1
|
Cai J, Liu T, Huang Y, Chen H, Yu M, Zhang D, Huang Z. A novel and apparent de novo ALAS2 missense variant associated with congenital sideroblastic anemia. Front Pediatr 2024; 12:1411676. [PMID: 39281190 PMCID: PMC11394181 DOI: 10.3389/fped.2024.1411676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Background Congenital sideroblastic anemia (CSA) constitutes a group of inherited erythropoietic disorders. Some affect mainly or exclusively erythroid cells; other syndromic forms occur within multisystem disorders with extensive nonhematopoietic manifestations. In this study, we have performed clinical and molecular investigations on a 10-year-old boy suspected of having CSA. Methods Routine blood examination, peripheral blood and bone marrow smears, and serum iron tests were performed. Gene mutation analysis was conducted using whole-exome sequencing (WES) and the results were confirmed using Sanger sequencing. Furthermore, the functional impact of the identified variant was assessed/predicted with bioinformatics methods. Results The patient presented with severe microcytic anemia (hemoglobin, 50 g/L), iron overload and ring sideroblasts in the bone marrow. Moreover, WES revealed the presence of a hemizygous missense variant in ALAS2 (c.1102C > T), changing an encoded arginine to tryptophan (p. Arg368Trp). This variant was verified via Sanger sequencing, and neither of the parents carried this variant, which was suspected to be a de novo variant. Using in silico analysis with four different software programs, the variant was predicted to be harmful. PyMol and LigPlot software showed that the p. Arg368Trp variant may result in changes in hydrogen bonds. The patient was treated with vitamin B6 combined with deferasirox. After 6 months, the hemoglobin increased to 99 g/L and the serum ferritin decreased significantly. Conclusion We report a novel pathogenic variant in the ALAS2 gene (c.1102C > T:p. Arg368Trp), which caused CSA in a 10-year-old boy. Mutational analysis is important in patients with CSA when family history data are unavailable. Anemia due to the ALAS2 Arg368Trp variant responds to pyridoxine supplements.
Collapse
Affiliation(s)
- Jianling Cai
- Department of Pediatrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tianming Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuxuan Huang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Hongxing Chen
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Meidie Yu
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Dongqing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhanqin Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
2
|
Ma Y, Guo S. High expression of NADH Ubiquinone Oxidoreductase Subunit B11 induces catheter-associated venous thrombosis on continuous blood purification. Medicine (Baltimore) 2023; 102:e36520. [PMID: 38050233 PMCID: PMC10986910 DOI: 10.1097/md.0000000000036520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
Venous thromboembolism (VTE) is a common vascular disease of venous return disorders, including deep venous thrombosis and pulmonary embolism (PE), with high morbidity and high mortality. However, the relationship between oxidative phosphorylation and NDUFB11 and venous thromboembolism is still unclear. The venous thromboembolism datasets GSE48000 and GSE19151 were downloaded, and the differentially expressed Genes (DEGs) were screened. The protein-protein interaction (PPI) network was constructed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for functional enrichment analysis. The comparative toxicogenomics database (CTD) was used to identify the diseases most associated with the core genes. TargetScan was used to screen miRNA regulating central DEGs. Western blotting (WB) experiment and real-time quantitative PCR (RT-qPCR) experiment were performed. A total of 500 DEGs were identified. GO analysis showed that the DEGs were mainly enriched in ATP synthesis coupled electron transport, respiratory electron transport chain, cytoplasm, enzyme binding, nonalcoholic fatty liver disease, oxidative phosphorylation, and Alzheimer disease. Enrichment items were similar to GO and KEGG enrichment items of DEGs. The result of CTD showed that 12 genes (RPS24, FAU, RPLP0, RPS15A, RPS29, RPL9, RPL31, RPL27, NDUFB11, RPL34, COX7B, RPS27L) were associated with chemical and drug-induced liver injury, inflammation, kidney disease, and congenital pure red cell aplasia. WB and RT-qPCR results showed that the expression levels of 12 genes in venous thromboembolism were higher than normal whole blood tissue samples. NDUFB11 is highly expressed in catheter-related venous thromboembolism during continuous blood purification, which may lead to the formation of venous thrombosis through oxidative phosphorylation pathway.
Collapse
Affiliation(s)
- Yanhong Ma
- Department of ICU, The Fourth Hospital of Hebei Medical University. Shijiazhuang, China
| | - Suzhi Guo
- Department of ICU, The Fourth Hospital of Hebei Medical University. Shijiazhuang, China
| |
Collapse
|
3
|
Ding Y, Yang K, Liu X, Xiao J, Li W, Zhong H. A Novel ALAS2 Mutation Causes Congenital Sideroblastic Anemia. Mediterr J Hematol Infect Dis 2023; 15:e2023062. [PMID: 38028395 PMCID: PMC10631716 DOI: 10.4084/mjhid.2023.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Yuxi Ding
- Department of Hematology, Zigong First People’s Hospital, Zigong, China
| | - Kun Yang
- Department of Hematology, Zigong First People’s Hospital, Zigong, China
| | - Xiaodong Liu
- Department of Hematology, Zigong First People’s Hospital, Zigong, China
| | - Jian Xiao
- Department of Hematology, Zigong First People’s Hospital, Zigong, China
| | - Wanting Li
- Department of Hematology, Zigong First People’s Hospital, Zigong, China
| | - Huixiu Zhong
- Department of Laboratory Medicine, Zigong First People’s Hospital, Zigong, China
| |
Collapse
|
4
|
Ren H, Zhou P, Shen X. Abnormal Phenylalanine Metabolism of Procapra przewalskii in Chronic Selenosis in Selenium-Enriched Habitats. Metabolites 2023; 13:982. [PMID: 37755262 PMCID: PMC10537570 DOI: 10.3390/metabo13090982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Selenium (Se)-enriched habitats have led to chronic selenosis, seriously affecting the health and survival of Procapra przewalskii (P. przewalskii). Our targets were to explore the molecular mechanisms of chronic selenosis and to look for a new way to protect endangered species. The mineral contents of soils, grass, blood, and muscle were analyzed. The biochemical indices, antioxidant capability, and immune function were also investigated. The analyses of proteomics and metabolomics were also carried out. The results showed that the Se contents in the muscle and blood of P. przewalskii, and the soil and grass in the Se-enriched habitats were significantly higher than those in healthy pastures. The P. przewalskii in the Se-enriched habitats showed symptoms of anemia, decreased antioxidant capability, and low immune function. A total of 44 differential proteins and 36 differential metabolites were screened by analyzing their proteomics and metabolomics. These differential proteins and metabolites were involved in glycolysis pathway, amino acid biosynthesis, carbon metabolism, phenylalanine metabolism, and energy metabolism. In particular, phenylalanine metabolism was the common pathway of proteomics and metabolomics, which was an important finding in studying the mechanism of chronic selenosis in animals. This study will help us to further understand the mechanism of chronic selenosis in P. przewalskii, and it provides a scientific basis for the protection of endangered species in Se-enriched habitats.
Collapse
Affiliation(s)
- Hong Ren
- North Sichuan Medical College, Nanchong 637100, China;
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Xiaoyun Shen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang 550004, China
| |
Collapse
|
5
|
Iron Metabolism in the Disorders of Heme Biosynthesis. Metabolites 2022; 12:metabo12090819. [PMID: 36144223 PMCID: PMC9505951 DOI: 10.3390/metabo12090819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
Given its remarkable property to easily switch between different oxidative states, iron is essential in countless cellular functions which involve redox reactions. At the same time, uncontrolled interactions between iron and its surrounding milieu may be damaging to cells and tissues. Heme—the iron-chelated form of protoporphyrin IX—is a macrocyclic tetrapyrrole and a coordination complex for diatomic gases, accurately engineered by evolution to exploit the catalytic, oxygen-binding, and oxidoreductive properties of iron while minimizing its damaging effects on tissues. The majority of the body production of heme is ultimately incorporated into hemoglobin within mature erythrocytes; thus, regulation of heme biosynthesis by iron is central in erythropoiesis. Additionally, heme is a cofactor in several metabolic pathways, which can be modulated by iron-dependent signals as well. Impairment in some steps of the pathway of heme biosynthesis is the main pathogenetic mechanism of two groups of diseases collectively known as porphyrias and congenital sideroblastic anemias. In porphyrias, according to the specific enzyme involved, heme precursors accumulate up to the enzyme stop in disease-specific patterns and organs. Therefore, different porphyrias manifest themselves under strikingly different clinical pictures. In congenital sideroblastic anemias, instead, an altered utilization of mitochondrial iron by erythroid precursors leads to mitochondrial iron overload and an accumulation of ring sideroblasts in the bone marrow. In line with the complexity of the processes involved, the role of iron in these conditions is then multifarious. This review aims to summarise the most important lines of evidence concerning the interplay between iron and heme metabolism, as well as the clinical and experimental aspects of the role of iron in inherited conditions of altered heme biosynthesis.
Collapse
|
6
|
Vobugari N, Chaturvedi M, Schlam-Camhi IM, Smith HP. Sideroblastic anaemia in a patient with sickle cell disease. BMJ Case Rep 2022; 15:15/2/e246623. [PMID: 35135795 PMCID: PMC8830102 DOI: 10.1136/bcr-2021-246623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sideroblastic anaemia is a rare condition. We report a unique case of concomitant sideroblastic anaemia in a patient with sickle cell disease with long-standing blood transfusion history. Due to a low prevalence of sideroblastic anaemia, the diagnosis of sideroblastic anaemia is often difficult, especially when coexisting with common types of anaemia, including sickle cell disease. This case highlights the detrimental effects of anchoring bias. Rare causes of refractory anaemia should be considered in patients with haemoglobin disorders as the therapeutic approaches for these conditions are different. High suspicion on the part of the clinician and low threshold for workup of anaemia often aids in the diagnosis of coexisting conditions such as sideroblastic anaemia. Early diagnosis and treatment of sideroblastic anaemia improves patient outcomes and prevents long-term complications.
Collapse
Affiliation(s)
- Nikitha Vobugari
- Internal Medicine, MedStar Washington Hospital Center, Washington, DC, USA
| | - Mansi Chaturvedi
- Internal Medicine, MedStar Washington Hospital Center, Washington, DC, USA
| | - Ilana Miriam Schlam-Camhi
- Hematology/Oncology, Tufts Medical Center, Boston, Massachusetts, USA
- Hematology/Oncology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Hedy Patricia Smith
- Hematology/Oncology, MedStar Washington Hospital Center, Washington, DC, USA
| |
Collapse
|
7
|
Han X, Wen Q, Liu X, Wan K, Yan HJ, Zhang C, Zhang X. [New mutation of congenital sideroblastic anemia: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:603-605. [PMID: 34455750 PMCID: PMC8408491 DOI: 10.3760/cma.j.issn.0253-2727.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 11/05/2022]
Affiliation(s)
- X Han
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - Q Wen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - X Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - K Wan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - H J Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - C Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| | - X Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, PLA Blood Disease Center, Chongqing Key Discipline of Medicine, Chongqing 400037, China
| |
Collapse
|
8
|
Mathangasinghe Y, Fauvet B, Jane SM, Goloubinoff P, Nillegoda NB. The Hsp70 chaperone system: distinct roles in erythrocyte formation and maintenance. Haematologica 2021; 106:1519-1534. [PMID: 33832207 PMCID: PMC8168490 DOI: 10.3324/haematol.2019.233056] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/14/2023] Open
Abstract
Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesis rates could generate misfolded/aggregated proteins and trigger proteotoxic stresses during erythropoiesis. Such cytotoxic conditions could prevent proper cell differentiation resulting in premature apoptosis of erythroblasts (ineffective erythropoiesis). The heat shock protein 70 (Hsp70) molecular chaperone system supports a plethora of functions that help maintain cellular protein homeostasis (proteostasis) and promote red blood cell differentiation and survival. Recent findings show that abnormalities in the expression, localization and function of the members of this chaperone system are linked to ineffective erythropoiesis in multiple hematological diseases in humans. In this review, we present latest advances in our understanding of the distinct functions of this chaperone system in differentiating erythroblasts and terminally differentiated mature erythrocytes. We present new insights into the protein repair-only function(s) of the Hsp70 system, perhaps to minimize protein degradation in mature erythrocytes to warrant their optimal function and survival in the vasculature under healthy conditions. The work also discusses the modulatory roles of this chaperone system in a wide range of hematological diseases and the therapeutic gain of targeting Hsp70.
Collapse
Affiliation(s)
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Lausanne University, Lausanne
| | - Stephen M Jane
- Central Clinical School, Monash University, Prahran, Victoria, Australia; Department of Hematology, Alfred Hospital, Monash University, Prahran, Victoria
| | | | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria.
| |
Collapse
|
9
|
Hu Y, Stilp AM, McHugh CP, Rao S, Jain D, Zheng X, Lane J, Méric de Bellefon S, Raffield LM, Chen MH, Yanek LR, Wheeler M, Yao Y, Ren C, Broome J, Moon JY, de Vries PS, Hobbs BD, Sun Q, Surendran P, Brody JA, Blackwell TW, Choquet H, Ryan K, Duggirala R, Heard-Costa N, Wang Z, Chami N, Preuss MH, Min N, Ekunwe L, Lange LA, Cushman M, Faraday N, Curran JE, Almasy L, Kundu K, Smith AV, Gabriel S, Rotter JI, Fornage M, Lloyd-Jones DM, Vasan RS, Smith NL, North KE, Boerwinkle E, Becker LC, Lewis JP, Abecasis GR, Hou L, O'Connell JR, Morrison AC, Beaty TH, Kaplan R, Correa A, Blangero J, Jorgenson E, Psaty BM, Kooperberg C, Walton RT, Kleinstiver BP, Tang H, Loos RJF, Soranzo N, Butterworth AS, Nickerson D, Rich SS, Mitchell BD, Johnson AD, Auer PL, Li Y, Mathias RA, Lettre G, Pankratz N, Laurie CC, Laurie CA, Bauer DE, Conomos MP, Reiner AP. Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program. Am J Hum Genet 2021; 108:874-893. [PMID: 33887194 DOI: 10.1016/j.ajhg.2021.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.
Collapse
Affiliation(s)
- Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Caitlin P McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Shuquan Rao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Yao Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Nancy Heard-Costa
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia and Department of Genetics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kousik Kundu
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Albert V Smith
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | | | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA 98105, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Lifang Hou
- Northwestern University, Chicago, IL 60208, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Terri H Beaty
- School of Public Health, John Hopkins University, Baltimore, MD 21205, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Russell T Walton
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Soranzo
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Debbie Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, QC H1T 1C8, Canada
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
10
|
Huang J, Ge M, Shao Y, Wang M, Jin P, Huo J, Li X, Zhang J, Nie N, Zheng Y. A hemizygous p.R204Q mutation in the ALAS2 gene underlies X-linked sideroblastic anemia in an adult Chinese Han man. BMC Med Genomics 2021; 14:107. [PMID: 33858445 PMCID: PMC8048311 DOI: 10.1186/s12920-021-00950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/23/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND X-linked sideroblastic anemia (XLSA) is the most common form of congenital sideroblastic anemia (CSA), and is associated with the mutations in the 5-aminolevulinate synthase 2 (ALAS2). The genetic basis of more than 40% of CSA cases remains unknown. METHODS A two-generation Chinese family with XLSA was studied by next-generation sequencing to identify the underlying CSA-related mutations. RESULTS In the study, we identified a missense ALAS2 R204Q mutation in a hemizygous Chinese Han man and in his heterozygous daughter. The male proband presented clinical manifestations at 38 years old and had a good response to pyridoxine. CONCLUSIONS XLSA, as a hereditary disease, can present clinical manifestations later in lives, for adult male patients with ringed sideroblasts and hypochromic anemia, it should be evaluated with gene analyses to exclude CSA.
Collapse
Affiliation(s)
- Jinbo Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China.
| | - Yingqi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Peng Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Jiali Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Xingxin Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Neng Nie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, People's Republic of China
| |
Collapse
|
11
|
Andolfo I, Martone S, Ribersani M, Bianchi S, Manna F, Genesio R, Gambale A, Pignataro P, Testi AM, Iolascon A, Russo R. Apparent recessive inheritance of sideroblastic anemia type 2 due to uniparental isodisomy at the SLC25A38 locus. Haematologica 2020; 105:2883-2886. [PMID: 33256393 PMCID: PMC7716369 DOI: 10.3324/haematol.2020.258533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II’, Naples
- CEINGE Biotecnologie Avanzate, Naples
| | - Stefania Martone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II’, Naples
- CEINGE Biotecnologie Avanzate, Naples
| | - Michela Ribersani
- Department of Translational and Precision Medicine, Sapienza University, Rome
| | - Simona Bianchi
- Department of Translational and Precision Medicine, Sapienza University, Rome
| | | | - Rita Genesio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II’, Naples
| | - Antonella Gambale
- CEINGE Biotecnologie Avanzate, Naples
- Dipartimento assistenziale integrato di Medicina di Laboratorio, UOC Genetica Medica, Azienda Ospedaliera ‘Federico II’, Naples, Italy
| | - Piero Pignataro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II’, Naples
| | - Anna Maria Testi
- Department of Translational and Precision Medicine, Sapienza University, Rome
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II’, Naples
- CEINGE Biotecnologie Avanzate, Naples
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli ‘Federico II’, Naples
- CEINGE Biotecnologie Avanzate, Naples
| |
Collapse
|
12
|
Abu-Zeinah G, DeSancho MT. Understanding Sideroblastic Anemia: An Overview of Genetics, Epidemiology, Pathophysiology and Current Therapeutic Options. J Blood Med 2020; 11:305-318. [PMID: 33061728 PMCID: PMC7524202 DOI: 10.2147/jbm.s232644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023] Open
Abstract
Sideroblastic anemia (SA) consists of a group of inherited and acquired anemias of ineffective erythropoiesis characterized by the accumulation of ring sideroblasts in the bone marrow due to disrupted heme biosynthesis. Congenital sideroblastic anemia (CSA) is rare and has three modes of inheritance: X-linked (XLSA), autosomal recessive (ARCSA), and maternal. Acquired SA is more common and can be a result of myelodysplastic syndromes (MDS) or other, generally reversible causes. The diagnostic approach to SA includes a work-up for reversible causes and genetic testing for CSA based on clinical suspicion, family history and genetic pedigree. The treatment of SA depends on the underlying etiology but remains primarily supportive with vitamin B6 supplementation for select cases of XLSA, thiamine for thiamine-responsive megaloblastic anemia subtype, red blood cell transfusions for symptomatic patients and iron chelation therapy for iron overload. The management of anemia in MDS subtypes with ring sideroblasts remains unique and includes the recently approved erythroid maturation agent, Luspatercept. Although there is currently no curative therapy for CSA, anecdotal reports of hematopoietic stem cell transplant demonstrate remissions in selective, non-syndromic cases. This review summarizes the genetics, pathophysiology, diagnosis and treatment of SA for general practitioners and clinical hematologists.
Collapse
Affiliation(s)
- Ghaith Abu-Zeinah
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA
| | - Maria T DeSancho
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
13
|
Ravindra N, Athiyarath R, S E, S S, Kulkarni U, N A F, Korula A, Shaji RV, George B, Edison ES. Novel frameshift variant (c.409dupG) in SLC25A38 is a common cause of congenital sideroblastic anaemia in the Indian subcontinent. J Clin Pathol 2020; 74:157-162. [PMID: 32605921 DOI: 10.1136/jclinpath-2020-206647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/19/2023]
Abstract
AIMS Congenital sideroblastic anaemias (CSAs) are a group of rare disorders with the presence of ring sideroblasts in the bone marrow. Pathogenic variants are inherited in an autosomal recessive/X-linked fashion. The study was aimed at characterising the spectrum of mutations in SLC25A38 and ALAS2 genes in sideroblastic anaemia patients, exploring the genotype-phenotype correlation and identifying the haplotype associated with any recurrent mutation. PATIENTS AND METHODS Twenty probable CSA patients were retrospectively analysed for genetic variants in ALAS2 and SLC25A38 genes by direct bidirectional sequencing. Real-time PCR was used to quantify gene expression in a case with promoter region variant in ALAS2. Three single nucleotide polymorphisms were used to establish the haplotype associated with a recurrent variant in the SLC25A38 gene. RESULTS Six patients had causative variants in ALAS2 (30%) and 11 had variants in SLC25A38 (55%). The ALAS2 mutated cases presented at a significantly later age than the SLC25A38 cases. A frameshift variant in SLC25A38 (c.409dupG) was identified in six unrelated patients and was a common variant in our population exhibiting 'founder effect'. CONCLUSION This is the largest series of sideroblastic anaemia cases with molecular characterisation from the Indian subcontinent.
Collapse
Affiliation(s)
- Niveditha Ravindra
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rekha Athiyarath
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Eswari S
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sumithra S
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Uday Kulkarni
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Fouzia N A
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ramachandran V Shaji
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
14
|
Du J, Zhou Y, Li Y, Xia J, Chen Y, Chen S, Wang X, Sun W, Wang T, Ren X, Wang X, An Y, Lu K, Hu W, Huang S, Li J, Tong X, Wang Y. Identification of Frataxin as a regulator of ferroptosis. Redox Biol 2020; 32:101483. [PMID: 32169822 PMCID: PMC7068686 DOI: 10.1016/j.redox.2020.101483] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/15/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is a newly discovered form of non-apoptotic regulated cell death and is characterized by iron-dependent and lipid peroxidation. Due to the enhanced dependence on iron in cancer cells, induction of ferroptosis is becoming a promising therapeutic strategy. However, the precise underlying molecular mechanism and regulation process of ferroptosis remains largely unknown. In the present study, we demonstrate that the protein Frataxin (FXN) is a key regulator of ferroptosis by modulating iron homeostasis and mitochondrial function. Suppression of FXN expression specifically repressed the proliferation, destroyed mitochondrial morphology, impeded Fe-S cluster assembly and activated iron starvation stress. Moreover, suppression of FXN expression significantly enhanced erastin-induced cell death through accelerating free iron accumulation, lipid peroxidation and resulted in dramatic mitochondria morphological damage including enhanced fragmentation and vanished cristae. In addition, this type of cell death was confirmed to be ferroptosis, since it could be pharmacologically restored by ferroptotic inhibitor Fer-1 or GSH, but not by inhibitors of apoptosis, necrosis. Vice versa, enforced expression of FXN blocked iron starvation response and erastin-induced ferroptosis. More importantly, pharmacological or genetic blocking the signal of iron starvation could completely restore the resistance to ferroptosis in FXN knockdown cells and xenograft graft in vivo. This paper suggests that FXN is a novel ferroptosis modulator, as well as a potential provided target to improve the antitumor activity based on ferroptosis.
Collapse
Affiliation(s)
- Jing Du
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi Zhou
- The Second Clinical Medical School of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Department of Wangjiangshan, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanchun Li
- The Second Clinical Medical School of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Jun Xia
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yongjian Chen
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Sufeng Chen
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xin Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Weidong Sun
- Department of Hematology, Shaoxing Central Hospital, Shaoxing, Zhejiang, 312030, China; Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Tongtong Wang
- Department of Wangjiangshan, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xueying Ren
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xu Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yihan An
- Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Kang Lu
- Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Wanye Hu
- Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Siyuan Huang
- The Second Clinical Medical School of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Jianghui Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiangmin Tong
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; The Second Clinical Medical School of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Bengbu Medical College, Bengbu, Anhui, 233000, China.
| | - Ying Wang
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Bengbu Medical College, Bengbu, Anhui, 233000, China.
| |
Collapse
|
15
|
Piperno A, Pelucchi S, Mariani R. Inherited iron overload disorders. Transl Gastroenterol Hepatol 2020; 5:25. [PMID: 32258529 DOI: 10.21037/tgh.2019.11.15] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Hereditary iron overload includes several disorders characterized by iron accumulation in tissues, organs, or even single cells or subcellular compartments. They are determined by mutations in genes directly involved in hepcidin regulation, cellular iron uptake, management and export, iron transport and storage. Systemic forms are characterized by increased serum ferritin with or without high transferrin saturation, and with or without functional iron deficient anemia. Hemochromatosis includes five different genetic forms all characterized by high transferrin saturation and serum ferritin, but with different penetrance and expression. Mutations in HFE, HFE2, HAMP and TFR2 lead to inadequate or severely reduced hepcidin synthesis that, in turn, induces increased intestinal iron absorption and macrophage iron release leading to tissue iron overload. The severity of hepcidin down-regulation defines the severity of iron overload and clinical complications. Hemochromatosis type 4 is caused by dominant gain-of-function mutations of ferroportin preventing hepcidin-ferroportin binding and leading to hepcidin resistance. Ferroportin disease is due to loss-of-function mutation of SLC40A1 that impairs the iron export efficiency of ferroportin, causes iron retention in reticuloendothelial cell and hyperferritinemia with normal transferrin saturation. Aceruloplasminemia is caused by defective iron release from storage and lead to mild microcytic anemia, low serum iron, and iron retention in several organs including the brain, causing severe neurological manifestations. Atransferrinemia and DMT1 deficiency are characterized by iron deficient erythropoiesis, severe microcytic anemia with high transferrin saturation and parenchymal iron overload due to secondary hepcidin suppression. Diagnosis of the different forms of hereditary iron overload disorders involves a sequential strategy that combines clinical, imaging, biochemical, and genetic data. Management of iron overload relies on two main therapies: blood removal and iron chelators. Specific therapeutic options are indicated in patients with atransferrinemia, DMT1 deficiency and aceruloplasminemia.
Collapse
Affiliation(s)
- Alberto Piperno
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| | - Sara Pelucchi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaella Mariani
- Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| |
Collapse
|
16
|
Peoc'h K, Nicolas G, Schmitt C, Mirmiran A, Daher R, Lefebvre T, Gouya L, Karim Z, Puy H. Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias. Mol Genet Metab 2019; 128:190-197. [PMID: 30737140 DOI: 10.1016/j.ymgme.2019.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
Recently, new genes and molecular mechanisms have been identified in patients with porphyrias and sideroblastic anemias (SA). They all modulate either directly or indirectly the δ-aminolevulinic acid synthase (ALAS) activity. ALAS, is encoded by two genes: the erythroid-specific (ALAS2), and the ubiquitously expressed (ALAS1). In the liver, ALAS1 controls the rate-limiting step in the production of heme and hemoproteins that are rapidly turned over in response to metabolic needs. Several heme regulatory targets have been identified as regulators of ALAS1 activity: 1) transcriptional repression via a heme-responsive element, 2) post-transcriptional destabilization of ALAS1 mRNA, 3) post-translational inhibition via a heme regulatory motif, 4) direct inhibition of the activity of the enzyme and 5) breakdown of ALAS1 protein via heme-mediated induction of the protease Lon peptidase 1. In erythroid cells, ALAS2 is a gatekeeper of production of very large amounts of heme necessary for hemoglobin synthesis. The rate of ALAS2 synthesis is transiently increased during the period of active heme synthesis. Its gene expression is determined by trans-activation of nuclear factor GATA1, CACC box and NF-E2-binding sites in the promoter areas. ALAS2 mRNA translation is also regulated by the iron-responsive element (IRE)/iron regulatory proteins (IRP) binding system. In patients, ALAS enzyme activity is affected in most of the mutations causing non-syndromic SA and in several porphyrias. Decreased ALAS2 activity results either directly from loss-of-function ALAS2 mutations as seen in X-linked sideroblastic anemia (XLSA) or from defect in the availability of one of its two mitochondrial substrates: glycine in SLC25A38 mutations and succinyl CoA in GLRX5 mutations. Moreover, ALAS2 gain of function mutations is responsible for X-linked protoporphyria and increased ALAS1 activity lead to acute attacks of hepatic porphyrias. A missense dominant mutation in the Walker A motif of the ATPase binding site in the gene coding for the mitochondrial protein unfoldase CLPX also contributes to increasing ALAS and subsequently protoporphyrinemia. Altogether, these recent data on human ALAS have informed our understanding of porphyrias and sideroblastic anemias pathogeneses and may contribute to new therapeutic strategies.
Collapse
Affiliation(s)
- Katell Peoc'h
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France.
| | - Gaël Nicolas
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France.
| | - Caroline Schmitt
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France; AP-HP, HUPNVS, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France.
| | - Arienne Mirmiran
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France.
| | - Raed Daher
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France.
| | - Thibaud Lefebvre
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France; AP-HP, HUPNVS, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France.
| | - Laurent Gouya
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France; AP-HP, HUPNVS, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France.
| | - Zoubida Karim
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France.
| | - Hervé Puy
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France; AP-HP, HUPNVS, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France.
| |
Collapse
|
17
|
Generation and Molecular Characterization of Human Ring Sideroblasts: a Key Role of Ferrous Iron in Terminal Erythroid Differentiation and Ring Sideroblast Formation. Mol Cell Biol 2019; 39:MCB.00387-18. [PMID: 30670569 DOI: 10.1128/mcb.00387-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Ring sideroblasts are a hallmark of sideroblastic anemia, although little is known about their characteristics. Here, we first generated mutant mice by disrupting the GATA-1 binding motif at the intron 1 enhancer of the ALAS2 gene, a gene responsible for X-linked sideroblastic anemia (XLSA). Although heterozygous female mice showed an anemic phenotype, ring sideroblasts were not observed in their bone marrow. We next established human induced pluripotent stem cell-derived proerythroblast clones harboring the same ALAS2 gene mutation. Through coculture with sodium ferrous citrate, mutant clones differentiated into mature erythroblasts and became ring sideroblasts with upregulation of metal transporters (MFRN1, ZIP8, and DMT1), suggesting a key role for ferrous iron in erythroid differentiation. Interestingly, holo-transferrin (holo-Tf) did not induce erythroid differentiation as well as ring sideroblast formation, and mutant cells underwent apoptosis. Despite massive iron granule content, ring sideroblasts were less apoptotic than holo-Tf-treated undifferentiated cells. Microarray analysis revealed upregulation of antiapoptotic genes in ring sideroblasts, a profile partly shared with erythroblasts from a patient with XLSA. These results suggest that ring sideroblasts exert a reaction to avoid cell death by activating antiapoptotic programs. Our model may become an important tool to clarify the pathophysiology of sideroblastic anemia.
Collapse
|
18
|
Fujiwara T, Harigae H. Molecular pathophysiology and genetic mutations in congenital sideroblastic anemia. Free Radic Biol Med 2019; 133:179-185. [PMID: 30098397 DOI: 10.1016/j.freeradbiomed.2018.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 01/19/2023]
Abstract
Sideroblastic anemia is a heterogeneous congenital and acquired disorder characterized by anemia and the presence of ring sideroblasts in the bone marrow. Congenital sideroblastic anemia (CSA) is a rare disease caused by mutations in genes involved in the heme biosynthesis, iron-sulfur [Fe-S] cluster biosynthesis, and mitochondrial protein synthesis. The most prevalent form of CSA is X-linked sideroblastic anemia, caused by mutations in the erythroid-specific δ-aminolevulinate synthase (ALAS2), which is the first enzyme of the heme biosynthesis pathway in erythroid cells. To date, a remarkable number of genetically undefined CSA cases remain, but a recent application of the next-generation sequencing technology has recognized novel causative genes for CSA. However, in most instances, the detailed molecular mechanisms of how defects of each gene result in the abnormal mitochondrial iron accumulation remain unclear. This review aims to cover the current understanding of the molecular pathophysiology of CSA.
Collapse
Affiliation(s)
- Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
19
|
Moreno‐Carralero M, Arrizabalaga‐Amuchastegui B, Sánchez‐Calero‐Guilarte J, Morado‐Arias M, Velasco‐Valdazo A, de‐la‐Iglesia‐Iñigo S, Méndez M, Morán‐Jiménez M. Missense variants in
ALAS
2
gene in five patients. Int J Lab Hematol 2018; 41:e5-e9. [DOI: 10.1111/ijlh.12902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | - Marta Morado‐Arias
- Servicio de Hematología y Hemoterapia Hospital Universitario La Paz Madrid Spain
| | | | - Silvia de‐la‐Iglesia‐Iñigo
- Servicio de Hematología y Hemoterapia Hospital Universitario Doctor Negrín Las Palmas de Gran Canaria Spain
| | - Manuel Méndez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12) Madrid Spain
| | | |
Collapse
|