1
|
Bielska B, Wrońska N, Kołodziejczyk-Czepas J, Mignani S, Majoral JP, Waczulikova I, Lisowska K, Bryszewska M, Miłowska K. Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing. Mol Pharm 2025. [PMID: 39797813 DOI: 10.1021/acs.molpharmaceut.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing (in vitro). Therefore, the degree of toxicity of the tested compounds for human erythrocytes and the human fibroblast cell line (BJ) was determined, and it was found that at low concentrations, the tested compounds are compatible with blood. The influence of phosphorus dendrimers on plasma proteins (human serum albumin (HSA) and fibrinogen) was examined, with a lack of conformational changes in the structure of these proteins, suggesting that their physiological function was not disturbed. The effects on plasma coagulation cascade and fibrinolysis were also assessed, and it was found that phosphorus dendrimers in low concentrations are blood compatible and interfere neither with coagulation processes nor in clot breakdown. Skin injuries, especially chronic wounds, are also susceptible to infection; therefore, the antimicrobial potential of dendrimers was tested, and it was found that these dendrimers had antibacterial activity against both Gram-negative and Gram-positive bacteria. The highest activity of the tested compounds was found for higher applied concentrations.
Collapse
Affiliation(s)
- Beata Bielska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237 Lodz, Poland
| | - Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Joanna Kołodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Centre d'Etudes et de Recherche sur le Medicament de Normandie (CERMN), Université de Caen Normandie, Caen 14032, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination CNRS, 205 Route de Narbonne, Toulouse 31077, France
| | - Iveta Waczulikova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 84248 Bratislava, Slovakia
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| |
Collapse
|
2
|
Cheng S, Ji H, Xu T, Liu X, Xu L, Zhao W, Zhao C. Development of substrate-independent heparin coating to mitigate surface-induced thrombogenesis: efficacy and mechanism. J Mater Chem B 2024; 12:10994-11011. [PMID: 39352074 DOI: 10.1039/d4tb01779j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Heparin coatings are widely applied on blood-contact materials to reduce the use of anticoagulants during blood treatment. However, the previous heparin coatings formed via covalent binding or electrostatic bonding commonly require complex surface premodification, and the blood coagulation pathway was significantly inhibited to potentially increase the bleeding risk. This contradicts the intended purpose and deviates from the anticoagulation mechanism of the heparin coatings. Herein, we present a facile and substrate-independent coating, achieved through the co-deposition of dopamine/chitosan followed by electrostatic interaction between heparin and the immobilized chitosan, which could be prepared within 1 hour. This coating prolonged the plasma re-calcification time (PRT) to over 60 minutes, effectively preventing surface-induced thrombosis. Favorable hemocompatibility was reflected in a hemolysis ratio of less than 2%, low levels of platelet adhesion and activation, and low levels of fibrinogen adhesion. We also systematically elucidate the anticoagulant mechanism of the coating, demonstrating why the coating can prevent thrombogenesis without the bleeding risk. Our work not only offers a promising and readily available heparin coating for blood-contact materials, but more importantly, the mechanism exploration supports the practical feasibility of heparin coating in various applications.
Collapse
Affiliation(s)
- Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Xianda Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Lin Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
3
|
Xu LC, Siedlecki CA. FXII contact activation products have an inhibitory effect on αFXIIa. J Biomed Mater Res A 2024; 112:1213-1223. [PMID: 37737653 PMCID: PMC10957503 DOI: 10.1002/jbm.a.37612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
It is accepted that the contact activation complex of the intrinsic pathway of blood coagulation cascade produces active enzymes that lead to plasma coagulation following biomaterial contact. In this study, FXII was activated through contact with hydrophilic glass beads and hydrophobic octadecyltrichlorosilane-modified glass beads from neat buffer solutions. These FXII contact activation products generated from material interaction were found to suppress the procoagulant activity of exogenous αFXIIa, and this inhibition was dependent on surface wettability and the concentration of exogenous αFXIIa. Higher relative inhibition rates were generally observed at low concentrations of αFXIIa (1-2 μg/mL) while both hydrophobic and hydrophilic materials showed similar inhibition levels (~39%) at high concentrations of αFXIIa (20 μg/mL). The presence of prekallikrein in the activation system increased the amount of FXIIa produced during FXII contact activation, and also suppressed the apparent levels of inhibitors on hydrophilic surfaces, while having no effect on apparent levels of inhibitors on hydrophobic surface. The combination of FXII contact activation products and activator surfaces was found to dramatically increase inhibition of αFXIIa activity compared to the activation products alone, regardless of activator surface wettability and the presence of prekallikrein. This finding of inhibitors in the suite of proteins generated by contact activation provides additional knowledge into the complex series of interactions that occur when plasma comes into contact with material surfaces.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, 17033
| | - Christopher A. Siedlecki
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, 17033
- Department of Bioengineering, Pennsylvania State University College of Medicine, Hershey, PA, 17033
| |
Collapse
|
4
|
Meyer AD, Thorpe CR, Fraker T, Cancio T, Rocha J, Willis RP, Cap AP, Gailani D, Shatzel JJ, Tucker EI, McCarty OJ. Factor XI Inhibition With Heparin Reduces Clot Formation in Simulated Pediatric Extracorporeal Membrane Oxygenation. ASAIO J 2023; 69:1074-1082. [PMID: 37801726 PMCID: PMC10841048 DOI: 10.1097/mat.0000000000002048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) supplies circulatory support and gas exchange to critically ill patients. Despite the use of systemic anticoagulation, blood exposure to ECMO surfaces causes thromboembolism complications. Inhibition of biomaterial surface-mediated activation of coagulation factor XI (FXI) may prevent device-associated thrombosis. Blood was collected from healthy volunteers (n = 13) following the U.S. Army Institute of Surgical Research standard operating procedure for testing in an ex vivo ECMO circuit. A roller-pump circuit circulated either 0.5 U/ml of unfractionated heparin alone or in combination with the anti-FXI immunoglobulin G (IgG) (AB023) for 6 hours or until clot formation caused device failure. Coagulation factor activity, platelet counts, time to thrombin generation, peak thrombin, and endogenous thrombin potential were quantified. AB023 in addition to heparin sustained circuit patency in all tested circuits (5/5) after 6 hours, while 60% of circuits treated with heparin alone occluded (3/8), log-rank p < 0.03. AB023 significantly prolonged the time to clot formation as compared to heparin alone (15.5 vs . 3.3 minutes; p < 0.01) at the 3-hour time point. AB023 plus heparin significantly reduced peak thrombin compared to heparin alone (123 vs . 217 nM; p < 0.01). Inhibition of contact pathway activation of FXI may be an effective adjunct to anticoagulation in extracorporeal life support.
Collapse
Affiliation(s)
- Andrew D. Meyer
- Division of Pediatric Critical Care, Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX
- Organ Support & Automation Technologies, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, TX
| | | | - Tamara Fraker
- The Geneva Foundation, San Antonio Military Medical Center, Ft. Sam Houston, TX
| | | | | | | | - Andrew P. Cap
- Organ Support & Automation Technologies, U.S. Army Institute of Surgical Research (USAISR), Ft. Sam Houston, TX
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Joseph J. Shatzel
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR
| | - Erik I. Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
- Aronora, Inc., Portland, OR
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR
- Aronora, Inc., Portland, OR
| |
Collapse
|
5
|
Santagata D, Donadini MP, Ageno W. Factor XI inhibitors for the prevention of cardiovascular disease: A new therapeutic approach on the horizon? Blood Rev 2023; 62:101119. [PMID: 37580207 DOI: 10.1016/j.blre.2023.101119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Anticoagulant drugs that are currently used to prevent and/or treat thrombosis have some limitations that hinder their ability to meet specific clinical requirements. While these drugs effectively reduce the rates of thrombotic events, they simultaneously increase the risk of bleeding. Moreover, their risk-to-benefit balance is problematic in some patients, such as those with severe chronic kidney disease or those at high bleeding risk. A novel anticoagulation method, FXI inhibition has emerged as a promising alternative. It demonstrates a strong rationale for the prevention and treatment of venous thromboembolism and the potential fulfillment of unmet clinical needs in the cardiovascular field. A number of FXI inhibitors are currently undergoing clinical investigation. The objective of this review is to provide an overview of early results of research on FXI inhibitors in the cardiovascular setting, offering valuable insights into their potential role in shaping the future of anticoagulation.
Collapse
Affiliation(s)
- D Santagata
- Research Center on Thromboembolic Diseases and Antithrombotic Therapies, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - M P Donadini
- Research Center on Thromboembolic Diseases and Antithrombotic Therapies, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - W Ageno
- Research Center on Thromboembolic Diseases and Antithrombotic Therapies, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| |
Collapse
|
6
|
Shamanaev A, Litvak M, Cheng Q, Ponczek M, Dickeson SK, Smith SA, Morrissey JH, Gailani D. A site on factor XII required for productive interactions with polyphosphate. J Thromb Haemost 2023; 21:1567-1579. [PMID: 36863563 PMCID: PMC10192085 DOI: 10.1016/j.jtha.2023.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND During plasma contact activation, factor XII (FXII) binds to surfaces through its heavy chain and undergoes conversion to the protease FXIIa. FXIIa activates prekallikrein and factor XI (FXI). Recently, we showed that the FXII first epidermal growth factor-1 (EGF1) domain is required for normal activity when polyphosphate is used as a surface. OBJECTIVES The aim of this study was to identify amino acids in the FXII EGF1 domain required for polyphosphate-dependent FXII functions. METHODS FXII with alanine substitutions for basic residues in the EGF1 domain were expressed in HEK293 fibroblasts. Wild-type FXII (FXII-WT) and FXII containing the EGF1 domain from the related protein Pro-HGFA (FXII-EGF1) were positive and negative controls. Proteins were tested for their capacity to be activated, and to activate prekallikrein and FXI, with or without polyphosphate, and to replace FXII-WT in plasma clotting assays and a mouse thrombosis model. RESULTS FXII and all FXII variants were activated similarly by kallikrein in the absence of polyphosphate. However, FXII with alanine replacing Lys73, Lys74, and Lys76 (FXII-Ala73,74,76) or Lys76, His78, and Lys81 (FXII-Ala76,78,81) were activated poorly in the presence of polyphosphate. Both have <5% of normal FXII activity in silica-triggered plasma clotting assays and have reduced binding affinity for polyphosphate. Activated FXIIa-Ala73,74,76 displayed profound defects in surface-dependent FXI activation in purified and plasma systems. FXIIa-Ala73,74,76 reconstituted FXII-deficient mice poorly in an arterial thrombosis model. CONCLUSION FXII Lys73, Lys74, Lys76, and Lys81 form a binding site for polyanionic substances such as polyphosphate that is required for surface-dependent FXII function.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA. https://twitter.com/Aleksan18944927
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michal Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - S Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephanie A Smith
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James H Morrissey
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Nopp S, Kraemmer D, Ay C. Factor XI Inhibitors for Prevention and Treatment of Venous Thromboembolism: A Review on the Rationale and Update on Current Evidence. Front Cardiovasc Med 2022; 9:903029. [PMID: 35647061 PMCID: PMC9133368 DOI: 10.3389/fcvm.2022.903029] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Although anticoagulation therapy has evolved from non-specific drugs (i.e., heparins and vitamin K antagonists) to agents that directly target specific coagulation factors (i.e., direct oral anticoagulants, argatroban, fondaparinux), thrombosis remains a leading cause of death worldwide. Direct oral anticoagulants (i.e., factor IIa- and factor Xa-inhibitors) now dominate clinical practice because of their favorable pharmacological profile and ease of use, particularly in venous thromboembolism (VTE) treatment and stroke prevention in atrial fibrillation. However, despite having a better safety profile than vitamin K antagonists, their bleeding risk is not insignificant. This is true for all currently available anticoagulants, and a high bleeding risk is considered a contraindication to anticoagulation. As a result, ongoing research focuses on developing future anticoagulants with an improved safety profile. Several promising approaches to reduce the bleeding risk involve targeting the intrinsic (or contact activation) pathway of coagulation, with the ultimate goal of preventing thrombosis without impairing hemostasis. Based on epidemiological data on hereditary factor deficiencies and preclinical studies factor XI (FXI) emerged as the most promising candidate target. In this review, we highlight unmet clinical needs of anticoagulation therapy, outlay the rationale and evidence for inhibiting FXI, discuss FXI inhibitors in current clinical trials, conduct an exploratory meta-analysis on their efficacy and safety, and provide an outlook on the potential clinical application of these novel anticoagulants.
Collapse
Affiliation(s)
| | | | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Lin L, Li S, Gao N, Wang W, Zhang T, Yang L, Yang X, Luo D, Ji X, Zhao J. The Toxicology of Native Fucosylated Glycosaminoglycans and the Safety of Their Depolymerized Products as Anticoagulants. Mar Drugs 2021; 19:487. [PMID: 34564149 PMCID: PMC8467514 DOI: 10.3390/md19090487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Fucosylated glycosaminoglycan (FG) from sea cucumber is a potent anticoagulant by inhibiting intrinsic coagulation tenase (iXase). However, high-molecular-weight FGs can activate platelets and plasma contact system, and induce hypotension in rats, which limits its application. Herein, we found that FG from T. ananas (TaFG) and FG from H. fuscopunctata (HfFG) at 4.0 mg/kg (i.v.) could cause significant cardiovascular and respiratory dysfunction in rats, even lethality, while their depolymerized products had no obvious side effects. After injection, native FG increased rat plasma kallikrein activity and levels of the vasoactive peptide bradykinin (BK), consistent with their contact activation activity, which was assumed to be the cause of hypotension in rats. However, the hemodynamic effects of native FG cannot be prevented by the BK receptor antagonist. Further study showed that native FG induced in vivo procoagulation, thrombocytopenia, and pulmonary embolism. Additionally, its lethal effect could be prevented by anticoagulant combined with antiplatelet drugs. In summary, the acute toxicity of native FG is mainly ascribed to pulmonary microvessel embolism due to platelet aggregation and contact activation-mediated coagulation, while depolymerized FG is a safe anticoagulant candidate by selectively targeting iXase.
Collapse
Affiliation(s)
- Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| | - Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taocui Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
| | - Xingzhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.L.); (S.L.); (W.W.); (T.Z.); (L.Y.); (X.Y.)
| | - Dan Luo
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650201, China;
| | - Xu Ji
- School of Chemical Science and Technology, Yunnan University, Kunming 650201, China
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China;
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Anticoagulation with vitamin-K antagonists or direct oral anticoagulants is associated with a significant risk of bleeding. There is a major effort underway to develop antithrombotic drugs that have a smaller impact on hemostasis. The plasma contact proteins factor XI (FXI) and factor XII (FXII) have drawn considerable interest because they contribute to thrombosis but have limited roles in hemostasis. Here, we discuss results of preclinical and clinical trials supporting the hypothesis that the contact system contributes to thromboembolic disease. RECENT FINDINGS Numerous compounds targeting FXI or FXII have shown antithrombotic properties in preclinical studies. In phase 2 studies, drugs-targeting FXI or its protease form FXIa compared favorably with standard care for venous thrombosis prophylaxis in patients undergoing knee replacement. While less work has been done with FXII inhibitors, they may be particularly useful for limiting thrombosis in situations where blood comes into contact with artificial surfaces of medical devices. SUMMARY Inhibitors of contact activation, and particularly of FXI, are showing promise for prevention of thromboembolic disease. Larger studies are required to establish their efficacy, and to establish that they are safer than current therapy from a bleeding standpoint.
Collapse
|
10
|
Ponczek MB, Shamanaev A, LaPlace A, Dickeson SK, Srivastava P, Sun MF, Gruber A, Kastrup C, Emsley J, Gailani D. The evolution of factor XI and the kallikrein-kinin system. Blood Adv 2020; 4:6135-6147. [PMID: 33351111 PMCID: PMC7757006 DOI: 10.1182/bloodadvances.2020002456] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Factor XI (FXI) is the zymogen of a plasma protease (FXIa) that contributes to hemostasis by activating factor IX (FIX). In the original cascade model of coagulation, FXI is converted to FXIa by factor XIIa (FXIIa), a component, along with prekallikrein and high-molecular-weight kininogen (HK), of the plasma kallikrein-kinin system (KKS). More recent coagulation models emphasize thrombin as a FXI activator, bypassing the need for FXIIa and the KKS. We took an evolutionary approach to better understand the relationship of FXI to the KKS and thrombin generation. BLAST searches were conducted for FXI, FXII, prekallikrein, and HK using genomes for multiple vertebrate species. The analysis shows the KKS appeared in lobe-finned fish, the ancestors of all land vertebrates. FXI arose later from a duplication of the prekallikrein gene early in mammalian evolution. Features of FXI that facilitate efficient FIX activation are present in all living mammals, including primitive egg-laying monotremes, and may represent enhancement of FIX-activating activity inherent in prekallikrein. FXI activation by thrombin is a more recent acquisition, appearing in placental mammals. These findings suggest FXI activation by FXIIa may be more important to hemostasis in primitive mammals than in placental mammals. FXI activation by thrombin places FXI partially under control of the vitamin K-dependent coagulation mechanism, reducing the importance of the KKS in blood coagulation. This would explain why humans with FXI deficiency have a bleeding abnormality, whereas those lacking components of the KKS do not.
Collapse
Affiliation(s)
- Michał B Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Alec LaPlace
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - S Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Priyanka Srivastava
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Andras Gruber
- Department of Biomedical Engineering and
- Division of Hematology and Medical Oncology, School of Medicine, Oregon Health and Sciences University, Portland, OR
- Aronora, Inc., Portland, OR
| | - Christian Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; and
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
11
|
Lin L, Yang L, Chen J, Zhou L, Li S, Gao N, Zhao J. High-molecular-weight fucosylated glycosaminoglycan induces human platelet aggregation depending on αIIbβ3 and platelet secretion. Platelets 2020; 32:975-983. [PMID: 32970503 DOI: 10.1080/09537104.2020.1820976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chemical Science and Technology, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan Province 650091, China
| | - Sujuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
12
|
From multi-target anticoagulants to DOACs, and intrinsic coagulation factor inhibitors. Blood Rev 2020; 39:100615. [DOI: 10.1016/j.blre.2019.100615] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023]
|
13
|
Dai Y, Dai S, Xie X, Ning J. Immobilizing argatroban and mPEG-NH2 on a polyethersulfone membrane surface to prepare an effective nonthrombogenic biointerface. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:608-628. [PMID: 30907698 DOI: 10.1080/09205063.2019.1595891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yanling Dai
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Siyuan Dai
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaohui Xie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianping Ning
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain. Blood 2018; 133:1152-1163. [PMID: 30591525 DOI: 10.1182/blood-2018-06-860270] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
The plasma proteins factor XII (FXII) and prekallikrein (PK) undergo reciprocal activation to the proteases FXIIa and kallikrein by a process that is enhanced by surfaces (contact activation) and regulated by the serpin C1 inhibitor. Kallikrein cleaves high-molecular-weight kininogen (HK), releasing the vasoactive peptide bradykinin. Patients with hereditary angioedema (HAE) experience episodes of soft tissue swelling as a consequence of unregulated kallikrein activity or increased prekallikrein activation. Although most HAE cases are caused by reduced plasma C1-inhibitor activity, HAE has been linked to lysine/arginine substitutions for Thr309 in FXII (FXII-Lys/Arg309). Here, we show that FXII-Lys/Arg309 is susceptible to cleavage after residue 309 by coagulation proteases (thrombin and FXIa), resulting in generation of a truncated form of FXII (δFXII). The catalytic efficiency of δFXII activation by kallikrein is 15-fold greater than for full-length FXII. The enhanced rate of reciprocal activation of PK and δFXII in human plasma and in mice appears to overwhelm the normal inhibitory function of C1 inhibitor, leading to increased HK cleavage. In mice given human FXII-Lys/Arg309, induction of thrombin generation by infusion of tissue factor results in enhanced HK cleavage as a consequence of δFXII formation. The effects of δFXII in vitro and in vivo are reproduced when wild-type FXII is bound by an antibody to the FXII heavy chain (HC; 15H8). The results contribute to our understanding of the predisposition of patients carrying FXII-Lys/Arg309 to angioedema after trauma, and reveal a regulatory function for the FXII HC that normally limits PK activation in plasma.
Collapse
|
15
|
Lin L, Xu L, Xiao C, Zhou L, Gao N, Wu M, Zhao J. Plasma contact activation by a fucosylated chondroitin sulfate and its structure–activity relationship study. Glycobiology 2018; 28:754-764. [PMID: 30016441 DOI: 10.1093/glycob/cwy067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/13/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Li Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Chuang Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Na Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
The blood fluke Schistosoma mansoni cleaves the coagulation protein high molecular weight kininogen (HK) but does not generate the vasodilator bradykinin. Parasit Vectors 2018. [PMID: 29540224 PMCID: PMC5853081 DOI: 10.1186/s13071-018-2704-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Schistosomes are blood dwelling parasitic worms that cause the debilitating disease schistosomiasis. Here we examined the influence of the parasites on their external environment by monitoring the impact of adult Schistosoma mansoni worms on the murine plasma proteome in vitro and, in particular, on how the worms affect the blood coagulation protein high molecular weight kininogen (HK). Methods Following the incubation of adult schistosomes in murine plasma, two-dimensional differential in-gel electrophoresis (2D-DIGE) was conducted to look for changes in the plasma proteome compared with control plasma. A major change to the blood protein kininogen (HK) was observed, and the interaction of Schistosoma mansoni parasite with this protein alone was then investigated by western blot analysis and activity assays. Finally, the generation of bradykinin from HK was monitored using a bradykinin detection kit. Results The most striking change to the plasma proteome concerned HK; while the full-length protein was more abundant in control plasma, carboxyl-terminal truncated forms were more abundant in plasma that contained schistosomes. Incubating parasites in buffer with pure HK followed by Western blot analysis confirmed that human HK is degraded by the worms. The resulting digestion pattern differed from that brought about by kallikrein, a host serine protease that normally acts on HK to release the vasodilator bradykinin. We found that live schistosomes, while digesting HK, do not generate bradykinin nor do they cleave a chromogenic kallikrein substrate. Since the cleavage of HK by the worms is not impeded by the serine protease inhibitor PMSF but is blocked by the cysteine protease inhibitor E64c, we hypothesize that schistosome tegumental cysteine proteases are responsible for HK cleavage. Conclusions Since proteomic and biochemical studies have revealed that the schistosome tegument contains two cysteine proteases belonging to the calpain family (SmCalp1 and SmCalp2) we conclude that these are likely responsible for the HK cleavage reported here. Schistosome cleavage of HK should help impede blood clotting and inflammation around the worms in vivo and so promote their ease of movement within the vasculature of their hosts. Electronic supplementary material The online version of this article (10.1186/s13071-018-2704-0) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Yudin NS, Larkin DM, Ignatieva EV. A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments. BMC Genet 2017; 18:111. [PMID: 29297313 PMCID: PMC5751660 DOI: 10.1186/s12863-017-0580-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals. Results After a search for publications containing keywords: “whole genome”, “transcriptome or exome sequencing data”, and “genome-wide genotyping array data” authors looked for information related to genetic signatures ascribable to positive selection in Arctic or Antarctic mammalian species. Publications related to Human, Arctic fox, Yakut horse, Mammoth, Polar bear, and Minke whale were chosen. The compendium of genes that potentially underwent positive selection in >1 of these six species consisted of 416 genes. Twelve of them showed traces of positive selection in three species. Gene ontology term enrichment analysis of 416 genes from the compendium has revealed 13 terms relevant to the scope of this study. We found that enriched terms were relevant to three major groups: terms associated with collagen proteins and the extracellular matrix; terms associated with the anatomy and physiology of cilium; terms associated with docking. We further revealed that genes from compendium were over-represented in the lists of genes expressed in the lung and liver. Conclusions A compendium combining mammalian genes involved in adaptation to cold environment was designed, based on the intersection of positively selected genes from six Arctic and Antarctic species. The compendium contained 416 genes that have been positively selected in at least two species. However, we did not reveal any positively selected genes that would be related to cold adaptation in all species from our list. But, our work points to several strong candidate genes involved in mechanisms and biochemical pathways related to cold adaptation response in different species. Electronic supplementary material The online version of this article (10.1186/s12863-017-0580-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikolay S Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia. .,Novosibirsk State University, 630090, Novosibirsk, Russia.
| | - Denis M Larkin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.,The Royal Veterinary College, University of London, London, NW1 0TU, UK
| | - Elena V Ignatieva
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.,Novosibirsk State University, 630090, Novosibirsk, Russia
| |
Collapse
|
18
|
Padera RF. A perfect storm: Understanding hemostasis, coagulation and inflammation with artificial material. PROGRESS IN PEDIATRIC CARDIOLOGY 2017. [DOI: 10.1016/j.ppedcard.2017.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Tillman B, Gailani D. Inhibition of Factors XI and XII for Prevention of Thrombosis Induced by Artificial Surfaces. Semin Thromb Hemost 2017; 44:60-69. [PMID: 28898903 DOI: 10.1055/s-0037-1603937] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure of blood to a variety of artificial surface induces contact activation, a process that contributes to the host innate response to foreign substances. On the foreign surface, the contact factors, factor XII (FXII), and plasma prekallikrein undergo reciprocal conversion to their fully active protease forms (FXIIa and α-kallikrein, respectively) by a process supported by the cofactor high-molecular-weight kininogen. Contact activation can trigger blood coagulation by conversion of factor XI (FXI) to the protease FXIa. There is interest in developing therapeutic inhibitors to FXIa and FXIIa because these activated factors can contribute to thrombosis in certain situations. Drugs targeting these proteases may be particularly effective in thrombosis triggered by exposure of blood to the surfaces of implantable medical devices. Here, we review clinical data supporting roles for FXII and FXI in thrombosis induced by medical devices, and preclinical data suggesting that therapeutic targeting of these proteins may limit surface-induced thrombosis.
Collapse
Affiliation(s)
- Benjamin Tillman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Gailani
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
20
|
Guilarte M, Sala-Cunill A, Luengo O, Labrador-Horrillo M, Cardona V. The Mast Cell, Contact, and Coagulation System Connection in Anaphylaxis. Front Immunol 2017; 8:846. [PMID: 28798744 PMCID: PMC5526842 DOI: 10.3389/fimmu.2017.00846] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Anaphylaxis is the most severe form of allergic reaction, resulting from the effect of mediators and chemotactic substances released by activated cells. Mast cells and basophils are considered key players in IgE-mediated human anaphylaxis. Beyond IgE-mediated activation of mast cells/basophils, further mechanisms are involved in the occurrence of anaphylaxis. New insights into the potential relevance of pathways other than mast cell and basophil degranulation have been unraveled, such as the activation of the contact and the coagulation systems. Mast cell heparin released upon activation provides negatively charged surfaces for factor XII (FXII) binding and auto-activation. Activated FXII, the initiating serine protease in both the contact and the intrinsic coagulation system, activates factor XI and prekallikrein, respectively. FXII-mediated bradykinin (BK) formation has been proven in the human plasma of anaphylactic patients as well as in experimental models of anaphylaxis. Moreover, the severity of anaphylaxis is correlated with the increase in plasma heparin, BK formation and the intensity of contact system activation. FXII also activates plasminogen in the fibrinolysis system. Mast cell tryptase has been shown to participate in fibrinolysis through plasmin activation and by facilitating the degradation of fibrinogen. Some usual clinical manifestations in anaphylaxis, such as angioedema or hypotension, or other less common, such as metrorrhagia, may be explained by the direct effect of the activation of the coagulation and contact system driven by mast cell mediators.
Collapse
Affiliation(s)
- Mar Guilarte
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Anna Sala-Cunill
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Olga Luengo
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Moisés Labrador-Horrillo
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Victoria Cardona
- Allergy Section, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,VHIR Institut de Recerca Vall d'Hebron, Barcelona, Spain
| |
Collapse
|