1
|
Khademi P, Tukmechi A, Sgroi G, Ownagh A, Enferadi A, Khalili M, Mardani K. Molecular and genotyping techniques in diagnosis of Coxiella burnetii: An overview. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105655. [PMID: 39116951 DOI: 10.1016/j.meegid.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Although we live in the genomic era, the accessibility of the complete genome sequence of Coxiella burnetii, the etiological agent of Q fever, has increased knowledge in the field of genomic diversity of this agent However, it is still somewhat of a "question" microorganism. The epidemiology of Q fever is intricate due to its global distribution, repository and vector variety, as well as absence of surveys defining the dynamic interaction among these factors. Moreover, C. burnetii is a microbial agent that can be utilized as a bioterror weapon. Therefore, typing techniques used to recognize the strains can also be used to trace infections back to their source which is of great significance. In this paper, the latest and current typing techniques of C. burnetii spp. are reviewed illustrating their advantages and constraints. Recently developed multi locus VNTR analysis (MLVA) and single-nucleotide polymorphism (SNP) typing methods are promising in improving diagnostic capacity and enhancing the application of genotyping techniques for molecular epidemiologic surveys of the challenging pathogen. However, most of these studies did not differentiate between C. burnetii and Coxiella-like endosymbionts making it difficult to estimate the potential role that ticks play in the epidemiology of Q fever. Therefore, it is necessary to analyze the vector competence of different tick species to transmit C. burnetii. Knowledge of the vector and reservoir competence of ticks is important for taking adequate preventive measures to limit infection risks. The significant prevalence observed for the IS1111 gene underscores its substantial presence, while other genes display comparatively lower prevalence rates. Methodological variations, particularly between commercial and non-commercial kit-based methods, result in different prevalence outcomes. Variations in sample processing procedures also lead to significant differences in prevalence rates between mechanical and non-mechanical techniques.
Collapse
Affiliation(s)
- Peyman Khademi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran; Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Amir Tukmechi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Giovanni Sgroi
- Department of Animal Health, Experimental Zooprophylactic Institute of southern Italy, Portici, Naples, Italy
| | - Abdulghaffar Ownagh
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Ahmad Enferadi
- Department of Microbiology and Food Hygiene, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Mohammad Khalili
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Karim Mardani
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
2
|
Yanmaz B, Ozgen EK. Molecular prevalence of Coxiella burnetii in cheese samples: Systematic review and meta-analysis. Vet Med Sci 2024; 10:e1335. [PMID: 38100127 PMCID: PMC10766031 DOI: 10.1002/vms3.1335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/10/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Cheese is a popular dairy product consumed worldwide, and it has been implicated as a source of Coxiella burnetii infections. OBJECTIVES The present study aimed to describe the molecular prevalence and source analysis of C. burnetii in cheese samples. METHODS A systematic literature search was conducted using the Medline/PubMed, Science Direct, Web of Science, Scopus, and Google Scholar databases to identify studies reporting the molecular prevalence of C. burnetii in cheese samples. The pooled prevalence of C. burnetii in cheese samples was estimated using a random-effects model. RESULTS A meta-analysis was conducted using the mean and standard deviation values obtained from 13 original studies. The overall molecular prevalence of C. burnetii in cheese was estimated to be 25.2% (95% confidence interval [CI]: 13.1%-39.7%). The I2 value of 96.3% (CI95% 94.9-97.3) suggested high heterogeneity, with a τ2 of 0.642 (CI95% -0.141 to 0.881), and an χ2 statistic of 323.77 (p < 0.0001). CONCLUSIONS In conclusion, our meta-analysis provides a thorough assessment of the molecular prevalence and source analysis of C. burnetii in cheese samples.
Collapse
Affiliation(s)
- Berna Yanmaz
- Department of Public HealthFaculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| | - Ediz Kagan Ozgen
- Department of MicrobiologyFaculty of Veterinary MedicineAtatürk UniversityErzurumTurkey
| |
Collapse
|
3
|
Xiao Y, Ren H, Wang H, Zou D, Liu Y, Li H, Hu P, Li Y, Liu Z, Lu S. A rapid and inexpensive nucleic acid detection platform for Listeria monocytogenes based on the CRISPR/Cas12a system. Talanta 2023; 259:124558. [PMID: 37088039 DOI: 10.1016/j.talanta.2023.124558] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Listeria monocytogenes (LM) is an important foodborne pathogen that is associated with a high mortality rate. Currently, there is an urgent need for an inexpensive and rapid assay for the large-scale diagnosis and monitoring of LM. To meet these requirements, we designed a one-step, low-cost platform for the simultaneous amplification and detection of LM based on the CRISPR/Cas12a system with a micro-amplification (named Cas12a-MA). This method utilizes a combination of CRISPR/Cas12a and recombinase polymerase amplification (RPA) in the same vessel to provide a contamination-free platform for rapid nucleic acid detection with high specificity and ultra-sensitivity. In this study, we screened for three specific genes and selected the hly gene in LM as the final target. Our data showed that the number of amplification products plays a crucial role in the function of the CRISPR/Cas12a system. Our method was then further optimized for the specific detection of target DNA on 4.4 CFU/g in 25min. These assays successfully detected LM in spiked pork samples and natural meat samples (pork, beef, and mutton). All results indicate that Cas12a-MA shows great promise for foodborne pathogen detection.
Collapse
Affiliation(s)
- Yiran Xiao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Han Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Deying Zou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yixin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Haosong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yansong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shiying Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Singh P, Velez FJ. Real-Time PCR High-Resolution Melting Assays for the Detection of Foodborne Pathogens. Methods Mol Biol 2023; 2967:41-52. [PMID: 37608101 DOI: 10.1007/978-1-0716-3358-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Real-time PCR high-resolution melting assays are a method for the identification of single nucleotide polymorphisms (SNPs). The assay is performed by amplifying a short DNA fragment using a specific primer pair flanking a target SNP in the presence of a high-resolution melting dye. The HRM analysis of amplicons groups the samples based on the differences in the melting temperature and the shape of the melt curves, facilitating a convenient genotyping of samples. This chapter describes the steps and considerations of real-time PCR HRM assay standardization.
Collapse
Affiliation(s)
- Prashant Singh
- Department of Nutrition, and Integrative Physiology, Florida State University, Tallahassee, FL, USA.
| | - Frank J Velez
- Department of Nutrition, and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
5
|
Liu R, Ali S, Huang D, Zhang Y, Lü P, Chen Q. A Sensitive Nucleic Acid Detection Platform for Foodborne Pathogens Based on CRISPR-Cas13a System Combined with Polymerase Chain Reaction. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Li Y, Gao Y, Ling N, Shen Y, Zhang D, Ou D, Zhang X, Jiao R, Zhu C, Ye Y. Rapid and simple quantitative identification of Listeria monocytogenes in cheese by isothermal sequence exchange amplification based on surface-enhanced Raman spectroscopy. J Dairy Sci 2022; 105:9450-9462. [DOI: 10.3168/jds.2022-22181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
|
7
|
Equipment-Free Quantitative Detection of Salmonella typhimurium with a Liposome and Enzyme Reaction-Based Lateral Flow Assay. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Impact of DNA extraction methods on 16S rRNA-based profiling of bacterial communities in cheese. J Microbiol Methods 2021; 184:106210. [PMID: 33774112 DOI: 10.1016/j.mimet.2021.106210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022]
Abstract
Numerous factors associated with sample preparation, DNA extraction, primer choice, sequencing platform and data analysis can affect the accuracy of 16S rRNA sequencing results. The DNA extraction method is considered critical for the success of sequencing as it can be the source of considerable variations in the analysis of the microbiome. In this study, the impact of various DNA extraction methods on the results of analysis of bacterial communities in cheese was evaluated. DNA was isolated from Mozzarella as a model cheese using optimized bead-based homogenization followed by different extraction procedures. Five commercial kits and two open-formula DNA extraction protocols were evaluated for amplicon sequencing of a 16S rRNA fragment of ~1460 bp. In addition, model cheese samples artificially contaminated by defined concentrations of Listeria monocytogenes and Escherichia coli, as representatives of Gram positive and Gram negative bacteria, were analysed. Six out of seven DNA extraction procedures were found to be able to provide amplifiable bacterial DNA suitable for 16S rRNA sequence analysis, but individual extraction procedures led to variable results. In particular, lysis supported with bead-beating led to a higher proportion of G+ bacteria in relative abundance profiles, probably because of the more efficient cell wall disruption. Artificially added bacterial species were reliably detected with a quantitative response. The results demonstrated a risk in comparing the data on bacterial communities in cheese when different DNA extraction protocols are used and highlighted the need to choose a standardized approach when comparison across multiple sequencing runs is required.
Collapse
|
9
|
Application of Recombinase Polymerase Amplification with Lateral Flow for a Naked-Eye Detection of Listeria monocytogenes on Food Processing Surfaces. Foods 2020; 9:foods9091249. [PMID: 32906705 PMCID: PMC7555525 DOI: 10.3390/foods9091249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
The continuous contamination of foods with L. monocytogenes, highlights the need for additional controls in the food industry. The verification of food processing plants is key to avoid cross-contaminations, and to assure the safety of the food products. In this study, a new methodology for the detection of L. monocytogenes on food contact surfaces was developed and evaluated. It combines Recombinase Polymerase Amplification (RPA) with the lateral flow (LF) naked-eye detection. Different approaches for the recovery of the bacteria from the surface, the enrichment step and downstream analysis by RPA-LF were tested and optimized. The results were compared with a standard culture-based technique and qPCR analysis. Sampling procedure with sponges was more efficient for the recovery of the bacteria than a regular swab. A 24 h enrichment in ONE broth was needed for the most sensitive detection of the pathogen. By RPA-LF, it was possible to detect 1.1 pg/µL of pure L. monocytogenes DNA, and the complete methodology reached a LoD50 of 4.2 CFU/cm2 and LoD95 of 18.2 CFU/cm2. These results are comparable with the culture-based methodology and qPCR. The developed approach allows for a next-day detection without complex equipment and a naked-eye visualization of the results.
Collapse
|
10
|
Singh P, Cubillos G, Kirshteyn G, Bosilevac JM. High-resolution melting real-time PCR assays for detection of Escherichia coli O26 and O111 strains possessing Shiga toxin genes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|