1
|
Lin H, Chen Z, Solomon Adade SYS, Yang W, Chen Q. Detection of Maize Mold Based on a Nanocomposite Colorimetric Sensor Array under Different Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11164-11173. [PMID: 38564679 DOI: 10.1021/acs.jafc.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study developed a novel nanocomposite colorimetric sensor array (CSA) to distinguish between fresh and moldy maize. First, the headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) method was used to analyze volatile organic compounds (VOCs) in fresh and moldy maize samples. Then, principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to identify 2-methylbutyric acid and undecane as key VOCs associated with moldy maize. Furthermore, colorimetric sensitive dyes modified with different nanoparticles were employed to enhance the dye properties used in the nanocomposite CSA analysis of key VOCs. This study focused on synthesizing four types of nanoparticles: polystyrene acrylic (PSA), porous silica nanospheres (PSNs), zeolitic imidazolate framework-8 (ZIF-8), and ZIF-8 after etching. Additionally, three types of substrates, qualitative filter paper, polyvinylidene fluoride film, and thin-layer chromatography silica gel, were comparatively used to fabricate nanocomposite CSA combining with linear discriminant analysis (LDA) and K-nearest neighbor (KNN) models for real sample detection. All moldy maize samples were correctly identified and prepared to characterize the properties of the CSA. Through initial testing and nanoenhancement of the chosen dyes, four nanocomposite colorimetric sensitive dyes were confirmed. The accuracy rates for LDA and KNN models in this study reached 100%. This work shows great potential for grain quality control using CSA methods.
Collapse
Affiliation(s)
- Hao Lin
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, P. R. China
| | - Zeyu Chen
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, P. R. China
| | | | - Wenjing Yang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, 9 13th Street, Economic and Technological Development Zone, Tianjin 300457, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| |
Collapse
|
2
|
Chen Z, Lin H, Wang F, Adade SYSS, Peng T, Chen Q. Discrimination of toxigenic and non-toxigenic Aspergillus flavus in wheat based on nanocomposite colorimetric sensor array. Food Chem 2024; 430:137048. [PMID: 37544158 DOI: 10.1016/j.foodchem.2023.137048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
A novel method was developed for the early detection of wheat infected with Aspergillus flavus (A. flavus) using a nanocomposite colorimetric sensors array (CSA). LC-MS analysis revealed the presence of Aflatoxin B1 (AFB1) and Aflatoxin B2 (AFB2) on day seven, demonstrating mycotoxin variabilities in infected wheat. HS-SPME-GC-MS analysis detected 2-methylbutyral, a gas exclusively associated with toxigenic A. flavus. The CSA was modified using three nanoparticles of MOF and successfully used to detect the wheat infected with A. flavus. Discrimination of different types of infected wheat samples was achieved using the RGB difference map and Principal Component Analysis (PCA) model. Additionally, the Linear Discriminant Analysis (LDA) model accurately predicted the presence of toxigenic A. flavus at various stages of infection. These findings highlight the promising capabilities of nanocomposite CSA for early-stage detection of A. flavus infection in wheat.
Collapse
Affiliation(s)
- Zeyu Chen
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, PR China
| | - Hao Lin
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, PR China.
| | - Fuyun Wang
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, PR China
| | | | - Tingting Peng
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
3
|
Xing Z, Zogona D, Wu T, Pan S, Xu X. Applications, challenges and prospects of bionic nose in rapid perception of volatile organic compounds of food. Food Chem 2023; 415:135650. [PMID: 36868065 DOI: 10.1016/j.foodchem.2023.135650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Bionic nose, a technology that mimics the human olfactory system, has been widely used to assess food quality due to their high sensitivity, low cost, portability and simplicity. This review briefly describes that bionic noses with multiple transduction mechanisms are developed based on gas molecules' physical properties: electrical conductivity, visible optical absorption, and mass sensing. To enhance their superior sensing performance and meet the growing demand for applications, a range of strategies have been developed, such as peripheral substitutions, molecular backbones, and ligand metals that can finely tune the properties of sensitive materials. In addition, challenges and prospects coexist are covered. Cross-selective receptors of bionic nose will help and guide the selection of the best array for a particular application scenario. It provides an odour-based monitoring tool for rapid, reliable and online assessment of food safety and quality.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China; Shenzhen Institute of Nutrition and Health, Shenzhen, Guangdong 518038, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture,Genome Analysis Laboratory of the Ministry of Agriculture,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518038, China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430072, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430072, China; Shenzhen Institute of Nutrition and Health, Shenzhen, Guangdong 518038, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture,Genome Analysis Laboratory of the Ministry of Agriculture,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518038, China.
| |
Collapse
|
4
|
Detection of wheat toxigenic Aspergillus flavus based on nano-composite colorimetric sensing technology. Food Chem 2023; 405:134803. [DOI: 10.1016/j.foodchem.2022.134803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
|
5
|
Gong X, Huang J, Xu Y, Li Z, Li L, Li D, Belwal T, Jeandet P, Luo Z, Xu Y. Deterioration of plant volatile organic compounds in food: Consequence, mechanism, detection, and control. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Advanced sensing of volatile organic compounds in the fermentation of tea extract enabled by nano-colorimetric sensor array based on density functional theory. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Lin H, Jiang H, Adade SYSS, Kang W, Xue Z, Zareef M, Chen Q. Overview of advanced technologies for volatile organic compounds measurement in food quality and safety. Crit Rev Food Sci Nutr 2022; 63:8226-8248. [PMID: 35357234 DOI: 10.1080/10408398.2022.2056573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food quality and nutrition have received much attention in recent decades, thanks to changes in consumer behavior and gradual increases in food consumption. The demand for high-quality food necessitates stringent quality assurance and process control measures. As a result, appropriate analytical tools are required to assess the quality of food and food products. VOCs analysis techniques may meet these needs because they are nondestructive, convenient to use, require little or no sample preparation, and are environmentally friendly. In this article, the main VOCs released from various foods during transportation, storage, and processing were reviewed. The principles of the most common VOCs analysis techniques, such as electronic nose, colorimetric sensor array, migration spectrum, infrared and laser spectroscopy, were discussed, as well as the most recent research in the field of food quality and safety evaluation. In particular, we described data processing algorithms and data analysis captured by these techniques in detail. Finally, the challenges and opportunities of these VOCs analysis techniques in food quality analysis were discussed, as well as future development trends and prospects of this field.
Collapse
Affiliation(s)
- Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Hao Jiang
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | | | - Wencui Kang
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, P. R. China
| |
Collapse
|
8
|
Mchiri C, Gassoumi B, Acherar S, Sh. El-Sharief MA, Nasri H. Synthesis, X-ray molecular structure and QTAIM and NCI-RDG theoretic studies of a new cadmium (II) (4′4 diaminodiphenylmethane) (meso-arylporphyrin) coordination compound. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|