1
|
Le MH, Le TT, Tran PP. AI in Surgery: Navigating Trends and Managerial Implications Through Bibliometric and Text Mining Odyssey. Surg Innov 2024; 31:630-645. [PMID: 39365951 DOI: 10.1177/15533506241289481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Background: This research employs bibliometric and text-mining analysis to explore artificial intelligence (AI) advancements within surgical procedures. The growing significance of AI in healthcare underscores the need for healthcare managers to prioritize investments in this technology. Purpose: To assess the increasing impact of AI on surgical practices through a comprehensive analysis of scientific literature, providing insights that can guide managerial decision-making in adopting AI solutions.Research Design: The study analyzes over 6000 scientific articles published since 1990 to evaluate trends and contributions in the field, informing managers about the current landscape of AI in surgery.Study Sample: The research focuses on publications from various influential publishers across North America, Northern Asia, and Eastern & Western Europe, highlighting key markets for AI implementation in surgical settings.Data Collection and Analysis: A bibliometric approach was utilized to identify key contributors and influential journals. At the same time, text-mining techniques highlighted significant keywords related to AI in surgery, aiding managers in recognizing essential areas for further exploration and investment.Results: The year 2022 marked a significant upsurge in publications, indicating widespread AI integration in healthcare. The U.S. emerged as the foremost contributor, followed by China, the UK, Germany, Italy, the Netherlands, and India. Key journals, such as Annals of Surgery and Spine Journal, play a crucial role in disseminating research findings, serving as valuable resources for managers seeking to stay informed.Conclusions: The findings underscore AI's pivotal role in enhancing diagnostic precision, predicting treatment outcomes, and improving operational efficiency in surgical practices. This progress represents a significant milestone in modern medical science, paving the way for intelligent healthcare solutions and further advancements in the field. Healthcare managers should leverage these insights to foster innovation and improve patient care standards.
Collapse
Affiliation(s)
- Minh-Hieu Le
- Faculty of Business Administration, Ho Chi Minh University of Banking, Ho Chi Minh City, Vietnam
| | - Thu-Thao Le
- Department of International Business Administration, Chinese Culture University, Taipei, Taiwan
| | - Phung Phi Tran
- Faculty of Sport Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Tang Y, Liang H, Yang X, Xue X, Zhan J. The metaverse in nuclear medicine: transformative applications, challenges, and future directions. Front Med (Lausanne) 2024; 11:1459701. [PMID: 39371341 PMCID: PMC11452868 DOI: 10.3389/fmed.2024.1459701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
The metaverse, a rapidly evolving virtual reality space, holds immense potential to revolutionize nuclear medicine by enhancing education, training, diagnostics, and therapeutics. This review explores the transformative applications of the metaverse in nuclear medicine, where immersive virtual learning environments, simulation-based training, artificial intelligence (AI)-powered decision support systems integrated into interactive three-dimensional (3D) visualizations, and personalized dosimetry using realistic patient-specific virtual models are seamlessly incorporated into the metaverse ecosystem, creating a synergistic platform for healthcare professionals and patients alike. However, the responsible and sustainable adoption of the metaverse in nuclear medicine requires a multidisciplinary approach to address challenges related to standardization, accessibility, data security, and ethical concerns. The formation of cross-disciplinary consortia, increased research and development (R&D) investment, and the strengthening of data governance and cybersecurity measures are crucial steps in ensuring the safe and effective integration of the metaverse in healthcare. As the metaverse continues to evolve, researchers, practitioners, and policymakers must collaborate and explore its potential, navigate the challenges, and shape a future where technology and medicine seamlessly integrate to enhance patient care and outcomes in nuclear medicine. Further research is needed to fully understand the implications of the metaverse in clinical practice, education, and research, as well as to develop evidence-based guidelines for its responsible implementation. By embracing responsible innovation and collaboration, the nuclear medicine community can harness the power of the metaverse to transform and improve patient care.
Collapse
Affiliation(s)
| | | | | | - Xiangming Xue
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, China
| | - Jingming Zhan
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, China
| |
Collapse
|
3
|
Cheng H, Xu H, Peng B, Huang X, Hu Y, Zheng C, Zhang Z. Illuminating the future of precision cancer surgery with fluorescence imaging and artificial intelligence convergence. NPJ Precis Oncol 2024; 8:196. [PMID: 39251820 PMCID: PMC11385925 DOI: 10.1038/s41698-024-00699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Real-time and accurate guidance for tumor resection has long been anticipated by surgeons. In the past decade, the flourishing material science has made impressive progress in near-infrared fluorophores that may fulfill this purpose. Fluorescence imaging-guided surgery shows great promise for clinical application and has undergone widespread evaluations, though it still requires continuous improvements to transition this technique from bench to bedside. Concurrently, the rapid progress of artificial intelligence (AI) has revolutionized medicine, aiding in the screening, diagnosis, and treatment of human doctors. Incorporating AI helps enhance fluorescence imaging and is poised to bring major innovations to surgical guidance, thereby realizing precision cancer surgery. This review provides an overview of the principles and clinical evaluations of fluorescence-guided surgery. Furthermore, recent endeavors to synergize AI with fluorescence imaging were presented, and the benefits of this interdisciplinary convergence were discussed. Finally, several implementation strategies to overcome technical hurdles were proposed to encourage and inspire future research to expedite the clinical application of these revolutionary technologies.
Collapse
Affiliation(s)
- Han Cheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Hongtao Xu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Boyang Peng
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Yongjie Hu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Chongyang Zheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China.
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China.
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China.
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China.
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China.
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China.
| |
Collapse
|
4
|
Bartos O, Trenner M. Wearable technology in vascular surgery: Current applications and future perspectives. Semin Vasc Surg 2024; 37:281-289. [PMID: 39277343 DOI: 10.1053/j.semvascsurg.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
The COVID-19 pandemic exposed the vulnerabilities of global health care systems, underscoring the need for innovative solutions to meet the demands of an aging population, workforce shortages, and rising physician burnout. In recent years, wearable technology has helped segue various medical specialties into the digital era, yet its adoption in vascular surgery remains limited. This article explores the applications of wearable devices in vascular surgery and explores their potential outlets, such as enhancing primary and secondary prevention, optimizing perioperative care, and supporting surgical training. The integration of artificial intelligence and machine learning with wearable technology further expands its applications, enabling predictive analytics, personalized care, and remote monitoring. Despite the promising prospects, challenges such as regulatory complexities, data security, and interoperability must be addressed. As the digital health movement unfolds, wearable technology could play a pivotal role in reshaping vascular surgery while offering cost-effective, accessible, and patient-centered care.
Collapse
Affiliation(s)
- Oana Bartos
- Department of Vascular Medicine, St. Josefs-Hospital, Beethovenstraße 20, 65189 Wiesbaden, Germany
| | - Matthias Trenner
- Department of Vascular Medicine, St. Josefs-Hospital, Beethovenstraße 20, 65189 Wiesbaden, Germany; School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
5
|
Landau M, Comeaux M, Mortell T, Boyle R, Imbrescia K, Chaffin AE. Characterizing the untapped potential of virtual reality in plastic and reconstructive surgical training: A systematic review on skill transferability. JPRAS Open 2024; 41:295-310. [PMID: 39188661 PMCID: PMC11345902 DOI: 10.1016/j.jpra.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 08/28/2024] Open
Abstract
Virtual reality (VR) integration into surgical education has gained immense traction by invigorating skill-building in ways that are unlike the traditional modes of training. This systematic review unites current literature relevant to VR in surgical education to showcase tool transferability, and subsequent impact on knowledge acquisition, skill development, and technological innovation. This review followed the PRISMA guidelines and included three databases. Among the 1926 studies that were screened, 31 studies met the inclusion criteria. ChatGPT assisted in generating variables for data extraction, and the authors reached unanimous consensus on 13 variables that provided a framework for assessing VR attributes. Surgical simulation was examined in 26 studies (83.9%). VR applications incorporated anatomy visualization (83.9%), procedure planning (67.7%), skills assessment (64.5%), continuous learning (41.9%), haptic feedback (41.9%), research and innovation (41.9%), case-based learning (22.6%), improved skill retention (19.4%), reduction of stress and anxiety (16.1%), and remote learning (12.9%). No instances of VR integration addressed patient communication or team-based training. Novice surgeons benefited the most from VR simulator experience, improving their confidence and accuracy in tackling complex procedural tasks, as well as decision-making efficiency. Enhanced dexterity compared to traditional modes of surgical training was also notable. VR confers significant potential as an adjunctive teaching method in plastic and reconstructive surgery (PRS). Studies demonstrate the utility of virtual simulation in knowledge acquisition and skill development, though they lack targeted approaches for augmenting training related to collaboration and patient communication. Given the underrepresentation of PRS among surgical disciplines regarding VR implementation in surgical education, longitudinal curriculum integration and PRS-specific technologies should be further investigated.
Collapse
Affiliation(s)
- Madeleine Landau
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marie Comeaux
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Tatjana Mortell
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Rebecca Boyle
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Kory Imbrescia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Abigail E. Chaffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Bocanegra-Becerra JE, Acha Sánchez JL, Castilla-Encinas AM, Rios-Garcia W, Mendieta CD, Quiroz-Marcelo DA, Alhwaishel K, Aguilar-Zegarra L, Lopez-Gonzalez MA. Toward a Frontierless Collaboration in Neurosurgery: A Systematic Review of Remote Augmented and Virtual Reality Technologies. World Neurosurg 2024; 187:114-121. [PMID: 38636636 DOI: 10.1016/j.wneu.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE Augmented reality (AR) and virtual reality (VR) technologies have been introduced to neurosurgery with the goal of improving the experience of human visualization. In recent years, the application of remote AR and VR has opened new horizons for neurosurgical collaboration across diverse domains of education and patient treatment. Herein, we aimed to systematically review the literature about the feasibility of this technology and discuss the technical aspects, current limitations, and future perspectives. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, 4 databases (PubMed, Embase, Scopus, and Cochrane Library) were queried for articles discussing the use of remote AR and VR technologies in neurosurgery. Data were collected in various fields, including surgery type, application type, subspecialty, software and hardware descriptions, haptic device utilization, visualization technology, internet connection, remote site descriptions, technical outcomes, and limitations. Data were summarized as counts and proportions and analyzed using IBM SPSS software. RESULTS Our search strategy generated 466 records, out of which 9 studies satisfied the inclusion criteria. The majority of AR and VR applications were used in cranial procedures (77.8%), mainly in education (63.6%), followed by telesurgical assistance (18.2%), patient monitoring (9.1%), and surgical planning (9.1%). Local collaborations were established in 55.6% of the studies, while national and international partnerships were formed in 44.4% of the studies. AR was the main visualization technology, and 3G internet connection was predominantly used (27.5%). All studies subjectively reported the utility of remote AR and VR for real-time interaction. The major technical challenges and limitations included audiovisual latency, the requirement for higher-fidelity and resolution image reconstructions, and the level of proficiency of the patient with the software. CONCLUSIONS The results from this systematic review suggest that AR and VR technologies are dynamically advancing to offer remote collaboration in neurosurgery. Although still incipient in development and with an imperative need for technical improvement, remote AR and VR hold a frontierless potential for patient monitoring, neurosurgical education, and long-distance surgical assistance.
Collapse
Affiliation(s)
| | - José Luis Acha Sánchez
- Vascular Neurosurgery and Skull Base Division, Hospital Nacional Dos de Mayo, Lima, Peru
| | | | - Wagner Rios-Garcia
- Facultad de Medicina Humana, Universidad Nacional San Luis Gonzaga, Ica, Peru
| | - Cristian D Mendieta
- Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca, Sucre, Bolivia
| | | | - Khaled Alhwaishel
- Mansoura Manchester Program, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | |
Collapse
|
7
|
Guruswamy J, Chhina A, Mitchell JD, Shah S, Uribe-Marquez S. Virtual Reality and Augmented Reality in Anesthesiology Education. Int Anesthesiol Clin 2024; 62:64-70. [PMID: 38798152 DOI: 10.1097/aia.0000000000000445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
- Jayakar Guruswamy
- Department of Anesthesiology, Pain Management, and Perioperative Medicine, Henry Ford Health, Michigan State University, Detroit, Michigan
| | | | | | | | | |
Collapse
|
8
|
Al Khatib I, Chembakath JJ, Ndiaye M. Benchmarking Sweden's Digitalization Transformation Strategy-Is It a Good Fit for the UAE? Telemed J E Health 2024. [PMID: 38916743 DOI: 10.1089/tmj.2024.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Background: The ongoing revolution in health care, driven by wearable technology, virtual reality, and the Internet of Things, is reshaping both health care operations and our daily lives. This digital transformation ensures broader access to health care options, fosters patient-centered care and affects both health care institutions and individuals. In Sweden, health care is undergoing a digital shift, with initiatives like personal health management, remote monitoring, and virtual care enhancing patient involvement. This article reviews Sweden's health care digital transformation and compares it with the United Arab Emirates (UAE's) initiatives to assess viability. Methods: Using systematic literature review methods, databases from 2011 to 2023 were searched, supplemented by reference lists. Results: Database searches identified 761 records. A total of 480 articles were screened on basis of title and abstract, yielding 184 that were assessed for eligibility, leading to 40 academic studies to be included and 12 grey literature. Conclusions: The findings highlight Sweden's success in empowering patients through enhanced connectivity with clinical teams, knowledge sharing, and care management. However, due to contextual differences, the UAE should not blindly replicate Sweden's strategy. In conclusion, Sweden's efforts have positively engaged patients in health care, but challenges such as emerging technologies, demographic shifts, and budget constraints persist. Proactive planning and adaptation are crucial, with lessons applicable to the UAE market. Establishing a clear regulatory framework for digital care is imperative for future resilience.
Collapse
Affiliation(s)
- Inas Al Khatib
- College of Industrial Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Junu Jahana Chembakath
- College of Industrial Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Malick Ndiaye
- College of Industrial Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Dashtbozorg A, Heidarian E, Sagheb Ray Shirazi M, Movahednia Z, Jafari M, Abedi Azar R. Emerging Technologies in Hand Orthopedic Surgery: Current Trends and Future Directions. Galen Med J 2024; 13:1-10. [PMID: 39224550 PMCID: PMC11368481 DOI: 10.31661/gmj.v13i.3325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 09/04/2024] Open
Abstract
Emerging technologies are changing hand surgery by improving surgical precision, minimizing tissue disruption, and expediting patient recovery. These advancements have the potential to revolutionize surgical procedures, patient outcomes, and rehabilitation processes. However, there are still challenges that need to be addressed before these technologies can be widely adopted. These challenges include the learning curve for surgeons, high costs, and ethical considerations. Future research should focus on addressing the limitations of these technologies, exploring their long-term effects, and evaluating their cost-effectiveness. To successfully implement them, a collaborative approach involving clinicians, researchers, engineers, and policymakers is necessary. This review provides an overview of current and future trends in emerging technologies for hand orthopedic surgery.
Collapse
Affiliation(s)
- Ahmad Dashtbozorg
- Department of Orthopedic Surgery, School of Medicine, Ahvaz Jundishapur University
of Medical Sciences, Ahvaz, Iran
| | - Elaheh Heidarian
- Klinik für Unfallchirurgie und Orthopädie, Kinderorthopädie, Agaplesion
Diakonieklinik Rotenburg, Rotenburg (Wümme), Germany
| | - Malihe Sagheb Ray Shirazi
- Depertment of Anatomical Sciences, Faculty of Nursing and Midwifery, Hormozgan
University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Movahednia
- Department of Operating Room, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Maryam Jafari
- Department of General Surgery for Trauma, Shahid Beheshti University of Medical
Sciences, Tehran, Iran
| | - Ramila Abedi Azar
- Laboratory for Robotic Research, Iran University of Science and technology, Tehran,
Iran
| |
Collapse
|
10
|
Zhao Y, Wang Q. Applying augmented reality multimedia technology to construct a platform for translation and teaching system. Heliyon 2024; 10:e28700. [PMID: 38689960 PMCID: PMC11059544 DOI: 10.1016/j.heliyon.2024.e28700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
This paper investigates the integration of augmented reality (AR) technology into English translation teaching for college students, emphasizing the pivotal role of innovative teaching methods in enhancing students' translation skills and learning experiences. To address the issue of insufficient interest in English translation teaching, the paper initially assesses the purpose and significance of learning English translation through a questionnaire survey, elucidating challenges encountered in English language acquisition. Subsequently, adhering to AR principles, a teaching demonstration platform rooted in AR technology is conceived and developed, intricately aligned with English translation instruction. The platform serves as a solution to issues in English learning, such as inadequate course comprehension, low utilization of teaching resources, and instructors' lack of experience. The research culminates in the analysis of survey results, wherein the quantitative disparities in translation ability between students utilizing the research platform and those subjected to traditional teaching methods are examined. The findings underscore the positive impact of the AR-based research platform on improving students' translation proficiency. The AR platform heightens learners' engagement in the learning process, contributes to constructing a robust knowledge framework, and enhances overall learning outcomes. The platform offers educators opportunities to optimize experimental courses and elevate teaching standards. The paper's outcomes present novel pedagogical scenarios for learners, propose technical solutions for other technical disciplines and furnish a theoretical foundation and application model for a new generation of experimental demonstration platforms.
Collapse
Affiliation(s)
- Yue Zhao
- School of Chinese Language and Literature, Liaoning Normal University, Dalian, 116021, China
| | - Qilin Wang
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
11
|
Ermawan R, Corrigan H, Wiyono N. Current update and trend of 3D printing in spinal surgery: A bibliometric analysis and review of literature. J Orthop 2024; 50:22-28. [PMID: 38162258 PMCID: PMC10755500 DOI: 10.1016/j.jor.2023.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Incorporation of three-dimensional (3D) printing technology into the field of spinal surgery is on the rise. A bibliometric analysis of the current topic was carried out to elaborate the trend and to navigate future research. A Scopus database search was conducted with keywords related to 3D printing, spine, and surgery. The final 792 articles were extracted and further analyzed with VOSviewer 1.6.19 and Biblioshiny. The first published article was in 2002. A notable increase in articles in 2014 might be attributable to the availability of cheaper 3D printers which rose significantly on a global scale in 2011. China leads in terms of published research on 3D printing in spinal surgery, followed by the US, Australia, and India. The author's keyword co-occurrence analysis reveals 8 theme clusters, including preoperative and intraoperative measures, biomodelling, spinal neoplasms, biomechanics of 3D-printed materials, degenerative spinal diseases, minimally invasive surgery, and bioprinting. The top 15 of the most recently cited keywords are listed to provide future researchers to produce impactful articles. Two strategic diagrams of 2 periods (2002-2018 and 2018-2023) show the theme's evolution. We found 6 consistent themes in keyword co-occurrence analysis and the strategic diagram analysis, that are promising subjects for future research. Overall, this bibliographic study indicates the expanding importance of 3D printing in spinal surgery and suggests several critical themes and impactful keywords for future researchers.
Collapse
Affiliation(s)
- Rieva Ermawan
- Department of Orthopaedic and Traumatology Dr. Moewardi General Province Hospital, Surakarta, Indonesia
- Department of Orthopaedic, Faculty of Medicine Sebelas Maret University Surakarta, Central Java, Indonesia
| | - Hubertus Corrigan
- Department of Orthopaedic and Traumatology Dr. Moewardi General Province Hospital, Surakarta, Indonesia
- Department of Orthopaedic, Faculty of Medicine Sebelas Maret University Surakarta, Central Java, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Nanang Wiyono
- Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
12
|
Barabas IJ, Vegh D, Bottlik O, Kreuter P, Hartyanszky I, Merkely B, Palkovics D. The role of 3D technology in the practical education of congenital coarctation and its treatment-a feasibility pilot study. BMC MEDICAL EDUCATION 2024; 24:357. [PMID: 38553706 PMCID: PMC10981329 DOI: 10.1186/s12909-024-05293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Coarctation of the aorta (CoA) is a congenital disease with an incidence of 4 out of 10,000 live births, therefore proper education of its treatment is essential. Understanding the disease and the wide array of treatment options is often difficult. Additive manufacturing technology can be used to produce 3D printed hands-on surgical training tools (HOSTT), which can be used for the education and practical training of CoA. This study aimed to investigate the effectiveness of a 3D printable HOSTT for the simulation of coarctation surgery, and it' possible role in practical education. METHODS Participants were medical students of Semmelweis University between the second and sixth academic year. A virtual 3D model of an aorta with CoA was generated from a computed tomography angiography scan. Each participant received a 3D-printed aorta phantom and performed either one of four surgical treatment modalities. The simulated surgeries included end-to-end anastomosis, end-to-side anastomosis, prosthetic patch, and subclavian flap aortoplasty. Participants provided feedback, evaluating their understanding of the disease and its treatment by the four surgical reconstruction modalities on a seven-point Likert scale before and after the sessions. RESULTS 21 medical students participated in this study. Participants' average rating of their understanding of CoA disease and it treatment options before practical training was 4.62 ± 1.07. After training, their average rating increased to 6.19 ± 1.08, showing statistically significant difference. CONCLUSIONS Within this study's limitations, the applied HOSTT, manufactured using 3D printing, was effective for the practical training of CoA's surgical treatment methods for medical students.
Collapse
Affiliation(s)
- Imre J Barabas
- SE3D Center, Semmelweis University, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Daniel Vegh
- Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | | | - Patrik Kreuter
- Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | | | - Bela Merkely
- SE3D Center, Semmelweis University, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Daniel Palkovics
- SE3D Center, Semmelweis University, Budapest, Hungary.
- Department of Periodontology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
13
|
Li W, Ma S, Zhou L, Konge L, Pan J, Hui J. The bibliometric analysis of extended reality in surgical training: Global and Chinese perspective. Heliyon 2024; 10:e27340. [PMID: 38495188 PMCID: PMC10943385 DOI: 10.1016/j.heliyon.2024.e27340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Objectives The prospect of extended reality (XR) being integrated with surgical training curriculum has attracted scholars. However, there is a lack of bibliometric analysis to help them better understand this field. Our aim is to analyze relevant literature focusing on development trajectory and research directions since the 21st century to provide valuable insights. Methods Papers were retrieved from the Web of Science Core Collection. Microsoft Excel, VOSviewer, and CiteSpace were used for bibliometric analysis. Results Of the 3337 papers published worldwide, China contributed 204, ranking fifth. The world's enthusiasm for this field has been growing since 2000, whereas China has been gradually entering since 2001. Although China had a late start, its growth has accelerated since around 2016 due to the reform of the medical postgraduate education system and the rapid development of Chinese information technology, despite no research explosive period has been yet noted. International institutions, notably the University of Toronto, worked closely with others, while Chinese institutions lacked of international and domestic cooperation. Sixteen stable cooperation clusters of international scholars were formed, while the collaboration between Chinese scholars was not yet stable. XR has been primarily applied in orthopedic surgery, cataract surgery, laparoscopic training and intraoperative use in neurosurgery worldwide. Conclusions There is strong enthusiasm and cooperation in the international research on the XR-based surgical training. Chinese scholars are making steady progress and have great potential in this area. There has not been noted an explosive research phase yet in the Chinese pace. The research on several surgical specialties has been summarized at the very first time. AR will gradually to be more involved and take important role of the research.
Collapse
Affiliation(s)
- Wei Li
- Medical Simulation Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Ma
- Medical Simulation Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- School of Postgraduate Education, Southern Medical University, Guangzhou, China
| | - Lars Konge
- Copenhagen Academy for Medical Education and Simulation (CAMES) Rigshospitalet, Copenhagen, Denmark
| | - Junjun Pan
- State Key Laboratory of Virtual Reality Technology and Systems, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- PENG CHENG Laboratory, Shenzhen, China
| | - Jialiang Hui
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou City, China
| |
Collapse
|
14
|
Youssef S, McDonnell JM, Wilson KV, Turley L, Cunniffe G, Morris S, Darwish S, Butler JS. Accuracy of augmented reality-assisted pedicle screw placement: a systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:974-984. [PMID: 38177834 DOI: 10.1007/s00586-023-08094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE Conventional freehand methods of pedicle screw placement are associated with significant complications due to close proximity to neural and vascular structures. Recent advances in augmented reality surgical navigation (ARSN) have led to its adoption into spine surgery. However, little is known regarding its overall accuracy. The purpose of this study is to delineate the overall accuracy of ARSN pedicle screw placement across various models. METHODS A systematic review was conducted of Medline/PubMed, Cochrane and Embase Library databases according to the PRISMA guidelines. Relevant data extracted included reports of pedicle screw placement accuracy and breaches, as defined by the Gertzbein-Robbins classification, in addition to deviation from pre-planned trajectory and entry point. Accuracy was defined as the summation of grade 0 and grade 1 events per the Gertzbein-Robbins classification. RESULTS Twenty studies reported clinically accurate placed screws. The range of clinically accurate placed screws was 26.3-100%, with 2095 screws (93.1%) being deemed clinically accurate. Furthermore, 5.4% (112/2088) of screws were reported as grade two breaches, 1.6% (33/2088) grade 3 breaches, 3.1% (29/926) medial breaches and 2.3% (21/926) lateral breaches. Mean linear deviation ranged from 1.3 to 5.99 mm, while mean angular/trajectory deviation ranged 1.6°-5.88°. CONCLUSION The results of this study highlight the overall accuracy of ARSN pedicle screw placement. However, further robust prospective studies are needed to accurately compare to conventional methods of pedicle screw placement.
Collapse
Affiliation(s)
- Salma Youssef
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Jake M McDonnell
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kielan V Wilson
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland.
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland.
| | - Luke Turley
- Department of Orthopaedics, Tallaght University Hospital, Tallaght, Dublin, Ireland
| | - Gráinne Cunniffe
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Seamus Morris
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Stacey Darwish
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- Department of Orthopaedics, St. Vincent's University Hospital, Dublin, Ireland
| | - Joseph S Butler
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
15
|
Youssef Y, De Wet D, Back DA, Scherer J. Digitalization in orthopaedics: a narrative review. Front Surg 2024; 10:1325423. [PMID: 38274350 PMCID: PMC10808497 DOI: 10.3389/fsurg.2023.1325423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Advances in technology and digital tools like the Internet of Things (IoT), artificial intelligence (AI), and sensors are shaping the field of orthopaedic surgery on all levels, from patient care to research and facilitation of logistic processes. Especially the COVID-19 pandemic, with the associated contact restrictions was an accelerator for the development and introduction of telemedical applications and digital alternatives to classical in-person patient care. Digital applications already used in orthopaedic surgery include telemedical support, online video consultations, monitoring of patients using wearables, smart devices, surgical navigation, robotic-assisted surgery, and applications of artificial intelligence in forms of medical image processing, three-dimensional (3D)-modelling, and simulations. In addition to that immersive technologies like virtual, augmented, and mixed reality are increasingly used in training but also rehabilitative and surgical settings. Digital advances can therefore increase the accessibility, efficiency and capabilities of orthopaedic services and facilitate more data-driven, personalized patient care, strengthening the self-responsibility of patients and supporting interdisciplinary healthcare providers to offer for the optimal care for their patients.
Collapse
Affiliation(s)
- Yasmin Youssef
- Department of Orthopaedics, Trauma and Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Deana De Wet
- Orthopaedic Research Unit, University of Cape Town, Cape Town, South Africa
| | - David A. Back
- Center for Musculoskeletal Surgery, Charité University Medicine Berlin, Berlin, Germany
| | - Julian Scherer
- Orthopaedic Research Unit, University of Cape Town, Cape Town, South Africa
- Department of Traumatology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Azad TD, Warman A, Tracz JA, Hughes LP, Judy BF, Witham TF. Augmented reality in spine surgery - past, present, and future. Spine J 2024; 24:1-13. [PMID: 37660893 DOI: 10.1016/j.spinee.2023.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND CONTEXT Augmented reality (AR) is increasingly recognized as a valuable tool in spine surgery. Here we provides an overview of the key developments and technological milestones that have laid the foundation for AR applications in this field. We also assess the quality of existing studies on AR systems in spine surgery and explore potential future applications. PURPOSE The purpose of this narrative review is to examine the role of AR in spine surgery. It aims to highlight the evolution of AR technology in this context, evaluate the existing body of research, and outline potential future directions for integrating AR into spine surgery. STUDY DESIGN Narrative review. METHODS We conducted a thorough literature search to identify studies and developments related to AR in spine surgery. Relevant articles, reports, and technological advancements were analyzed to establish the historical context and current state of AR in this field. RESULTS The review identifies significant milestones in the development of AR technology for spine surgery. It discusses the growing body of research and highlights the strengths and weaknesses of existing investigations. Additionally, it presents insights into the potential for AR to enhance spine surgical education and speculates on future applications. CONCLUSIONS Augmented reality has emerged as a promising adjunct in spine surgery, with notable advancements and research efforts. The integration of AR into the spine surgery operating room holds promise, as does its potential to revolutionize surgical education. Future applications of AR in spine surgery may include real-time navigation, enhanced visualization, and improved patient outcomes. Continued development and evaluation of AR technology are essential for its successful implementation in this specialized surgical field.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109, Baltimore, MD 21287, USA
| | - Anmol Warman
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109, Baltimore, MD 21287, USA
| | - Jovanna A Tracz
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109, Baltimore, MD 21287, USA
| | - Liam P Hughes
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109, Baltimore, MD 21287, USA
| | - Brendan F Judy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109, Baltimore, MD 21287, USA
| | - Timothy F Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Meyer 7-109, Baltimore, MD 21287, USA.
| |
Collapse
|
17
|
Maltby S, Garcia-Esperon C, Jackson K, Butcher K, Evans JW, O'Brien W, Dixon C, Russell S, Wilson N, Kluge MG, Ryan A, Paul CL, Spratt NJ, Levi CR, Walker FR. TACTICS VR Stroke Telehealth Virtual Reality Training for Health Care Professionals Involved in Stroke Management at Telestroke Spoke Hospitals: Module Design and Implementation Study. JMIR Serious Games 2023; 11:e43416. [PMID: 38060297 PMCID: PMC10739245 DOI: 10.2196/43416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Stroke management in rural areas is more variable and there is less access to reperfusion therapies, when compared with metropolitan areas. Delays in treatment contribute to worse patient outcomes. To improve stroke management in rural areas, health districts are implementing telestroke networks. The New South Wales Telestroke Service provides neurologist-led telehealth to 23 rural spoke hospitals aiming to improve treatment delivery and patient outcomes. The training of clinical staff was identified as a critical aspect for the successful implementation of this service. Virtual reality (VR) training has not previously been used in this context. OBJECTIVE We sought to develop an evidence-based VR training module specifically tailored for stroke telehealth. During implementation, we aimed to assess the feasibility of workplace deployment and collected feedback from spoke hospital staff involved in stroke management on training acceptability and usability as well as perceived training impact. METHODS The TACTICS VR Stroke Telehealth application was developed with subject matter experts. During implementation, both quantitative and qualitative data were documented, including VR use and survey feedback. VR hardware was deployed to 23 rural hospitals, and use data were captured via automated Wi-Fi transfer. At 7 hospitals in a single local health district, staff using TACTICS VR were invited to complete surveys before and after training. RESULTS TACTICS VR Stroke Telehealth was deployed to rural New South Wales hospitals starting on April 14, 2021. Through August 20, 2023, a total of 177 VR sessions were completed. Survey respondents (n=20) indicated a high level of acceptability, usability, and perceived training impact (eg, accuracy and knowledge transfer; mean scores 3.8-4.4; 5=strongly agree). Furthermore, respondents agreed that TACTICS VR increased confidence (13/18, 72%), improved understanding (16/18, 89%), and improved awareness (17/18, 94%) regarding stroke telehealth. A comparison of matched pre- and posttraining responses revealed that training improved the understanding of telehealth workflow practices (after training: mean 4.2, SD 0.6; before training: mean 3.2, SD 0.9; P<.001), knowledge on accessing stroke telehealth (mean 4.1, SD 0.6 vs mean 3.1, SD 1.0; P=.001), the awareness of stroke telehealth (mean 4.1, SD 0.6 vs mean 3.4, SD 0.9; P=.03), ability to optimally communicate with colleagues (mean 4.2, SD 0.6 vs mean 3.7, SD 0.9; P=.02), and ability to make improvements (mean 4.0, SD 0.6 vs mean 3.5, SD 0.9; P=.03). Remote training and deployment were feasible, and limited issues were identified, although uptake varied widely (0-66 sessions/site). CONCLUSIONS TACTICS VR Stroke Telehealth is a new VR application specifically tailored for stroke telehealth workflow training at spoke hospitals. Training was considered acceptable, usable, and useful and had positive perceived training impacts in a real-world clinical implementation context. Additional work is required to optimize training uptake and integrate training into existing education pathways.
Collapse
Affiliation(s)
- Steven Maltby
- Centre for Advanced Training Systems, The University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, New Lambton Heights, Australia
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Carlos Garcia-Esperon
- Hunter Medical Research Institute, New Lambton Heights, Australia
- John Hunter Hospital, New Lambton Heights, Australia
| | - Kate Jackson
- NSW Agency for Clinical Innovation, St Leonards, Australia
| | - Ken Butcher
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - James W Evans
- Department of Neurosciences, Gosford Hospital, Gosford, Australia
| | - William O'Brien
- Department of Neurosciences, Gosford Hospital, Gosford, Australia
| | - Courtney Dixon
- NSW Agency for Clinical Innovation, St Leonards, Australia
| | - Skye Russell
- NSW Agency for Clinical Innovation, St Leonards, Australia
| | - Natalie Wilson
- NSW Agency for Clinical Innovation, St Leonards, Australia
| | - Murielle G Kluge
- Centre for Advanced Training Systems, The University of Newcastle, Newcastle, Australia
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Annika Ryan
- Hunter Medical Research Institute, New Lambton Heights, Australia
- School of Medicine and Public Health, College of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Christine L Paul
- Hunter Medical Research Institute, New Lambton Heights, Australia
- School of Medicine and Public Health, College of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Neil J Spratt
- Hunter Medical Research Institute, New Lambton Heights, Australia
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, Australia
- John Hunter Hospital, New Lambton Heights, Australia
| | - Christopher R Levi
- School of Medicine and Public Health, College of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, Australia
- John Hunter Health & Innovation Precinct, New Lambton Heights, Australia
| | - Frederick Rohan Walker
- Centre for Advanced Training Systems, The University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, New Lambton Heights, Australia
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
18
|
Burton W, Myers C, Rutherford M, Rullkoetter P. Evaluation of single-stage vision models for pose estimation of surgical instruments. Int J Comput Assist Radiol Surg 2023; 18:2125-2142. [PMID: 37120481 DOI: 10.1007/s11548-023-02890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 03/27/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE Multiple applications in open surgical environments may benefit from adoption of markerless computer vision depending on associated speed and accuracy requirements. The current work evaluates vision models for 6-degree of freedom pose estimation of surgical instruments in RGB scenes. Potential use cases are discussed based on observed performance. METHODS Convolutional neural nets were developed with simulated training data for 6-degree of freedom pose estimation of a representative surgical instrument in RGB scenes. Trained models were evaluated with simulated and real-world scenes. Real-world scenes were produced by using a robotic manipulator to procedurally generate a wide range of object poses. RESULTS CNNs trained in simulation transferred to real-world evaluation scenes with a mild decrease in pose accuracy. Model performance was sensitive to input image resolution and orientation prediction format. The model with highest accuracy demonstrated mean in-plane translation error of 13 mm and mean long axis orientation error of 5[Formula: see text] in simulated evaluation scenes. Similar errors of 29 mm and 8[Formula: see text] were observed in real-world scenes. CONCLUSION 6-DoF pose estimators can predict object pose in RGB scenes with real-time inference speed. Observed pose accuracy suggests that applications such as coarse-grained guidance, surgical skill evaluation, or instrument tracking for tray optimization may benefit from markerless pose estimation.
Collapse
Affiliation(s)
- William Burton
- Center for Orthopaedic Biomechanics, University of Denver, 2155 E Wesley Ave, Denver, CO, 80210, USA.
| | - Casey Myers
- Center for Orthopaedic Biomechanics, University of Denver, 2155 E Wesley Ave, Denver, CO, 80210, USA
| | - Matthew Rutherford
- Unmanned Systems Research Institute, University of Denver, 2155 E Wesley Ave, Denver, CO, 80210, USA
| | - Paul Rullkoetter
- Center for Orthopaedic Biomechanics, University of Denver, 2155 E Wesley Ave, Denver, CO, 80210, USA
| |
Collapse
|
19
|
McGirt MJ, Holland CM, Farber SH, Zuckerman SL, Spertus MS, Theodore N, Pfortmiller D, Stanley G. Remote cognitive behavioral therapy utilizing an in-home virtual reality toolkit (Vx Therapy) reduces pain, anxiety, and depression in patients with chronic cervical and lumbar spondylytic pain: A potential alternative to opioids in multimodal pain management. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 16:100287. [PMID: 38033880 PMCID: PMC10684389 DOI: 10.1016/j.xnsj.2023.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Background Context Virtual reality (VR) reduces pain through visual and auditory distraction without narcotic-related side effects or dependency. Cognitive behavioral therapy (CBT) improves pain-related disability and quality of life, but patient access remains a challenge. We hypothesized that in-home weekly CBT coordinated with daily use of a proprietary VR toolkit will reduce pain, anxiety, and depression for patients with non-operative chronic cervical and lumbar spondylitic pain with and without radiculopathy. Methods A total of 145 patients with chronic spondylitic pain (63 cervical, 46 noradicular lumbar, 36 radicular lumbar) were enrolled into a guided 14-week VR+CBT program (Vx Therapy) consisting of weekly encounters with a trained therapist and 50 modules. Pain/anxiety severity scores and time to pain recurrence were recorded prospectively by patients. PROMIS measures of overall daily pain intensity, behavior, interference, anxiety, and depression were recorded at baseline and conclusion of the program. Results A total of 52% of the 145 patients were male. The average (SD) age of the cohort was 51 (10.7) years (range: 24-76 years). Mean score for all PROMIS domains were significantly improved after 14 weeks of Vx Therapy (pain intensity 36±24 vs. 28±21, interference 39±25 vs. 24±21, behavior 35±21 vs. 25±16, anxiety 51±28 vs. 41±26, depression 58±32 vs. 48±32) for the entire cohort and each diagnosis group. Virtual reality acutely reduced pain on average by 33% (4.5±2.5 vs. 6.7±2.2, p<.05) across all 14 weeks, lasting a mean 2.8 hours after use. Duration of pain relief increased by the final vs. first month (4.5 hours vs. 2.5 hours, p<.05). Virtual reality acutely reduced anxiety on average by 46% (3.5±3 vs. 6.4±2, p<.05) across all 14 weeks lasting a mean 2.7 hours after use. The effect was similar for all 3 groups. Conclusions Fourteen weeks of a remote CBT guided in-home VR toolkit provided effective and sustained pain, anxiety, and depression relief in patients with chronic degenerative neck/back pain with and without radiculopathy. The non-invasive, non-pharmacological nature of Vx Therapy makes it an ideal option for pain management in the post-opioid epidemic era.
Collapse
Affiliation(s)
- Matthew J. McGirt
- Carolina Neurosurgery & Spine Associates, Atrium-Wake Forest University, 225 Baldwin Ave, Charlotte, NC 28205, USA
| | - Christopher M. Holland
- Carolina Neurosurgery & Spine Associates, Atrium-Wake Forest University, 225 Baldwin Ave, Charlotte, NC 28205, USA
| | - S. Harrison Farber
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd. Phoenix, AZ 85013, USA
| | - Scott L. Zuckerman
- Department of Neurosurgery, Vanderbilt University, 1211 Medical Center, Nashville, TN 37232, USA
| | - Michael S. Spertus
- Whole Health in Pain Medicine, Miami Veterans Affairs Healthcare System, 1201 NW 16th St., Miami, FL 33125, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University, 1800 Orleans St., Baltimore, MD 21287, USA
| | - Deborah Pfortmiller
- Carolina Neurosurgery & Spine Associates, Atrium-Wake Forest University, 225 Baldwin Ave, Charlotte, NC 28205, USA
| | - Gerry Stanley
- Harvard Med Tech, 6280 S. Valley View Blvd., Las Vegas, NV 89118, USA
| |
Collapse
|
20
|
Rao KN, Arora RD, Singh A, Dange P, Nagarkar NM. Observational Learning in Surgical Skill Development. Indian J Surg Oncol 2023; 14:540-544. [PMID: 37900636 PMCID: PMC10611665 DOI: 10.1007/s13193-023-01798-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/04/2023] [Indexed: 10/31/2023] Open
Abstract
Observation plays a key role in the development of surgical skills, as it allows trainees to learn from experts and improve their performance through trial-and-error practice. This process, known as motor learning, involves the creation of new neural pathways that enable precise control of surgical instruments through hand movements. In recent years, there has been a shift towards minimally invasive surgery, which requires surgeons to continually learn new motor skills to control specialized instrumentation. Motor learning can be enhanced through repetition and the observation of expert performances. Observational learning is particularly useful when it is used in combination with physical practice, as it can provide hints and clues about important aspects of the task that may not be immediately apparent through verbal instruction alone. The role of mirror neurons, which are activated both when an action is performed and when it is observed, is also important in the process of observational learning. By understanding the mechanisms behind observational learning and the factors that influence its effectiveness, trainers can optimize the use of this method in surgical training.
Collapse
Affiliation(s)
- Karthik Nagaraja Rao
- Head Neck Surgery and Oncology, Department of Head and Neck Oncology, All India Institute of Medical Sciences, Raipur, India
| | - Ripu Daman Arora
- Department of Otolaryngology and Head Neck Surgery, All India Institute of Medical Sciences, Raipur, India
| | - Ambesh Singh
- Head Neck Surgery and Oncology, Department of Head and Neck Oncology, All India Institute of Medical Sciences, Raipur, India
| | - Prajwal Dange
- Head Neck Surgery and Oncology, Department of Head and Neck Oncology, All India Institute of Medical Sciences, Raipur, India
| | | |
Collapse
|
21
|
McDonnell KJ. Leveraging the Academic Artificial Intelligence Silecosystem to Advance the Community Oncology Enterprise. J Clin Med 2023; 12:4830. [PMID: 37510945 PMCID: PMC10381436 DOI: 10.3390/jcm12144830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Over the last 75 years, artificial intelligence has evolved from a theoretical concept and novel paradigm describing the role that computers might play in our society to a tool with which we daily engage. In this review, we describe AI in terms of its constituent elements, the synthesis of which we refer to as the AI Silecosystem. Herein, we provide an historical perspective of the evolution of the AI Silecosystem, conceptualized and summarized as a Kuhnian paradigm. This manuscript focuses on the role that the AI Silecosystem plays in oncology and its emerging importance in the care of the community oncology patient. We observe that this important role arises out of a unique alliance between the academic oncology enterprise and community oncology practices. We provide evidence of this alliance by illustrating the practical establishment of the AI Silecosystem at the City of Hope Comprehensive Cancer Center and its team utilization by community oncology providers.
Collapse
Affiliation(s)
- Kevin J McDonnell
- Center for Precision Medicine, Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
22
|
Pedram S, Kennedy G, Sanzone S. Toward the validation of VR-HMDs for medical education: a systematic literature review. VIRTUAL REALITY 2023; 27:1-26. [PMID: 37360815 PMCID: PMC10182357 DOI: 10.1007/s10055-023-00802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
The latest technological advancements in the domain of virtual reality (VR) have created new opportunities to use VR as a training platform for medical students and practitioners more broadly. Despite the growing interest in the use of VR as a training tool, a commonly identified gap in VR-training for medical education is the confidence in the long-term validity of the applications. A systematic literature review was undertaken to explore the extent of VR (in particular head-mounted displays) applications for medical training with an additional focus on validation measures. The papers included in this review discussed empirical case studies of specific applications; however, these were mostly concerned with human-computer interaction and were polarized between demonstrating that a conceptual technology solution was feasible for simulation or looked at specific areas of VR usability with little discussion on validation measures for long-term training effectiveness and outcomes. The review uncovered a wide range of ad hoc applications and studies in terms of technology vendors, environments, tasks, envisaged users and effectiveness of learning outcomes. This presents decision-making challenges for those seeking to adopt, implement and embed such systems in teaching practice. The authors of this paper then take a wider socio-technical systems perspective to understand how the holistic training system can be engineered and validated effectively as fit for purpose, through distillation of a generic set of requirements from the literature review to aid design specification and implementation, and to drive more informed and traceable validation of these types of systems. In this review, we have identified 92 requirement statements in 11 key areas against which a VR-HMD training system could be validated; these were grouped into design considerations, learning mechanisms and implementation considerations.
Collapse
Affiliation(s)
- Shiva Pedram
- SMART Infrastructure Facility, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, Australia
| | - Grace Kennedy
- SMART Infrastructure Facility, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, Australia
| | - Sal Sanzone
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, Australia
| |
Collapse
|
23
|
León-Muñoz VJ, Moya-Angeler J, López-López M, Lisón-Almagro AJ, Martínez-Martínez F, Santonja-Medina F. Integration of Square Fiducial Markers in Patient-Specific Instrumentation and Their Applicability in Knee Surgery. J Pers Med 2023; 13:jpm13050727. [PMID: 37240897 DOI: 10.3390/jpm13050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Computer technologies play a crucial role in orthopaedic surgery and are essential in personalising different treatments. Recent advances allow the usage of augmented reality (AR) for many orthopaedic procedures, which include different types of knee surgery. AR assigns the interaction between virtual environments and the physical world, allowing both to intermingle (AR superimposes information on real objects in real-time) through an optical device and allows personalising different processes for each patient. This article aims to describe the integration of fiducial markers in planning knee surgeries and to perform a narrative description of the latest publications on AR applications in knee surgery. Augmented reality-assisted knee surgery is an emerging set of techniques that can increase accuracy, efficiency, and safety and decrease the radiation exposure (in some surgical procedures, such as osteotomies) of other conventional methods. Initial clinical experience with AR projection based on ArUco-type artificial marker sensors has shown promising results and received positive operator feedback. Once initial clinical safety and efficacy have been demonstrated, the continued experience should be studied to validate this technology and generate further innovation in this rapidly evolving field.
Collapse
Affiliation(s)
- Vicente J León-Muñoz
- Department of Orthopaedic Surgery and Traumatology, Hospital General Universitario Reina Sofía, 30003 Murcia, Spain
- Instituto de Cirugía Avanzada de la Rodilla (ICAR), 30005 Murcia, Spain
| | - Joaquín Moya-Angeler
- Department of Orthopaedic Surgery and Traumatology, Hospital General Universitario Reina Sofía, 30003 Murcia, Spain
- Instituto de Cirugía Avanzada de la Rodilla (ICAR), 30005 Murcia, Spain
| | - Mirian López-López
- Subdirección General de Tecnologías de la Información, Servicio Murciano de Salud, 30100 Murcia, Spain
| | - Alonso J Lisón-Almagro
- Department of Orthopaedic Surgery and Traumatology, Hospital General Universitario Reina Sofía, 30003 Murcia, Spain
| | - Francisco Martínez-Martínez
- Department of Orthopaedic Surgery and Traumatology, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Fernando Santonja-Medina
- Department of Orthopaedic Surgery and Traumatology, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Department of Surgery, Pediatrics and Obstetrics & Gynecology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
24
|
Worlikar H, Coleman S, Kelly J, O'Connor S, Murray A, McVeigh T, Doran J, McCabe I, O'Keeffe D. Mixed Reality Platforms in Telehealth Delivery: Scoping Review. JMIR BIOMEDICAL ENGINEERING 2023; 8:e42709. [PMID: 38875694 PMCID: PMC11041465 DOI: 10.2196/42709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The distinctive features of the digital reality platforms, namely augmented reality (AR), virtual reality (VR), and mixed reality (MR) have extended to medical education, training, simulation, and patient care. Furthermore, this digital reality technology seamlessly merges with information and communication technology creating an enriched telehealth ecosystem. This review provides a composite overview of the prospects of telehealth delivered using the MR platform in clinical settings. OBJECTIVE This review identifies various clinical applications of high-fidelity digital display technology, namely AR, VR, and MR, delivered using telehealth capabilities. Next, the review focuses on the technical characteristics, hardware, and software technologies used in the composition of AR, VR, and MR in telehealth. METHODS We conducted a scoping review using the methodological framework and reporting design using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. Full-length articles in English were obtained from the Embase, PubMed, and Web of Science databases. The search protocol was based on the following keywords and Medical Subject Headings to obtain relevant results: "augmented reality," "virtual reality," "mixed-reality," "telemedicine," "telehealth," and "digital health." A predefined inclusion-exclusion criterion was developed in filtering the obtained results and the final selection of the articles, followed by data extraction and construction of the review. RESULTS We identified 4407 articles, of which 320 were eligible for full-text screening. A total of 134 full-text articles were included in the review. Telerehabilitation, telementoring, teleconsultation, telemonitoring, telepsychiatry, telesurgery, and telediagnosis were the segments of the telehealth division that explored the use of AR, VR, and MR platforms. Telerehabilitation using VR was the most commonly recurring segment in the included studies. AR and MR has been mainly used for telementoring and teleconsultation. The most important technical features of digital reality technology to emerge with telehealth were virtual environment, exergaming, 3D avatars, telepresence, anchoring annotations, and first-person viewpoint. Different arrangements of technology-3D modeling and viewing tools, communication and streaming platforms, file transfer and sharing platforms, sensors, high-fidelity displays, and controllers-formed the basis of most systems. CONCLUSIONS This review constitutes a recent overview of the evolving digital AR and VR in various clinical applications using the telehealth setup. This combination of telehealth with AR, VR, and MR allows for remote facilitation of clinical expertise and further development of home-based treatment. This review explores the rapidly growing suite of technologies available to users within the digital health sector and examines the opportunities and challenges they present.
Collapse
Affiliation(s)
- Hemendra Worlikar
- Health Innovation Via Engineering Laboratory, Cúram Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Sean Coleman
- Health Innovation Via Engineering Laboratory, Cúram Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, Ireland
- Department of Medicine, University Hospital Galway, Galway, Ireland
| | - Jack Kelly
- Health Innovation Via Engineering Laboratory, Cúram Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, Ireland
- Department of Medicine, University Hospital Galway, Galway, Ireland
| | - Sadhbh O'Connor
- Health Innovation Via Engineering Laboratory, Cúram Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, Ireland
- Department of Medicine, University Hospital Galway, Galway, Ireland
| | - Aoife Murray
- Health Innovation Via Engineering Laboratory, Cúram Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Terri McVeigh
- Cancer Genetics Unit, The Royal Marsden National Health Service Foundation Trust, London, United Kingdom
| | - Jennifer Doran
- Health Innovation Via Engineering Laboratory, Cúram Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Ian McCabe
- Health Innovation Via Engineering Laboratory, Cúram Science Foundation Ireland Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Derek O'Keeffe
- Department of Medicine, University Hospital Galway, Galway, Ireland
- School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Lero, Science Foundation Ireland Centre for Software Research, University of Limerick, Limerick, Ireland
| |
Collapse
|
25
|
Ahmed Kamal M, Ismail Z, Shehata IM, Djirar S, Talbot NC, Ahmadzadeh S, Shekoohi S, Cornett EM, Fox CJ, Kaye AD. Telemedicine, E-Health, and Multi-Agent Systems for Chronic Pain Management. Clin Pract 2023; 13:470-482. [PMID: 36961067 PMCID: PMC10037594 DOI: 10.3390/clinpract13020042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Telemedicine, telehealth, and E-health all offer significant benefits for pain management and healthcare services by fostering the physician-patient relationship in otherwise challenging circumstances. A critical component of these artificial-intelligence-based health systems is the "agent-based system", which is rapidly evolving as a means of resolving complicated or straightforward problems. Multi-Agent Systems (MAS) are well-established modeling and problem-solving modalities that model and solve real-world problems. MAS's core concept is to foster communication and cooperation among agents, which are broadly considered intelligent autonomous factors, to address diverse challenges. MAS are used in various telecommunications applications, including the internet, robotics, healthcare, and medicine. Furthermore, MAS and information technology are utilized to enhance patient-centered palliative care. While telemedicine, E-health, and MAS all play critical roles in managing chronic pain, the published research on their use in treating chronic pain is currently limited. This paper discusses why telemedicine, E-health, and MAS are the most critical novel technologies for providing healthcare and managing chronic pain. This review also provides context for identifying the advantages and disadvantages of each application's features, which may serve as a useful tool for researchers.
Collapse
Affiliation(s)
| | - Zainab Ismail
- Faculty of Medicine, Menoufia University, Shiben El Kom 51123, Egypt
| | - Islam Mohammad Shehata
- Department of Anesthesiology, Faculty of Medicine, Ain Shams University, Cairo 11517, Egypt
| | - Soumia Djirar
- Department of Ophthalmology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Norris C Talbot
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Charles J Fox
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
26
|
Sun P, Zhao Y, Men J, Ma ZR, Jiang HZ, Liu CY, Feng W. Application of Virtual and Augmented Reality Technology in Hip Surgery: Systematic Review. J Med Internet Res 2023; 25:e37599. [PMID: 36651587 PMCID: PMC10039409 DOI: 10.2196/37599] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/07/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Virtual and augmented reality (VAR) represents a combination of current state-of-the-art computer and imaging technologies and has the potential to be a revolutionary technology in many surgical fields. An increasing number of investigators have developed and applied VAR in hip-related surgery with the aim of using this technology to reduce hip surgery-related complications, improve surgical success rates, and reduce surgical risks. These technologies are beginning to be widely used in hip-related preoperative operation simulation and training, intraoperative navigation tools in the operating room, and postoperative rehabilitation. OBJECTIVE With the aim of reviewing the current status of virtual reality (VR) and augmented reality (AR) in hip-related surgery and summarizing its benefits, we discussed and briefly described the applicability, advantages, limitations, and future perspectives of VR and AR techniques in hip-related surgery, such as preoperative operation simulation and training; explored the possible future applications of AR in the operating room; and discussed the bright prospects of VR and AR technologies in postoperative rehabilitation after hip surgery. METHODS We searched the PubMed and Web of Science databases using the following key search terms: ("virtual reality" OR "augmented reality") AND ("pelvis" OR "hip"). The literature on basic and clinical research related to the aforementioned key search terms, that is, studies evaluating the key factors, challenges, or problems of using of VAR technology in hip-related surgery, was collected. RESULTS A total of 40 studies and reports were included and classified into the following categories: total hip arthroplasty, hip resurfacing, femoral neck fracture, pelvic fracture, acetabular fracture, tumor, arthroscopy, and postoperative rehabilitation. Quality assessment could be performed in 30 studies. Among the clinical studies, there were 16 case series with an average score of 89 out of 100 points (89%) and 1 case report that scored 81 (SD 10.11) out of 100 points (81%) according to the Joanna Briggs Institute Critical Appraisal Checklist. Two cadaveric studies scored 85 of 100 points (85%) and 92 of 100 points (92%) according to the Quality Appraisal for Cadaveric Studies scale. CONCLUSIONS VR and AR technologies hold great promise for hip-related surgeries, especially for preoperative operation simulation and training, feasibility applications in the operating room, and postoperative rehabilitation, and have the potential to assist orthopedic surgeons in operating more accurately and safely. More comparative studies are necessary, including studies focusing on clinical outcomes and cost-effectiveness.
Collapse
Affiliation(s)
- Peng Sun
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Yao Zhao
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Jie Men
- Department of Bone and Joint Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yan tai, China
| | - Zhe-Ru Ma
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Hao-Zhuo Jiang
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Cheng-Yan Liu
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Wei Feng
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| |
Collapse
|
27
|
Curran VR, Xu X, Aydin MY, Meruvia-Pastor O. Use of Extended Reality in Medical Education: An Integrative Review. MEDICAL SCIENCE EDUCATOR 2023; 33:275-286. [PMID: 36569366 PMCID: PMC9761044 DOI: 10.1007/s40670-022-01698-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Extended reality (XR) has emerged as an innovative simulation-based learning modality. An integrative review was undertaken to explore the nature of evidence, usage, and effectiveness of XR modalities in medical education. One hundred and thirty-three (N = 133) studies and articles were reviewed. XR technologies are commonly reported in surgical and anatomical education, and the evidence suggests XR may be as effective as traditional medical education teaching methods and, potentially, a more cost-effective means of curriculum delivery. Further research to compare different variations of XR technologies and best applications in medical education and training are required to advance the field. Supplementary Information The online version contains supplementary material available at 10.1007/s40670-022-01698-4.
Collapse
Affiliation(s)
- Vernon R. Curran
- Office of Professional and Educational Development, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, Room H2982, St. John’s, NL A1B 3V6 Canada
| | - Xiaolin Xu
- Faculty of Health Sciences, Queen’s University, Kingston, ON Canada
| | - Mustafa Yalin Aydin
- Department of Computer Sciences, Memorial University of Newfoundland, St. John’s, NL Canada
| | - Oscar Meruvia-Pastor
- Department of Computer Sciences, Memorial University of Newfoundland, St. John’s, NL Canada
| |
Collapse
|
28
|
Field R. Surgical Assistants. J Hip Preserv Surg 2022; 9:209-210. [PMID: 36908556 PMCID: PMC9993446 DOI: 10.1093/jhps/hnac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/04/2023] [Indexed: 03/10/2023] Open
Affiliation(s)
- Richard Field
- Editor-in-Chief, the Journal of Hip Preservation Surgery
| |
Collapse
|
29
|
The Role of Augmented Reality in the Next Phase of Surgical Education. Plast Reconstr Surg Glob Open 2022; 10:e4656. [PMID: 36348749 PMCID: PMC9633082 DOI: 10.1097/gox.0000000000004656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023]
Abstract
Concomitant with such a shift toward competency-based curricula, there has been increasing adoption of surgical simulation coupled with virtual, mixed, and augmented reality. These technologies have become more commonplace across multiple surgical disciplines, in domains such as preoperative planning, surgical education, and intraoperative navigation. However, there is a relative paucity of literature pertaining to the application of this technology to plastic surgery education. This review outlines the advantages of mixed and augmented reality in the pursuit of an ideal simulation environment, their benefits for the education of plastic surgery trainees, and their role in standardized assessments. In addition, we offer practical solutions to commonly encountered problems with this technology. Augmented reality has tremendous untapped potential in the next phase of plastic surgery education, and we outline steps toward broader implementation to enhance the learning environment for our trainees and to improve patient outcomes.
Collapse
|
30
|
Eves J, Sudarsanam A, Shalhoub J, Amiras D. Augmented Reality in Vascular and Endovascular Surgery: Scoping Review. JMIR Serious Games 2022; 10:e34501. [PMID: 36149736 PMCID: PMC9547335 DOI: 10.2196/34501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Background Technological advances have transformed vascular intervention in recent decades. In particular, improvements in imaging and data processing have allowed for the development of increasingly complex endovascular and hybrid interventions. Augmented reality (AR) is a subject of growing interest in surgery, with the potential to improve clinicians’ understanding of 3D anatomy and aid in the processing of real-time information. This study hopes to elucidate the potential impact of AR technology in the rapidly evolving fields of vascular and endovascular surgery. Objective The aim of this review is to summarize the fundamental concepts of AR technologies and conduct a scoping review of the impact of AR and mixed reality in vascular and endovascular surgery. Methods A systematic search of MEDLINE, Scopus, and Embase was performed in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. All studies written in English from inception until January 8, 2021, were included in the search. Combinations of the following keywords were used in the systematic search string: (“augmented reality” OR “hololens” OR “image overlay” OR “daqri” OR “magic leap” OR “immersive reality” OR “extended reality” OR “mixed reality” OR “head mounted display”) AND (“vascular surgery” OR “endovascular”). Studies were selected through a blinded process between 2 investigators (JE and AS) and assessed using data quality tools. Results AR technologies have had a number of applications in vascular and endovascular surgery. Most studies (22/32, 69%) used 3D imaging of computed tomography angiogram–derived images of vascular anatomy to augment clinicians’ anatomical understanding during procedures. A wide range of AR technologies were used, with heads up fusion imaging and AR head-mounted displays being the most commonly applied clinically. AR applications included guiding open, robotic, and endovascular surgery while minimizing dissection, improving procedural times, and reducing radiation and contrast exposure. Conclusions AR has shown promising developments in the field of vascular and endovascular surgery, with potential benefits to surgeons and patients alike. These include reductions in patient risk and operating times as well as in contrast and radiation exposure for radiological interventions. Further technological advances are required to overcome current limitations, including processing capacity and vascular deformation by instrumentation.
Collapse
Affiliation(s)
- Joshua Eves
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Abhilash Sudarsanam
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Joseph Shalhoub
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom.,Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Dimitri Amiras
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom.,Department of Radiology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
31
|
Schreiter J, Schott D, Schwenderling L, Hansen C, Heinrich F, Joeres F. AR-Supported Supervision of Conditional Autonomous Robots: Considerations for Pedicle Screw Placement in the Future. J Imaging 2022; 8:jimaging8100255. [PMID: 36286350 PMCID: PMC9605344 DOI: 10.3390/jimaging8100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Robotic assistance is applied in orthopedic interventions for pedicle screw placement (PSP). While current robots do not act autonomously, they are expected to have higher autonomy under surgeon supervision in the mid-term. Augmented reality (AR) is promising to support this supervision and to enable human–robot interaction (HRI). To outline a futuristic scenario for robotic PSP, the current workflow was analyzed through literature review and expert discussion. Based on this, a hypothetical workflow of the intervention was developed, which additionally contains the analysis of the necessary information exchange between human and robot. A video see-through AR prototype was designed and implemented. A robotic arm with an orthopedic drill mock-up simulated the robotic assistance. The AR prototype included a user interface to enable HRI. The interface provides data to facilitate understanding of the robot’s ”intentions”, e.g., patient-specific CT images, the current workflow phase, or the next planned robot motion. Two-dimensional and three-dimensional visualization illustrated patient-specific medical data and the drilling process. The findings of this work contribute a valuable approach in terms of addressing future clinical needs and highlighting the importance of AR support for HRI.
Collapse
Affiliation(s)
- Josefine Schreiter
- Faculty of Computer Science & Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
| | - Danny Schott
- Faculty of Computer Science & Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
| | - Lovis Schwenderling
- Faculty of Computer Science & Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
| | - Christian Hansen
- Faculty of Computer Science & Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Correspondence:
| | - Florian Heinrich
- Faculty of Computer Science & Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
| | - Fabian Joeres
- Faculty of Computer Science & Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Innovation Center Computer-Assisted Surgery (ICCAS), Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
32
|
Mandal P, Ambade R. Surgery Training and Simulation Using Virtual and Augmented Reality for Knee Arthroplasty. Cureus 2022; 14:e28823. [PMID: 36225417 PMCID: PMC9535617 DOI: 10.7759/cureus.28823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
A range of extended reality technology integration, including immersive virtual reality (IVR), augmented reality (AR), as well as mixed reality, has lately acquired favour in orthopaedics. The utilization of extended reality machinery in knee arthroplasty is examined in this review study. Virtual reality (VR) and AR are usually exercised together in orthopaedic surgical training as alluring training outside of the operation theatre is acknowledged as a good surgical training tool. The use of this technology, its consequences for orthopaedic surgeons and their patients, and its moral and practical issues are also covered. Head-mounted displays (HMDs) are a potential addition directed toward improving surgical precision along with instruction. Although the hardware is cutting-edge, substantial effort needs to be done to develop software that enables seamless, trustworthy integration into clinical practice and training. Remote virtual rehabilitation has drawn increasing attention in recent years, and its significance has increased in light of the recent outbreak of the COVID-19 epidemic. Numerous medical sectors have shown the benefits of telerehabilitation, gamification, VR, and AR. Given the rising demand for orthopaedic therapy and its rising costs, this is a requirement. A remote surgeon can impart knowledge without being present, by virtually placing his or her hands in the visual field of a local surgeon using AR technology. With the use of this innovation, orthopaedic surgery seems to have been able to participate in the telemedicine revolution. This technology may also have an impact on how surgeons collaborate and train for orthopaedic residencies in the future. Volatility in the HMD market will probably stall improvements in surgical education.
Collapse
|
33
|
Tadlock MD, Olson EJ, Gasques D, Champagne R, Krzyzaniak MJ, Belverud SA, Ravindra V, Kerns J, Choi PM, Deveraux J, Johnson J, Sharkey T, Yip M, Weibel N, Davis K. Mixed reality surgical mentoring of combat casualty care related procedures in a perfused cadaver model: Initial results of a randomized feasibility study. Surgery 2022; 172:1337-1345. [PMID: 36038376 DOI: 10.1016/j.surg.2022.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Most telemedicine modalities have limited ability to enhance procedural and operative care. We developed a novel system to provide synchronous bidirectional expert mixed reality-enabled virtual procedural mentoring. In this feasibility study, we evaluated mixed reality mentoring of combat casualty care related procedures in a re-perfused cadaver model. METHODS Novices received real-time holographic mentoring from experts using augmented reality via Hololens (Microsoft Inc, Redmond, WA). The experts maintained real-time awareness of the novice's operative environment using virtual reality via HTC-Vive (HTC Corp, Xindian District, Taiwan). Additional cameras (both environments) and novel software created the immersive, shared, 3-dimensional mixed reality environment in which the novice and expert collaborated. The novices were prospectively randomized to either mixed reality or audio-only mentoring. Blinded experts independently evaluated novice procedural videos using a 5-point Likert scale-based questionnaire. Nonparametric variables were evaluated using the Wilcoxon rank-sum test and comparisons using the χ2 analysis; significance was defined at P < .05. RESULTS Surgeon and nonsurgeon novices (14) performed 69 combat casualty care-related procedures (38 mixed reality, 31 audio), including various vascular exposures, 4-compartment lower leg fasciotomy, and emergency neurosurgical procedures; 85% were performed correctly with no difference in either group. Upon video review, mixed reality-mentored novices showed no difference in procedural flow and forward planning (3.67 vs 3.28, P = .21) or the likelihood of performing individual procedural steps correctly (4.12 vs 3.59, P = .06). CONCLUSION In this initial feasibility study, our novel mixed reality-based mentoring system successfully facilitated the performance of a wide variety of combat casualty care relevant procedures using a high fidelity re-perfused cadaver model. The small sample size and limited variety of novice types likely impacted the ability of holographically mentored novices to demonstrate improvement over the audio-only control group. Despite this, using virtual, augmented, and mixed reality technologies for procedural mentoring demonstrated promise, and further study is needed.
Collapse
Affiliation(s)
- Matthew D Tadlock
- 1st Medical Battalion, 1st Marine Logistics Group, Camp Pendleton, CA; Department of Surgery, Navy Medicine Readiness and Training Command (NMRTC), San Diego, CA; Bioskills Training Center, NMRTC, San Diego, CA.
| | - Erik J Olson
- Department of Surgery, Navy Medicine Readiness and Training Command (NMRTC), San Diego, CA
| | - Danilo Gasques
- Department of Computer Science and Engineering, University of California San Diego, CA
| | | | - Michael J Krzyzaniak
- Department of Surgery, Navy Medicine Readiness and Training Command (NMRTC), San Diego, CA
| | | | | | - Jakob Kerns
- Virtual Medical Center, NMRTC, San Diego, CA
| | - Pamela M Choi
- Department of Surgery, Navy Medicine Readiness and Training Command (NMRTC), San Diego, CA
| | | | - Janet Johnson
- Department of Computer Science and Engineering, University of California San Diego, CA
| | - Thomas Sharkey
- Department of Computer Science and Engineering, University of California San Diego, CA
| | - Michael Yip
- Department of Electrical and Computer Engineering, University of California San Diego, CA
| | - Nadir Weibel
- Department of Computer Science and Engineering, University of California San Diego, CA
| | - Konrad Davis
- Division of Pulmonary and Critical Care Medicine, Scripps Clinic Medical Group, Scripps Health System, San Diego, CA
| |
Collapse
|
34
|
Abstract
Augmented reality (AR) is an innovative system that enhances the real world by superimposing virtual objects on reality. The aim of this study was to analyze the application of AR in medicine and which of its technical solutions are the most used. We carried out a scoping review of the articles published between 2019 and February 2022. The initial search yielded a total of 2649 articles. After applying filters, removing duplicates and screening, we included 34 articles in our analysis. The analysis of the articles highlighted that AR has been traditionally and mainly used in orthopedics in addition to maxillofacial surgery and oncology. Regarding the display application in AR, the Microsoft HoloLens Optical Viewer is the most used method. Moreover, for the tracking and registration phases, the marker-based method with a rigid registration remains the most used system. Overall, the results of this study suggested that AR is an innovative technology with numerous advantages, finding applications in several new surgery domains. Considering the available data, it is not possible to clearly identify all the fields of application and the best technologies regarding AR.
Collapse
|
35
|
Ikwuezunma IA, Guilbault R, Jain A, Lee RJ, Varghese R, Lentz JM, Sponseller PD, LaPorte D, Margalit A. Development and Validation of SCFE Percutaneous Pinning Surgical Simulation. J Pediatr Orthop 2022; 42:e577-e582. [PMID: 35319527 DOI: 10.1097/bpo.0000000000002142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In situ screw fixation with a single percutaneously placed femoral screw remains widely accepted for femoral head fixation in adolescent patients with slipped capital femoral epiphysis (SCFE). Given the potential risks involved with this procedure, a simulation whereby surgical skills could be refined before entering the operating room may be of benefit to orthopaedic trainees. METHODS We developed a synthetic model for the simulated treatment of SCFE. Five orthopaedic attendings and twenty trainees were recorded performing an in situ percutaneous fixation on the SCFE model. Time, radiation exposure, and final anteroposterior and lateral radiographs of the SCFE model were recorded. After completion, the attendings and trainees answered a Likert-based questionnaire regarding the realism and utility of the simulation, respectively. Two blinded orthopaedic surgeons rated each participant's skill level based on previously described assessment tools, including a Global Rating Scale (GRS) of technical proficiency and radiographic grading index for screw placement. Performance metrics and survey responses were evaluated for construct validity, face validity, and interrater reliability. RESULTS The attendings demonstrated superior technical proficiency compared with trainees in terms of higher GRS scores (27.9±1.9 vs. 14.7±5.0, P<0.001) and better radiographic grading of screw placement on lateral views (P=0.019). Similarly, compared with the trainees, the orthopaedic attendings demonstrated shorter operative times (11.0±4.1 vs. 14.7±6.2 min, P=0.035) and less radiation exposure (3.7±1.7 vs. 9.5±5.7 mGy, P=0.037). The interrater reliability was excellent for both the GRS scoring (intraclass correlation coefficient=0.973) and radiographic grading (weighted κ=1.000). The attendings and trainees rated the realism and teaching utility of the simulation as "very good," respectively. CONCLUSION Our surgical simulation for in situ percutaneous fixation of SCFE represents a valid and reliable measure of technical competency and demonstrates much promise for potential use as a formative educational tool for orthopaedic residency programs. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Ijezie A Ikwuezunma
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cannizzaro D, Zaed I, Safa A, Jelmoni AJM, Composto A, Bisoglio A, Schmeizer K, Becker AC, Pizzi A, Cardia A, Servadei F. Augmented Reality in Neurosurgery, State of Art and Future Projections. A Systematic Review. Front Surg 2022; 9:864792. [PMID: 35360432 PMCID: PMC8961734 DOI: 10.3389/fsurg.2022.864792] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 01/13/2023] Open
Abstract
Background The use of augmented reality (AR) is growing in medical education, in particular, in radiology and surgery. AR has the potential to become a strategic component of neurosurgical training courses. In fact, over the years, there has been a progressive increase in the application of AR in the various fields of neurosurgery. In this study, the authors aim to define the diffusion of these augmented reality systems in recent years. This study describes future trends in augmented reality for neurosurgeons. Methods A systematic review of the literature was conducted to identify research published from December 1st, 2011 to November 30th, 2021. Electronic databases (PubMed, PubMed Central, and Scopus) were screened. The methodological quality of studies and extracted data were assessed for “augmented reality” and “neurosurgery”. The data analysis focused on the geographical distribution, temporal evolution, and topic of augmented reality in neurosurgery. Results A total of 198 studies have been included. The number of augmented reality applications in the neurosurgical field has increased during the last 10 years. The main topics on which it is mostly applied are spine surgery, neuronavigation, and education. The geographical distribution shows extensive use of augmented reality in the USA, Germany, China, and Canada. North America is the continent that uses augmented reality the most in the training and education of medical students, residents, and surgeons, besides giving the greatest research contribution in spine surgery, brain oncology, and surgical planning. AR is also extensively used in Asia for intraoperative navigation. Nevertheless, augmented reality is still far from reaching Africa and other countries with limited facilities, as no publications could be retrieved from our search. Conclusions The use of AR is significantly increased in the last 10 years. Nowadays it is mainly used in spine surgery and for neurosurgical education, especially in North America, Europe and China. A continuous growth, also in other aspects of the specialty, is expected in the next future.
Collapse
Affiliation(s)
- Delia Cannizzaro
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Ismail Zaed
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- *Correspondence: Ismail Zaed
| | - Adrian Safa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Alice J. M. Jelmoni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Antonio Composto
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Bisoglio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Kyra Schmeizer
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Ana C. Becker
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Pizzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Cardia
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Franco Servadei
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
37
|
Bettati P, Dormer JD, Shahedi M, Fei B. An Augmented Reality-Assisted Visualization System for Potential Applications in Prostate Biopsy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12034:120342G. [PMID: 36793657 PMCID: PMC9928501 DOI: 10.1117/12.2611590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Ultrasound-guided biopsy is widely used for disease detection and diagnosis. We plan to register preoperative imaging, such as positron emission tomography / computed tomography (PET/CT) and/or magnetic resonance imaging (MRI), with real-time intraoperative ultrasound imaging for improved localization of suspicious lesions that may not be seen on ultrasound but visible on other imaging modalities. Once the image registration is completed, we will combine the images from two or more imaging modalities and use Microsoft HoloLens 2 augmented reality (AR) headset to display three-dimensional (3D) segmented lesions and organs from previously acquired images and real-time ultrasound images. In this work, we are developing a multi-modal, 3D augmented reality system for the potential use in ultrasound-guided prostate biopsy. Preliminary results demonstrate the feasibility of combining images from multiple modalities into an AR-guided system.
Collapse
Affiliation(s)
- Patric Bettati
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Center for Imaging and Surgical Innovation, University of Texas at Dallas, TX
| | - James D. Dormer
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Center for Imaging and Surgical Innovation, University of Texas at Dallas, TX
| | - Maysam Shahedi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Center for Imaging and Surgical Innovation, University of Texas at Dallas, TX
| | - Baowei Fei
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Center for Imaging and Surgical Innovation, University of Texas at Dallas, TX
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
38
|
XR (Extended Reality: Virtual Reality, Augmented Reality, Mixed Reality) Technology in Spine Medicine: Status Quo and Quo Vadis. J Clin Med 2022; 11:jcm11020470. [PMID: 35054164 PMCID: PMC8779726 DOI: 10.3390/jcm11020470] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, with the rapid advancement and consumerization of virtual reality, augmented reality, mixed reality, and extended reality (XR) technology, the use of XR technology in spine medicine has also become increasingly popular. The rising use of XR technology in spine medicine has also been accelerated by the recent wave of digital transformation (i.e., case-specific three-dimensional medical images and holograms, wearable sensors, video cameras, fifth generation, artificial intelligence, and head-mounted displays), and further accelerated by the COVID-19 pandemic and the increase in minimally invasive spine surgery. The COVID-19 pandemic has a negative impact on society, but positive impacts can also be expected, including the continued spread and adoption of telemedicine services (i.e., tele-education, tele-surgery, tele-rehabilitation) that promote digital transformation. The purpose of this narrative review is to describe the accelerators of XR (VR, AR, MR) technology in spine medicine and then to provide a comprehensive review of the use of XR technology in spine medicine, including surgery, consultation, education, and rehabilitation, as well as to identify its limitations and future perspectives (status quo and quo vadis).
Collapse
|
39
|
Hood RJ, Maltby S, Keynes A, Kluge MG, Nalivaiko E, Ryan A, Cox M, Parsons MW, Paul CL, Garcia-Esperon C, Spratt NJ, Levi CR, Walker FR. Development and Pilot Implementation of TACTICS VR: A Virtual Reality-Based Stroke Management Workflow Training Application and Training Framework. Front Neurol 2021; 12:665808. [PMID: 34858305 PMCID: PMC8631764 DOI: 10.3389/fneur.2021.665808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Delays in acute stroke treatment contribute to severe and negative impacts for patients and significant healthcare costs. Variability in clinical care is a contributor to delayed treatment, particularly in rural, regional and remote (RRR) areas. Targeted approaches to improve stroke workflow processes improve outcomes, but numerous challenges exist particularly in RRR settings. Virtual reality (VR) applications can provide immersive and engaging training and overcome some existing training barriers. We recently initiated the TACTICS trial, which is assessing a "package intervention" to support advanced CT imaging and streamlined stroke workflow training. As part of the educational component of the intervention we developed TACTICS VR, a novel VR-based training application to upskill healthcare professionals in optimal stroke workflow processes. In the current manuscript, we describe development of the TACTICS VR platform which includes the VR-based training application, a user-facing website and an automated back-end data analytics portal. TACTICS VR was developed via an extensive and structured scoping and consultation process, to ensure content was evidence-based, represented best-practice and is tailored for the target audience. Further, we report on pilot implementation in 7 Australian hospitals to assess the feasibility of workplace-based VR training. A total of 104 healthcare professionals completed TACTICS VR training. Users indicated a high level of usability, acceptability and utility of TACTICS VR, including aspects of hardware, software design, educational content, training feedback and implementation strategy. Further, users self-reported increased confidence in their ability to make improvements in stroke management after TACTICS VR training (post-training mean ± SD = 4.1 ± 0.6; pre-training = 3.6 ± 0.9; 1 = strongly disagree, 5 = strongly agree). Very few technical issues were identified, supporting the feasibility of this training approach. Thus, we propose that TACTICS VR is a fit-for-purpose, evidence-based training application for stroke workflow optimisation that can be readily deployed on-site in a clinical setting.
Collapse
Affiliation(s)
- Rebecca J Hood
- Centre for Advanced Training Systems, The University of Newcastle, Callaghan, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Steven Maltby
- Centre for Advanced Training Systems, The University of Newcastle, Callaghan, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Angela Keynes
- Centre for Advanced Training Systems, The University of Newcastle, Callaghan, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Murielle G Kluge
- Centre for Advanced Training Systems, The University of Newcastle, Callaghan, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Eugene Nalivaiko
- Centre for Advanced Training Systems, The University of Newcastle, Callaghan, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Annika Ryan
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Medicine and Public Health, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Martine Cox
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Medicine and Public Health, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Mark W Parsons
- Department of Medicine and Neurology, Melbourne Brain Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Christine L Paul
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Medicine and Public Health, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Carlos Garcia-Esperon
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Neil J Spratt
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Christopher R Levi
- School of Medicine and Public Health, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia.,Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, Australia.,The Sydney Partnership for Health, Education, Research and Enterprise (SPHERE), Sydney, NSW, Australia
| | - Frederick R Walker
- Centre for Advanced Training Systems, The University of Newcastle, Callaghan, NSW, Australia.,School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
40
|
Alpaugh K, Ast MP, Haas SB. Immersive technologies for total knee arthroplasty surgical education. Arch Orthop Trauma Surg 2021; 141:2331-2335. [PMID: 34652513 DOI: 10.1007/s00402-021-04174-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022]
Abstract
The need to adapt surgical curricula to meet the demands of an increasingly restrictive training environment is rising. Modern constraints of surgical trainees including work-hour restrictions and concerns surrounding patient safety have created an opportunity to supplement traditional teaching methods with developing immersive technologies including virtual and augmented reality. Virtual reality (VR) and augmented reality (AR) have been preliminarily investigated as it relates to total joint arthroplasty. The purpose of this article is to discuss VR and AR as it applies to modern total knee replacement (TKR) surgical education.
Collapse
Affiliation(s)
- Kyle Alpaugh
- Hospital for Special Surgery, Adult Reconstruction and Joint Replacement, 535 E. 70th Street, New York, NY, 10021, USA.
- Division of Hip and Knee Replacement, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| | - Michael P Ast
- Hospital for Special Surgery, Adult Reconstruction and Joint Replacement, 535 E. 70th Street, New York, NY, 10021, USA
| | - Steven B Haas
- Hospital for Special Surgery, Adult Reconstruction and Joint Replacement, 535 E. 70th Street, New York, NY, 10021, USA
| |
Collapse
|
41
|
Nassar AK, Al-Manaseer F, Knowlton LM, Tuma F. Virtual reality (VR) as a simulation modality for technical skills acquisition. Ann Med Surg (Lond) 2021; 71:102945. [PMID: 34840738 PMCID: PMC8606692 DOI: 10.1016/j.amsu.2021.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Efforts continue to facilitate surgical skills training and provide accessible and safe training opportunities. Educational technology has played an essential role in minimizing the challenges facing traditional surgical training and providing feasible training opportunities. Simulation and virtual reality (VR) offer an important innovative training approach to enhance and supplement both technical and non-technical skills acquisition and overcome the many training challenges facing surgical training programs. To maximize the effectiveness of simulation modalities, an in-depth understanding of the cognitive learning theory is necessary. Knowing the stages and mental processes of skills acquisition when integrated with simulation applications can help trainees achieve maximal learning outcomes. This article aims to review important literature related to VR effectiveness and discuss the leading theories of technical skills acquisition related to VR simulation technologies. VR simulation offers an innovative training approach to supplement both technical and non-technical skills acquisition. VR simulation with haptic feedback is a promising modality for safe, repetitive, and learner-oriented operative training. VR simulation facilitates deliberate practice with built-in auto feedback to address limited staff resources. To maximize the effectiveness of simulation, an in-depth understanding of the cognitive learning theory is necessary.
Collapse
Affiliation(s)
| | | | | | - Faiz Tuma
- Central Michigan University College of Medicine, Saginaw, USA
| |
Collapse
|
42
|
Bordeleau M, Stamenkovic A, Tardif PA, Thomas J. The Use of Virtual Reality in Back Pain Rehabilitation: A Systematic Review and Meta-Analysis. THE JOURNAL OF PAIN 2021; 23:175-195. [PMID: 34425250 DOI: 10.1016/j.jpain.2021.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022]
Abstract
This systematic review aimed to synthesize the existing evidence of extended reality (XR) on pain and motor function outcomes in patients with back pain. Following the Cochrane guidelines, relevant articles of any language were selected by 2 independent reviewers from CINAHL, Cochrane, Embase, Medline and Web of Knowledge databases. Of 2,050 unique citations, 24 articles were included in our review. These studies included a total of 900 back pain patients. Despite broader XR search, all interventions were virtual reality (VR) based and involved physical exercises (n = 17, 71%), hippotherapy (n = 4, 17%), motor imagery (n = 1, 4%), distraction (n = 1, 4%), and cognitive-behavior therapy (n = 1, 4%). Sixteen controlled studies were included in a meta-analysis which suggested that VR provides a significant improvement in terms of back pain intensity over control interventions (Mean Difference: -0.67; 95% CI: -1.12 to -0.23; I2 = 85%). Almost all included studies presented high risk of bias, highlighting the need to improve methodology in the examination of VR interventions. While the specific set of studies showed high heterogeneity across several methodological factors, a tentative conclusion could be drawn that VR was effective improving back pain intensity and tends to have a positive effect on improving other pain outcomes and motion function. PERSPECTIVE: Extended reality technologies have appeared as interesting nonpharmacological options for the treatment of back pain, with the potential to minimise the need for opioid medications. Our systematic review summarised existing applications of extended reality for back pain and proposed a few recommendations to direct further studies in the field.
Collapse
Affiliation(s)
- Martine Bordeleau
- Research Centre on Aging, Centre intégré universitaire de santé et de services sociaux de l'Estrie - Centre hospitalier universitaire de Sherbrooke (CIUSSS de l'Estrie - CHUS), Sherbrooke, Quebec, Canada.
| | - Alexander Stamenkovic
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia
| | - Pier-Alexandre Tardif
- Population Health and Optimal Health Practices Unit, Trauma-Emergency-Critical Care Medicine, CHU de Québec-Université Laval Research Center, Université Laval, Quebec City, Quebec, Canada
| | - James Thomas
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
43
|
Godzik J, Farber SH, Urakov T, Steinberger J, Knipscher LJ, Ehredt RB, Tumialán LM, Uribe JS. "Disruptive Technology" in Spine Surgery and Education: Virtual and Augmented Reality. Oper Neurosurg (Hagerstown) 2021; 21:S85-S93. [PMID: 34128065 DOI: 10.1093/ons/opab114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/04/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Technological advancements are the drivers of modern-day spine care. With the growing pressure to deliver faster and better care, surgical-assist technology is needed to harness computing power and enable the surgeon to improve outcomes. Virtual reality (VR) and augmented reality (AR) represent the pinnacle of emerging technology, not only to deliver higher quality education through simulated care, but also to provide valuable intraoperative information to assist in more efficient and more precise surgeries. OBJECTIVE To describe how the disruptive technologies of VR and AR interface in spine surgery and education. METHODS We review the relevance of VR and AR technologies in spine care, and describe the feasibility and limitations of the technologies. RESULTS We discuss potential future applications, and provide a case study demonstrating the feasibility of a VR program for neurosurgical spine education. CONCLUSION Initial experiences with VR and AR technologies demonstrate their applicability and ease of implementation. However, further prospective studies through multi-institutional and industry-academic partnerships are necessary to solidify the future of VR and AR in spine surgery education and clinical practice.
Collapse
Affiliation(s)
- Jakub Godzik
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - S Harrison Farber
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Timur Urakov
- Department of Neurosurgery, University of Miami, Miami, Florida, USA
| | - Jeremy Steinberger
- Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA
| | - Liza J Knipscher
- Neuroscience Publications, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ryan B Ehredt
- Neuroscience Publications, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Luis M Tumialán
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Juan S Uribe
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
44
|
Iqbal H, Tatti F, Rodriguez Y Baena F. Augmented reality in robotic assisted orthopaedic surgery: A pilot study. J Biomed Inform 2021; 120:103841. [PMID: 34146717 DOI: 10.1016/j.jbi.2021.103841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND The research and development of augmented-reality (AR) technologies in surgical applications has seen an evolution of the traditional user-interfaces (UI) utilised by clinicians when conducting robot-assisted orthopaedic surgeries. The typical UI for such systems relies on surgeons managing 3D medical imaging data in the 2D space of a touchscreen monitor, located away from the operating site. Conversely, AR can provide a composite view overlaying the real surgical scene with co-located virtual holographic representations of medical data, leading to a more immersive and intuitive operator experience. MATERIALS AND METHODS This work explores the integration of AR within an orthopaedic setting by capturing and replicating the UI of an existing surgical robot within an AR head-mounted display worn by the clinician. The resulting mixed-reality workflow enabled users to simultaneously view the operating-site and real-time holographic operating informatics when carrying out a robot-assisted patellofemoral-arthroplasty (PFA). Ten surgeons were recruited to test the impact of the AR system on procedure completion time and operating surface roughness. RESULTS AND DISCUSSION The integration of AR did not appear to require subjects to significantly alter their surgical techniques, which was demonstrated by non-significant changes to the study's clinical metrics, with a statistically insignificant mean increase in operating time (+0.778 s, p = 0.488) and a statistically insignificant change in mean surface roughness (p = 0.274). Additionally, a post-operative survey indicated a positive consensus on the usability of the AR system without incurring noticeable physical distress such as eyestrain or fatigue. CONCLUSIONS Overall, these study results demonstrated a successful integration of AR technologies within the framework of an existing robot-assisted surgical platform with no significant negative effects in two quantitative metrics of surgical performance, and a positive outcome relating to user-centric and ergonomic evaluation criteria.
Collapse
Affiliation(s)
- Hisham Iqbal
- Mechatronics in Medicine Laboratory, Imperial College London, London, UK.
| | - Fabio Tatti
- Mechatronics in Medicine Laboratory, Imperial College London, London, UK
| | | |
Collapse
|
45
|
Berthold DP, Imhoff AB, Mazzocca AD. Virtual Reality in der Gelenkchirurgie. ARTHROSKOPIE 2021. [DOI: 10.1007/s00142-020-00426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|