cortina JL, Saurina J, Granados M. Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery. Antioxidants (Basel) 2020; 9:E1074. [PMID: 33139671 PMCID: PMC7694004 DOI: 10.3390/antiox9111074] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 01/06/2023] Open
Abstract
In this study, the recovery of polyphenols from olive oil mill and winery waste was investigated. The performance of ultrasound assisted extraction (UAE), microwave assisted extraction (MAE), and pressurized liquid extraction (PLE) was assessed using ethanol-water mixtures, which are compatible with food, nutraceutical, and cosmetic applications. The extraction efficiency from olive pomace and lees samples was evaluated in terms of total polyphenol content (TPC), determined by high performance liquid chromatography (HPLC) and Folin-Ciocalteu assay. The effect of solvent composition, temperature, and time was analyzed by response surface methodology. Ethanol:water 50:50 (v/v) was found to be a suitable solvent mixture for both kinds of samples and all three extraction techniques. The performance of the extraction techniques was evaluated, under optimal experimental conditions, with a set of different representative samples of residues from olive oil and wine production. Overall, the best extraction efficiency for olive pomace residues was provided by MAE (ethanol:water 50:50 (v/v), 90 °C, 5 min), and for wine residues by PLE (ethanol:water 50:50 (v/v), 100 °C, 5 min, 1 cycle). However, the results provided by UAE (ethanol:water 50:50 (v/v), 30 min) were also suitable. Considering not only extraction performance, but also investment and operational costs, UAE is proposed for a future scaling up evaluation. Regarding olive pomace as a source for natural phenolic antioxidants, olive variety and climatic conditions should be taken into account, since both influence TPC in the extracts, while for winery residues, lees from red wines are more suitable than those from white wines.
Collapse
Affiliation(s)
- Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Maria Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Monica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - Teresa Alvarino
- Galician Water Research Center Foundation (Cetaqua Galicia), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Jose Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya (UPC)-Barcelona TECH, 08930 Barcelona, Spain; (P.T.-Q.); (M.F.M.-L.); (M.R.); (X.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
- CETAQUA, Carretera d’Esplugues, 75, 08940 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain;
| | - Merce Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain;
| |
Collapse
|
9
|
Valorisation of Exhausted Olive Pomace by an Eco-Friendly Solvent Extraction Process of Natural Antioxidants. Antioxidants (Basel) 2020; 9:antiox9101010. [PMID: 33080930 PMCID: PMC7603280 DOI: 10.3390/antiox9101010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Exhausted olive pomace (EOP) is the waste generated from the drying and subsequent extraction of residual oil from the olive pomace. In this work, the effect of different aqueous solvents on the recovery of antioxidant compounds from this lignocellulosic biomass was assessed. Water extraction was selected as the best option for recovering bioactive compounds from EOP, and the influence of the main operational parameters involved in the extraction was evaluated by response surface methodology. Aqueous extraction of EOP under optimised conditions (10% solids, 85 °C, and 90 min) yielded an extract with concentrations (per g EOP) of phenolic compounds and flavonoids of 44.5 mg gallic acid equivalent and 114.9 mg rutin equivalent, respectively. Hydroxytyrosol was identified as the major phenolic compound in EOP aqueous extracts. Moreover, these extracts showed high antioxidant activity, as well as moderate bactericidal action against some food-borne pathogens. In general, these results indicate the great potential of EOP as a source of bioactive compounds, with potential uses in several industrial applications.
Collapse
|
10
|
Klikarová J, Česlová L, Kalendová P, Dugo P, Mondello L, Cacciola F. Evaluation of Italian extra virgin olive oils based on the phenolic compounds composition using multivariate statistical methods. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03484-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Andreou V, Psarianos M, Dimopoulos G, Tsimogiannis D, Taoukis P. Effect of pulsed electric fields and high pressure on improved recovery of high-added-value compounds from olive pomace. J Food Sci 2020; 85:1500-1512. [PMID: 32267966 DOI: 10.1111/1750-3841.15122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Olive pomace is considered a solid by-product and a rich source of valuable compounds such as polyphenols, flavonoids with antioxidant properties, and proteins. Nonthermal technologies, which cause alterations to cell permeability, are being explored to assist conventional recovery techniques. The aim of this study was to assess the effect of pulsed electric fields (PEF) and high pressure (HP) on improved recovery yield of the high-added-value compounds or to shorten the extraction time of these compounds. Olive pomace (Tsounati cv) was pretreated with PEF (1.0 to 6.5 kV/cm, 0.9 to 51.1 kJ/kg, and 15 µs pulse width) or HP (200 to 600 MPa and 0 to 40 min). Evaluation of the intracellular compounds extracted via solid-liquid extraction (50% ethanol-water solution) was performed. More intense PEF and HP conditions resulted in a significant increase of the phenolic concentration up to 91.6% and 71.8%, respectively. The increased antioxidant capacity of each extract was correlated to phenolic compound concentration. The protein concentration that was achieved with PEF pretreatment was doubled; however, HP-pretreated extracts reached 88.1% higher yield than untreated for pressures up to 200 MPa. HP and PEF pretreatment decreased extraction completion time t98 (needed time to recover the equal amount of phenolics and proteins of untreated after 60 min of conventional extraction) to 12 min and lower than 1 min, respectively. To conclude, both pretreatments are effective in improving the conventional extraction process for increased yield recovery of high-added-value compounds from olive pomace.
Collapse
Affiliation(s)
- Varvara Andreou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Marios Psarianos
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - George Dimopoulos
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Dimitrios Tsimogiannis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| |
Collapse
|
12
|
Combination of solid-phase extraction with microextraction techniques followed by HPLC for simultaneous determination of 2-methylimidazole and 4-methylimidazole in beverages. Food Chem 2020; 305:125389. [PMID: 31520918 DOI: 10.1016/j.foodchem.2019.125389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/14/2019] [Accepted: 08/17/2019] [Indexed: 11/22/2022]
Abstract
A sensitive analytical method for the monitoring 2-methylimidazole and 4-methylimidazole (2-MI and 4-MI) is desirable due to their carcinogenic property. Here, we propose a highly sensitive method basing on the combination of solid-phase extraction and dispersive liquid-liquid microextraction techniques followed by high-performance liquid chromatography to simultaneously determine 2-MI and 4-MI in beverages. Dansyl chloride was used as a derivatizing reagent. Microextraction parameters were optimized by Plackett-Burman design and response surface methodology. Results show that derivatization led to significant improvements in chromatographic behavior for 2-MI and 4-MI due to increased hydrophobicity. The method shows good linearity (R2 ≥ 0.9985), satisfactory precision (%RSD ≤ 8.3%) and low limit of quantification (20 ng/mL), and was successfully applied to determine 2-MI and 4-MI in carbonated drinks, beers and energy drinks, achieving satisfactory recoveries (85-101%). This method provides a potential for routine analysis of 2-MI and 4-MI at the nanogram per milliliter level in beverages.
Collapse
|
13
|
Borzoei M, Zanjanchi MA, Sadeghi-Aliabadi H, Saghaie L. Trace Determination of Iron in Real Waters and Fruit Juice Samples Using Rapid Method: Optimized Dispersive Liquid-Liquid Microextraction with Synthesized Nontoxic Chelating Agent. Biol Trace Elem Res 2019; 192:319-329. [PMID: 30810875 DOI: 10.1007/s12011-019-01662-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/04/2019] [Indexed: 01/24/2023]
Abstract
The purpose of this research was to optimize a new method for preconcentration and determination of trace iron concentrations in aqueous solutions. For this purpose, a newly synthesized ligand, 3-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) benzoic acid (3-OH-3-MOPBA), was used in the dispersive liquid-liquid microextraction (DLLME) method coupled with UV-vis spectroscopy. The experiments considering input variables of extractant volume, disperser volume, salt concentration, and pH were designed with the aid of central composite design (CCD). The results were analyzed using response surface methodology (RSM). The limit of detection (LOD) was found to be 4.0 μg L-1 under the optimized conditions. A calibration curve with a good linearity (R2 = 0.9986) was obtained over the concentration range of 15-800 μg L-1. The relative standard deviations (RSD) were found to be around 2.1% (n = 7). The main advantages of the developed method are simple application, environment friendly, short time, and low cost which makes this method to be applied routinely for measuring iron in various water samples.
Collapse
Affiliation(s)
- Mohammad Borzoei
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Mohammad Ali Zanjanchi
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran.
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| |
Collapse
|
14
|
Moreda-Piñeiro J, Moreda-Piñeiro A. Combined assisted extraction techniques as green sample pre-treatments in food analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Nematollahi A, Kamankesh M, Hosseini H, Ghasemi J, Hosseini-Esfahani F, Mohammadi A. Investigation and determination of acrylamide in the main group of cereal products using advanced microextraction method coupled with gas chromatography-mass spectrometry. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|