1
|
Dongerdiye R, Kedar PS, Saptarshi A, Sampagar A, Shanmukhaiah C, Mudaliar S, Kanvinde P, Desai M, Madkaikar M. Non-syndromic congenital sideroblastic anaemia; phenotype, and genotype of 15 Indian patients. Ann Hematol 2024; 103:3987-3998. [PMID: 39196378 DOI: 10.1007/s00277-024-05969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Sideroblastic anaemias are a diverse group of congenital and acquired bone marrow failure disorders marked by the presence of ring sideroblasts, ineffective erythropoiesis, and systemic iron overload. Congenital Sideroblastic anaemia (CSA) is mainly caused by gene mutations associated with heme synthesis, iron-sulfur [Fe-S] cluster, and mitochondrial protein synthesis pathways. The most prevalent form of CSA is caused by mutations in the erythroid-specific -amino levulinate synthase (ALAS2) gene, which encodes the first enzyme in the heme synthesis pathway in red blood cells. The second most prevalent form of CSA is caused by a mutation in the Solute carrier family 25 member 38 (SLC25A38) gene, which codes for an erythroid-specific protein of the inner mitochondrial membrane. Additionally, 15-20 genes are altogether associated with CSA. In this study, we aim to identify the CSA patients, understand their genetics and establish genotype-phenotype correlation. We have identified fifteen cases of CSA using our targeted NGS (t-NGS) panel. The major clinical findings in our cohort were microcytic anaemia, ring sideroblasts, and dyserythropoiesis in the bone marrow. Currently, two patients are responsive to pyridoxine, while the rest are on blood transfusion support. We have identified ten variants in three different genes of CSA (ALAS2, SLC25A38 & HSPA9). Five patients harbour four hemizygous variants- p.Ala282Ser, p.Arg170Cys, p.Arg204Gln and exon 2 duplication in the ALAS2 gene. In seven patients, we have identified three homozygous mutations - p.Pro190Arg, p.Arg187Gln and p.Arg134Cys in the SLC25A38 gene. These mutations have been predominantly identified in the European population. Three patients revealed three heterozygous variants p. Thr463Ile, D326Tyr, and Arg284Trp in the HSPA9 gene. PyMoL was used to evaluate the functional effects of these variations and understand their effect on the structure of the protein. We believe that by combining a bone marrow examination with genetic sequencing, CSA patients can acquire a definitive diagnosis.
Collapse
Affiliation(s)
- Rashmi Dongerdiye
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, Indian Council of Medical Research, 13th Floor, NMS Building, King Edward Memorial (KEM.) Hospital Campus, Parel, Mumbai, 400012, India
| | - Prabhakar S Kedar
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, Indian Council of Medical Research, 13th Floor, NMS Building, King Edward Memorial (KEM.) Hospital Campus, Parel, Mumbai, 400012, India.
| | - Arati Saptarshi
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, Indian Council of Medical Research, 13th Floor, NMS Building, King Edward Memorial (KEM.) Hospital Campus, Parel, Mumbai, 400012, India
| | - Abhilasha Sampagar
- Pediatric Hematologist Oncologist, KLE'S Dr Prabhakar Kore Hospital, Belagavi, Karnataka, India
| | | | - Sangeeta Mudaliar
- Department of Haematology-Oncology, B J Wadia Hospital, Parel, Mumbai, 400012, India
| | - Purva Kanvinde
- Department of Haematology-Oncology, B J Wadia Hospital, Parel, Mumbai, 400012, India
| | - Mukesh Desai
- Department of Haematology-Oncology, B J Wadia Hospital, Parel, Mumbai, 400012, India
| | - Manisha Madkaikar
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, Indian Council of Medical Research, 13th Floor, NMS Building, King Edward Memorial (KEM.) Hospital Campus, Parel, Mumbai, 400012, India
| |
Collapse
|
2
|
Xi BX, Liu SY, Xu YT, Zhang DD, Hu Q, Liu AG. Genetic Analysis of Two Novel GPI Variants Disrupting H Bonds and Localization Characteristics of 55 Gene Variants Associated with Glucose-6-phosphate Isomerase Deficiency. Curr Med Sci 2024; 44:426-434. [PMID: 38561594 DOI: 10.1007/s11596-024-2857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/04/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Glucose-6-phosphate isomerase (GPI) deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants. This disorder exhibits wide heterogeneity in its clinical manifestations and molecular characteristics, often posing challenges for precise diagnoses using conventional methods. To this end, this study aimed to identify the novel variants responsible for GPI deficiency in a Chinese family. METHODS The clinical manifestations of the patient were summarized and analyzed for GPI deficiency phenotype diagnosis. Novel compound heterozygous variants of the GPI gene, c.174C>A (p.Asn58Lys) and c.1538G>T (p.Trp513Leu), were identified using whole-exome and Sanger sequencing. The AlphaFold program and Chimera software were used to analyze the effects of compound heterozygous variants on GPI structure. RESULTS By characterizing 53 GPI missense/nonsense variants from previous literature and two novel missense variants identified in this study, we found that most variants were located in exons 3, 4, 12, and 18, with a few localized in exons 8, 9, and 14. This study identified novel compound heterozygous variants associated with GPI deficiency. These pathogenic variants disrupt hydrogen bonds formed by highly conserved GPI amino acids. CONCLUSION Early family-based sequencing analyses, especially for patients with congenital anemia, can help increase diagnostic accuracy for GPI deficiency, improve child healthcare, and enable genetic counseling.
Collapse
Affiliation(s)
- Bi-Xin Xi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si-Ying Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ting Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - De-Dong Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ai-Guo Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Dongerdiye R, Bokde M, More TA, Saptarshi A, Devendra R, Chiddarwar A, Warang P, Kedar P. Targeted next-generation sequencing identifies eighteen novel mutations expanding the molecular and clinical spectrum of PKLR gene disorders in the Indian population. Ann Hematol 2023; 102:1029-1036. [PMID: 36892591 DOI: 10.1007/s00277-023-05152-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Pyruvate kinase deficiency (PKD) is an autosomal recessive condition, caused due to homozygous or compound heterozygous mutation in the PKLR gene resulting in non-spherocytic hereditary hemolytic anemia. Clinical manifestations in PKD patients vary from moderate to severe lifelong hemolytic anemia either requiring neonatal exchange transfusion or blood transfusion support. Measuring PK enzyme activity is the gold standard approach for diagnosis but residual activity must be related to the increased reticulocyte count. The confirmatory diagnosis is provided by PKLR gene sequencing by conventional as well as targeted next-generation sequencing involving genes associated with enzymopathies, membranopathies, hemoglobinopathies, and bone marrow failure disorders. In this study, we report the mutational landscape of 45 unrelated PK deficiency cases from India. The genetic sequencing of PKLR revealed 40 variants comprising 34 Missense Mutations (MM), 2 Nonsense Mutations (NM), 1 Splice site, 1 Intronic, 1 Insertion, and 1 Large Base Deletion. The 17 novel variants identified in this study are A115E, R116P, A423G, K313I, E315G, E318K, L327P, M377L, A423E, R449G, H507Q, E538K, G563S, c.507 + 1 G > C, c.801_802 ins A (p.Asp268ArgfsTer48), IVS9dsA-T + 3, and one large base deletion. In combination with previous reports on PK deficiency, we suggest c.880G > A, c.943G > A, c.994G > A, c.1456C > T, c.1529G > A are the most frequently observed mutations in India. This study expands the phenotypic and molecular spectrum of PKLR gene disorders and also emphasizes the importance of combining both targeted next-generation sequencing with bioinformatics analysis and detailed clinical evaluation to elaborate a more accurate diagnosis and correct diagnosis for transfusion dependant hemolytic anemia in a cohort of the Indian population.
Collapse
Affiliation(s)
- Rashmi Dongerdiye
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, 13th Floor, NMS Building, King Edward Memorial (KEM) Hospital Campus, Parel, 400012, Mumbai, India
| | - Meghana Bokde
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, 13th Floor, NMS Building, King Edward Memorial (KEM) Hospital Campus, Parel, 400012, Mumbai, India
| | - Tejashree Anil More
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, 13th Floor, NMS Building, King Edward Memorial (KEM) Hospital Campus, Parel, 400012, Mumbai, India
| | - Arati Saptarshi
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, 13th Floor, NMS Building, King Edward Memorial (KEM) Hospital Campus, Parel, 400012, Mumbai, India
| | - Rati Devendra
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, 13th Floor, NMS Building, King Edward Memorial (KEM) Hospital Campus, Parel, 400012, Mumbai, India
| | - Ashish Chiddarwar
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, 13th Floor, NMS Building, King Edward Memorial (KEM) Hospital Campus, Parel, 400012, Mumbai, India
| | - Prashant Warang
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, 13th Floor, NMS Building, King Edward Memorial (KEM) Hospital Campus, Parel, 400012, Mumbai, India
| | - Prabhakar Kedar
- Department of Haematogenetics, ICMR-National Institute of Immunohematology, 13th Floor, NMS Building, King Edward Memorial (KEM) Hospital Campus, Parel, 400012, Mumbai, India.
| |
Collapse
|
4
|
Next generation sequencing for diagnosis of hereditary anemia: Experience in a Spanish reference center. Clin Chim Acta 2022; 531:112-119. [DOI: 10.1016/j.cca.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/19/2022]
|
5
|
Kedar P, Dongerdiye R, Chandrakala S, Bargir UA, Madkaikar M. Targeted next-generation sequencing revealed a novel homozygous mutation in the LRBA gene causes severe haemolysis associated with Inborn Errors of Immunity in an Indian family. Hematology 2022; 27:441-448. [PMID: 35413226 DOI: 10.1080/16078454.2022.2058736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES LPS-responsive beige-like anchor protein (LRBA) deficiency abolishes LRBA protein expression due to biallelic mutations in the LRBA gene that lead to autoimmune manifestations, inflammatory bowel disease, hypogammaglobulinemia in early stages, and variable clinical manifestations. MATERIALS AND METHODS Mutational analysis of the LRBA gene was performed in Indian patients using targeted Next Generation Sequencing (t-NGS) and confirmed by Sanger sequencing using specific primers of exons 53. Then, bioinformatics analysis and protein modeling for the novel founded mutations were also performed. The genotype, phenotype correlation was done according to the molecular findings and clinical features. RESULTS We report an unusual case of a female patient born of a consanguineous marriage, presented with severe anaemia and jaundice with a history of multiple blood transfusions of unknown cause up to the age of 5 yrs. She had hepatosplenomegaly with recurrent viral and bacterial infections. Tests for hemoglobinopathies, enzymopathies, and hereditary spherocytosis were within the normal limits. The t-NGS revealed a novel homozygous missense variation in exon 53 of the LRBA gene (chr4:151231464C > T; c.7799G > A) (p.C2600Y), and the parents were heterozygous. The further immunological analysis is suggestive of hypogammaglobulinaemia and autoimmune haemolytic anaemia. The bioinformatics tools are suggestive of deleterious and disease-causing variants. CONCLUSION This study concludes the importance of a timely decision of targeted exome sequencing for the molecular diagnostic tool of unexplained haemolytic anaemia with heterogeneous clinical phenotypes.
Collapse
Affiliation(s)
- Prabhakar Kedar
- Department of Haematogenetics, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| | - Rashmi Dongerdiye
- Department of Haematogenetics, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| | | | - Umair Ahmed Bargir
- Department of Pediatric Immunology and Leukocyte Biology, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, ICMR- National Institute of Immunohaematology, Parel, Mumbai, India
| |
Collapse
|
6
|
Silva R, Amarasinghe D, Perera S, Premawardhena A. A Systematic review on diagnostic methods of red cell membrane disorders in Asia. Int J Lab Hematol 2022; 44:248-262. [DOI: 10.1111/ijlh.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Ruwindi Silva
- Department of Biochemistry and Clinical Chemistry Faculty of Medicine University of Kelaniya Kelaniya Sri Lanka
| | - Dinusha Amarasinghe
- Department of Medical Laboratory Sciences Faculty of Allied Health Sciences University of Ruhuna Galle Sri Lanka
| | - Shiromi Perera
- Department of Biochemistry and Clinical Chemistry Faculty of Medicine University of Kelaniya Kelaniya Sri Lanka
| | - Anuja Premawardhena
- Department of Medicine Faculty of Medicine University of Kelaniya Kelaniya Sri Lanka
| |
Collapse
|
7
|
Dongerdiye R, Sampagar A, Devendra R, Warang P, Kedar P. Rare hereditary nonspherocytic hemolytic anemia caused by a novel homozygous mutation, c.301C > A, (Q101K), in the AK1 gene in an Indian family. BMC Med Genomics 2021; 14:191. [PMID: 34321014 PMCID: PMC8317388 DOI: 10.1186/s12920-021-01038-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Adenylate kinase (AK) deficiency is a rare red cell enzymopathy associated with moderate to severe congenital nonspherocytic hemolytic anemia, along with mental and psychomotor retardation (in exceptional cases). Only ten mutations have been detected in the AK1 gene to date. In this study, we aimed to diagnose the unexplained issue of haemolytic anaemia and offer antenatal screening to the family. METHODS Genomic DNA was isolated from whole blood by a standard protocol. Targeted next-generation sequencing (t-NGS) was performed to identify pathogenic variants in the patient and control samples. A chronic villus sample was collected at 11 weeks of gestation from the mother, and molecular testing was performed. Genetic confirmation was concluded by Sanger DNA sequencing. Bioinformatics tools predicted the pathogenicity of the variant. RESULTS t-NGS revealed a homozygous variant (c.301C > A, p. Gln101Lys) in the AK1 gene in the patient and heterozygosity in the fetus and parental samples. The prediction tools SIFT, Polyphen2, Provean, PMUT, Mutation taster, and Mutation Assessor, confirmed the damaging effect of the variant on the AK1 protein structure CONCLUSION: We have presented a novel mutation in the AK1 gene (p. Gln101Lys) associated with adenylate kinase deficiency. It is the first prenatal diagnosis of AK deficiency in India, where heterogeneity is exceptionally high.
Collapse
Affiliation(s)
- Rashmi Dongerdiye
- Department of Haematogenetics, ICMR-National Institute of Immunohaematology, Indian Council of Medical Research, 13th Floor, New Multistorey Building, KEM Hospital Campus, Parel, Mumbai, 400012, India
| | - Abhilasha Sampagar
- KLES Dr. Prabhakar Kore Hospital & Medical Research Centre, Belgavi, 590010, India
| | - Rati Devendra
- Department of Haematogenetics, ICMR-National Institute of Immunohaematology, Indian Council of Medical Research, 13th Floor, New Multistorey Building, KEM Hospital Campus, Parel, Mumbai, 400012, India
| | - Prashant Warang
- Department of Haematogenetics, ICMR-National Institute of Immunohaematology, Indian Council of Medical Research, 13th Floor, New Multistorey Building, KEM Hospital Campus, Parel, Mumbai, 400012, India
| | - Prabhakar Kedar
- Department of Haematogenetics, ICMR-National Institute of Immunohaematology, Indian Council of Medical Research, 13th Floor, New Multistorey Building, KEM Hospital Campus, Parel, Mumbai, 400012, India.
| |
Collapse
|
8
|
Steinberg-Shemer O, Tamary H. Impact of Next-Generation Sequencing on the Diagnosis and Treatment of Congenital Anemias. Mol Diagn Ther 2021; 24:397-407. [PMID: 32557003 DOI: 10.1007/s40291-020-00478-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Congenital anemias are a wide spectrum of diseases including hypoproliferative anemia syndromes, dyserythropoietic anemias, sideroblastic anemias, red blood cell membrane and enzymatic defects, hemoglobinopathies, and thalassemia syndromes. The various congenital anemia syndromes may have similar clinical and laboratory presentations, making the diagnosis challenging. The traditional work-up, which includes a complete blood count, blood smears, bone marrow studies, flow cytometry, and the osmotic fragility test, does not always lead to the diagnosis. Specialized tests such as red blood cell enzyme activity and ektacytometry are not widely available. In addition, red blood cell transfusions may mask some of the laboratory characteristics. Therefore, genetic testing is crucial for accurate diagnosis of patients with congenital anemias. However, gene-by-gene testing is labor intensive because of the large number of genes involved. Thus, targeted next-generation sequencing using custom-made gene panels has been increasingly utilized, with a high success rate of diagnosis. Accurate genetic diagnosis is important for determining specific therapeutic modalities, as well as for avoiding splenectomy when contraindicated. In addition, molecular diagnosis can allow for genetic counseling and prenatal diagnosis in severe cases. We suggest a work-up scheme for patients with congenital anemias, including early incorporation of targeted next-generation sequencing panels.
Collapse
Affiliation(s)
- Orna Steinberg-Shemer
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Hannah Tamary
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel.
| |
Collapse
|
9
|
Fermo E, Vercellati C, Marcello AP, Keskin EY, Perrotta S, Zaninoni A, Brancaleoni V, Zanella A, Giannotta JA, Barcellini W, Bianchi P. Targeted Next Generation Sequencing and Diagnosis of Congenital Hemolytic Anemias: A Three Years Experience Monocentric Study. Front Physiol 2021; 12:684569. [PMID: 34093240 PMCID: PMC8176228 DOI: 10.3389/fphys.2021.684569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Congenital hemolytic anemias (CHAs) are heterogeneous and rare disorders caused by alterations in structure, membrane transport, metabolism, or red blood cell production. The pathophysiology of these diseases, in particular the rarest, is often poorly understood, and easy-to-apply tools for diagnosis, clinical management, and patient stratification are still lacking. We report the 3-years monocentric experience with a 43 genes targeted Next Generation Sequencing (t-NGS) panel in diagnosis of CHAs; 122 patients from 105 unrelated families were investigated and the results compared with conventional laboratory pathway. Patients were divided in two groups: 1) cases diagnosed with hematologic investigations to be confirmed at molecular level, and 2) patients with unexplained anemia after extensive hematologic investigation. The overall sensitivity of t-NGS was 74 and 35% for families of groups 1 and 2, respectively. Inside this cohort of patients we identified 26 new pathogenic variants confirmed by functional evidence. The implementation of laboratory work-up with t-NGS increased the number of diagnoses in cases with unexplained anemia; cytoskeleton defects are well detected by conventional tools, deserving t-NGS to atypical cases; the diagnosis of Gardos channelopathy, some enzyme deficiencies, familial siterosterolemia, X-linked defects in females and other rare and ultra-rare diseases definitely benefits of t-NGS approaches.
Collapse
Affiliation(s)
- Elisa Fermo
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Vercellati
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Paola Marcello
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ebru Yilmaz Keskin
- Department of Pediatric Hematology and Oncology, Suleyman Demirel University, Isparta, Turkey
| | - Silverio Perrotta
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università degli Studi della Campania "Luigi Vanvitelli," Naples, Italy
| | - Anna Zaninoni
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Brancaleoni
- UOC Medicina Generale, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Juri A Giannotta
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wilma Barcellini
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Bianchi
- UOS Fisiopatologia delle Anemie, UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Chandran V, Kirby RS. An Analysis of Maternal, Social and Household Factors Associated with Childhood Anemia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3105. [PMID: 33802946 PMCID: PMC8002610 DOI: 10.3390/ijerph18063105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Anemia is highly prevalent in all strata of populations in India, with established evidence of intergenerational anemia. The state of Madhya Pradesh was selected to study childhood anemia as the population is mostly rural, with many tribal districts, and has the highest infant mortality rate in India. This study aims to understand the maternal, social and household factors that affect anemia among children aged 6 months to 5 years by analyzing the the National Family Health Survey (NFHS) conducted in 2015-2016. Children aged 6-59 months with estimated hemoglobin levels were included in this study. Bivariate and multivariable analyses were conducted to understand associations between childhood anemia and various socioeconomic factors. Two models to understand the presence of anemia and the levels of anemia were computed. Higher likelihood of having severe childhood anemia was observed among children of younger mothers (15- to 19-year-old mothers (adjusted odds ratio (aOR) 2.08, 95% confidence interval (CI): 1.06, 4.06, less educated (uneducated mothers aOR 2.25, 95% CI 1.13, 4.48) and belonged to a scheduled tribe (aOR 1.88, 95% CI 1.07, 3.29). Strong associations between anemia in mothers and their children suggest intergenerational anemia which has long-term effects. Malnourished children (severe stunting aOR 3.19, 95% CI 2.36, 4.31) and children born with very low birth weight (aOR 4.28, 95% CI 2.67, 6.87) were more likely to have anemia. These findings strongly suggest more proactive interventions including prenatal healthcare for women and monitoring of the nutrition children at the community level to combat childhood anemia. Evaluations of existing programs should be conducted to understand the gaps in reducing anemia and malnutrition in children.
Collapse
Affiliation(s)
| | - Russell S. Kirby
- College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
11
|
Fermo E, Vercellati C, Bianchi P. Screening tools for hereditary hemolytic anemia: new concepts and strategies. Expert Rev Hematol 2021; 14:281-292. [PMID: 33543663 DOI: 10.1080/17474086.2021.1886919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Hereditary hemolytic anemias are a group of rare and heterogeneous disorders due to abnormalities in structure, metabolism, and transport functions of erythrocytes; they may overlap in clinical and hematological features making differential diagnosis difficult, particularly in mild and atypical forms. AREAS COVERED In the present review, the main tools currently adopted in routine hematologic investigation for the diagnosis of hereditary hemolytic anemias are described, together with the new diagnostic approaches that are being to be developed in the next future. Available recommendations in this field together with a systematic review through MEDLINE, EMBASE, and PubMED for publications in English from 2000 to 2020 in regards to diagnostic aspects of hereditary hemolytic anemias have been considered. EXPERT OPINION The recent development of specific molecules and treatments for hereditary hemolytic anemias and the increased interest in translational research raised the attention on differential diagnosis and the demand for novel diagnostic assays and devices. Automatic blood cell analyzers, omic-approaches including NGS technologies, and development of new automated tools based on artificial neural networks definitely represent the future strategies in this field.
Collapse
Affiliation(s)
- Elisa Fermo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Cristina Vercellati
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| |
Collapse
|
12
|
Russo R, Marra R, Rosato BE, Iolascon A, Andolfo I. Genetics and Genomics Approaches for Diagnosis and Research Into Hereditary Anemias. Front Physiol 2020; 11:613559. [PMID: 33414725 PMCID: PMC7783452 DOI: 10.3389/fphys.2020.613559] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023] Open
Abstract
The hereditary anemias are a relatively heterogeneous set of disorders that can show wide clinical and genetic heterogeneity, which often hampers correct clinical diagnosis. The classical diagnostic workflow for these conditions generally used to start with analysis of the family and personal histories, followed by biochemical and morphological evaluations, and ending with genetic testing. However, the diagnostic framework has changed more recently, and genetic testing is now a suitable approach for differential diagnosis of these patients. There are several approaches to this genetic testing, the choice of which depends on phenotyping, genetic heterogeneity, and gene size. For patients who show complete phenotyping, single-gene testing remains recommended. However, genetic analysis now includes next-generation sequencing, which is generally based on custom-designed targeting panels and whole-exome sequencing. The use of next-generation sequencing also allows the identification of new causative genes, and of polygenic conditions and genetic factors that modify disease severity of hereditary anemias. In the research field, whole-genome sequencing is useful for the identification of non-coding causative mutations, which might account for the disruption of transcriptional factor occupancy sites and cis-regulatory elements. Moreover, advances in high-throughput sequencing techniques have now resulted in the identification of genome-wide profiling of the chromatin structures known as the topologically associating domains. These represent a recurrent disease mechanism that exposes genes to inappropriate regulatory elements, causing errors in gene expression. This review focuses on the challenges of diagnosis and research into hereditary anemias, with indications of both the advantages and disadvantages. Finally, we consider the future perspectives for the use of next-generation sequencing technologies in this era of precision medicine.
Collapse
Affiliation(s)
- Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Roberta Marra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Barbara Eleni Rosato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
13
|
Vives-Corrons JL, Krishnevskaya E, Rodriguez IH, Ancochea A. Characterization of hereditary red blood cell membranopathies using combined targeted next-generation sequencing and osmotic gradient ektacytometry. Int J Hematol 2020; 113:163-174. [PMID: 33074480 DOI: 10.1007/s12185-020-03010-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Hereditary red blood cell (RBC) membranopathies are characterized by mutations in genes encoding skeletal proteins that alter the membrane complex structure. Hereditary spherocytosis (HS) is the most common inherited RBC membranopathy leading to hereditary hemolytic anemia with a worldwide distribution and an estimated prevalence, in Europe, of about 1:2000 individuals. The recent availability of targeted next generation sequencing (t-NGS) and its combination with RBC deformability measured with a laser-assisted optical rotational ektacytometer (LoRRca) has demonstrated to be the most powerful contribution to lower the percentage of hereditary hemolytic anemia undiagnosed cases. In order to know the kind and frequency of RBC membrane mutations in our geographical area (Catalonia) and to better understand their pathophysiology, 42 unrelated, non-transfusion-dependent (NTD) patients with hereditary hemolytic anemia have been studied by combining t-NGS and LoRRca. The osmoscan module of LoRRca provides three rheological profiles that reflect the maximal deformability (EImax), osmotic fragility (Omin), and hydration state (Ohyper) of RBCs and contribute to a better understanding of the contribution RBC rheology to the severity of anemia. From the 42 patients studied, 37 were suspected to be a RBC membrane defect due to phenotypic characteristics and abnormal RBC morphology and, from these, in 31 patients (83.8% of cases) the mutation was identified by t-NGS. No definite diagnosis was achieved in 11 patients (26.2% of cases), including 6 out of 37 cases, with suspected membranopathy, and 5 with unclassifiable HHA. In all these undiagnosed patients, the existence of hemoglobinopathy and/or enzymopathy was ruled out by conventional methods.
Collapse
Affiliation(s)
- Joan-Lluis Vives-Corrons
- Red Blood Cells and Haematopoietic Disorders (Rare Anaemias Unit), Josep Carreras Institute for Leukaemia Research (IJC), Badalona (Barcelona), Spain. .,Medicine Department, University of Barcelona, Catalonia, Spain.
| | - Elena Krishnevskaya
- Red Blood Cells and Haematopoietic Disorders (Rare Anaemias Unit), Josep Carreras Institute for Leukaemia Research (IJC), Badalona (Barcelona), Spain
| | - Ines Hernandez Rodriguez
- Haematology Department, Hospital Universitari Germans Trias i Pujol-ICO. Autonomous University of Barcelona, Badalona (Barcelona), Spain
| | - Agueda Ancochea
- Haematology Department, Hospital Universitari Germans Trias i Pujol-ICO. Autonomous University of Barcelona, Badalona (Barcelona), Spain
| |
Collapse
|
14
|
Bianchi P, Fermo E. Molecular heterogeneity of pyruvate kinase deficiency. Haematologica 2020; 105:2218-2228. [PMID: 33054047 PMCID: PMC7556514 DOI: 10.3324/haematol.2019.241141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023] Open
Abstract
Red cell pyruvate kinase (PK) deficiency is the most common glycolytic defect associated with congenital non-spherocytic hemolytic anemia. The disease, transmitted as an autosomal recessive trait, is caused by mutations in the PKLR gene and is characterized by molecular and clinical heterogeneity; anemia ranges from mild or fully compensated hemolysis to life-threatening forms necessitating neonatal exchange transfusions and/or subsequent regular transfusion support; complications include gallstones, pulmonary hypertension, extramedullary hematopoiesis and iron overload. Since identification of the first pathogenic variants responsible for PK deficiency in 1991, more than 300 different variants have been reported, and the study of molecular mechanisms and the existence of genotype-phenotype correlations have been investigated in-depth. In recent years, during which progress in genetic analysis, next-generation sequencing technologies and personalized medicine have opened up important landscapes for diagnosis and study of molecular mechanisms of congenital hemolytic anemias, genotyping has become a prerequisite for accessing new treatments and for evaluating disease state and progression. This review examines the extensive molecular heterogeneity of PK deficiency, focusing on the diagnostic impact of genotypes and new acquisitions on pathogenic non-canonical variants. The recent progress and the weakness in understanding the genotype-phenotype correlation, and its practical usefulness in light of new therapeutic opportunities for PK deficiency are also discussed.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital/diagnosis
- Anemia, Hemolytic, Congenital/genetics
- Anemia, Hemolytic, Congenital/therapy
- Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis
- Anemia, Hemolytic, Congenital Nonspherocytic/genetics
- Humans
- Mutation
- Pyruvate Kinase/deficiency
- Pyruvate Kinase/genetics
- Pyruvate Metabolism, Inborn Errors/diagnosis
- Pyruvate Metabolism, Inborn Errors/genetics
- Pyruvate Metabolism, Inborn Errors/therapy
Collapse
Affiliation(s)
- Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy.
| | - Elisa Fermo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy
| |
Collapse
|
15
|
Mechanosensitive Piezo1 ion channel protein (PIEZO1 gene): update and extended mutation analysis of hereditary xerocytosis in India. Ann Hematol 2020; 99:715-727. [PMID: 32112123 DOI: 10.1007/s00277-020-03955-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
Hereditary xerocytosis (HX), also known as dehydrated stomatocytosis (DHSt) is a dominantly inherited genetic disorder exhibiting red cell membrane dehydration caused by the loss of the monovalent cation K+ and water. Variants in mechanosensitive Piezo ionic channels of the PIEZO1 gene are the primary cause of HX. We have utilized high throughput and highly precise next-generation sequencing (NGS) to make a diagnosis and examine the genotype-phenotype relationship in inflexible HX cases. Seven unrelated patients with unexplained hemolytic anemia were scrutinized with a panel probing 8000 genes related to congenital anemia. Targeted next-generation sequencing identified 8 missense variants in the PIEZO1 gene in 7 unrelated Indian patients. Three of the 8 variants are novel (c.1795G > C, c.2915G > A, c.7372 T > C) and the remaining five (c.4082A > G, c.6829C > A, c.7374C > G, c.7381G > A, c.7483_7488dup) are previously reported. The variants have been validated by Sanger sequencing. One patient with autosomal dominant mutation (c.7372 T > C) is associated with iron refractory iron deficiency anemia. Of the 7 patients, one has HX in combination with a novel homozygous variant (c.994G > A) in the PKLR gene causing PK deficiency resulting in severe clinical manifestations with phenotypic variability. In silico prediction using bioinformatics tools were used to study the possible damaging effects of the novel variants. Structural-functional analysis of the novel variants was investigated by molecular modeling software (PyMOL and Swiss PDB). These results encompass the heterogeneous behavior of mechano-sensitive Piezo1 protein observed in HX patients in India. Moreover, NGS imparted a subtle, economical, and quick tool for understanding the genetic cause of undiagnosed cases of congenital hemolytic anemia. NGS grants a potential technology integrating clinical history together with molecular report profiting in such patients and their families.
Collapse
|