1
|
Cherng JH, Chang SJ, Tsai HD, Chun CF, Fan GY, Reeves KD, Lam KHS, Wu YT. The Potential of Glucose Treatment to Reduce Reactive Oxygen Species Production and Apoptosis of Inflamed Neural Cells In Vitro. Biomedicines 2023; 11:1837. [PMID: 37509477 PMCID: PMC10376532 DOI: 10.3390/biomedicines11071837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation is a key feature in the pathogenesis of entrapment neuropathies. Clinical trial evidence suggests that perineural injection of glucose in water at entrapment sites has therapeutic benefits beyond a mere mechanical effect. We previously demonstrated that 12.5-25 mM glucose restored normal metabolism in human SH-SYFY neuronal cells rendered metabolically inactive from TNF-α exposure, a common initiator of neuroinflammation, and reduced secondary elevation of inflammatory cytokines. In the present study, we measured the effects of glucose treatment on cell survival, ROS activity, gene-related inflammation, and cell cycle regulation in the presence of neurogenic inflammation. We exposed SH-SY5Y cells to 10 ng/mL of TNF-α for 24 h to generate an inflammatory environment, followed by 24 h of exposure to 3.125, 6.25, 12.5, and 25 mM glucose. Glucose exposure, particularly at 12.5 mM, preserved apoptotic SH-SY5Y cell survival following a neuroinflammatory insult. ROS production was substantially reduced, suggesting a ROS scavenging effect. Glucose treatment significantly increased levels of CREB, JNK, and p70S6K (p < 0.01), pointing to antioxidative and anti-inflammatory actions through components of the MAPK family and Akt pathways but appeared underpowered (n = 6) to reach significance for NF-κB, p38, ERK1/2, Akt, and STAT5 (p < 0.05). Cell regulation analysis indicated that glucose treatment recovered/restored function in cells arrested in the S or G2/M-phases. In summary, glucose exposure in vitro restores function in apoptotic nerves after TNF-α exposure via several mechanisms, including ROS scavenging and enhancement of MAPK family and Akt pathways. These findings suggest that glucose injection about entrapped peripheral nerves may have several favorable biochemical actions that enhance neuronal cell function.
Collapse
Affiliation(s)
- Juin-Hong Cherng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Shu-Jen Chang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsin-Da Tsai
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chung-Fang Chun
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Gang-Yi Fan
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 11490, Taiwan
| | | | - King Hei Stanley Lam
- The Hong Kong Institute of Musculoskeletal Medicine, Hong Kong
- Department of Family Medicine, The Chinese University of Hong Kong, Hong Kong
- Department of Family Medicine, The University of Hong Kong, Hong Kong
- Center for Regional Anesthesia and Pain Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yung-Tsan Wu
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
- Integrated Pain Management Center, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Research and Development, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
2
|
Sakamuri SSVP, Sure VN, Wang X, Bix G, Fonseca VA, Mostany R, Katakam PVG. Amyloid [Formula: see text] (1-42) peptide impairs mitochondrial respiration in primary human brain microvascular endothelial cells: impact of dysglycemia and pre-senescence. GeroScience 2022; 44:2721-2739. [PMID: 35978067 PMCID: PMC9768086 DOI: 10.1007/s11357-022-00644-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023] Open
Abstract
Diabetes increases the risk of Alzheimer's disease (AD). We investigated the impact of glucose concentrations on the β-amyloid (Aβ)-induced alteration of mitochondrial/cellular energetics in primary human brain microvascular endothelial cells (HBMECs). HBMECs were grown and passaged in media containing 15 mmol/l glucose (normal) based on which the glucose levels in the media were designated as high (25 mmol/L) or low (5 mmol/L). HBMECs were treated with Aβ (1-42) (5 µmol/l) or a scrambled peptide for 24 h and mitochondrial respiratory parameters were measured using Seahorse Mito Stress Test. Aβ (1-42) decreased the mitochondrial ATP production at normal glucose levels and decreased spare respiratory capacity at high glucose levels. Aβ (1-42) diminished all mitochondrial respiratory parameters markedly at low glucose levels that were not completely recovered by restoring normal glucose levels in the media. The addition of mannitol (10 mmol/l) to low and normal glucose-containing media altered the Aβ (1-42)-induced bioenergetic defects. Even at normal glucose levels, pre-senescent HMBECs (passage 15) displayed greater Aβ (1-42)-induced mitochondrial respiratory impairments than young cells (passages 7-9). Thus, hypoglycemia, osmolarity changes, and senescence are stronger instigators of Aβ (1-42)-induced mitochondrial respiration and energetics in HBMECs and contributors to diabetes-related increased AD risk than hyperglycemia.
Collapse
Affiliation(s)
- Siva S. V. P. Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
| | - Venkata N. Sure
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
| | - Xiaoying Wang
- Department of Neurosurgery, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, LA 70118 New Orleans, USA
- Clinical Neuroscience Research Center, 131 S. Robertson, Suite 1300, New Orleans, LA 70112 USA
| | - Gregory Bix
- Department of Neurosurgery, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, LA 70118 New Orleans, USA
- Clinical Neuroscience Research Center, 131 S. Robertson, Suite 1300, New Orleans, LA 70112 USA
| | - Vivian A. Fonseca
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, LA 70118 New Orleans, USA
| | - Prasad V. G. Katakam
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University, 200 Flower Hall, LA 70118 New Orleans, USA
- Clinical Neuroscience Research Center, 131 S. Robertson, Suite 1300, New Orleans, LA 70112 USA
| |
Collapse
|
3
|
Colombaioni L, Campanella B, Nieri R, Onor M, Benedetti E, Bramanti E. Time-dependent influence of high glucose environment on the metabolism of neuronal immortalized cells. Anal Biochem 2022; 645:114607. [DOI: 10.1016/j.ab.2022.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
|
4
|
Picconi F, Parravano M, Sciarretta F, Fulci C, Nali M, Frontoni S, Varano M, Caccuri AM. Activation of retinal Müller cells in response to glucose variability. Endocrine 2019; 65:542-549. [PMID: 31327157 DOI: 10.1007/s12020-019-02017-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE In the earliest stages of diabetic retinopathy (DR), a dysfunction of Müller cells, characterized by high levels of glial fibrillary acidic protein (GFAP), and aquaporins (AQP), has been observed. Although chronic hyperglycemia causes the activation of Müller cells, the effect of glycemic fluctuations is yet unknown. The aim of the study was to analyze the impact of glucose variability on rat retinal Müller cells (rMC-1) adapted to either normal (5 mM) or high (25 mM) glucose levels. METHODS rMC-1 were cultured in a medium containing either 5 mM (N cells) or 25 mM of glucose (H cells) and then incubated for 96 h in a medium containing (a) low glucose (either 1-3 or 5 mM), (b) basal glucose (either 5 or 25 mM), (c) high glucose (either 25 or 45 mM), (d) basal and high glucose alternated every 24 h; (e) low- and high glucose alternated every 24 h; (f) basal glucose with episodes of low glucose for 30 min twice a day. Müller cells activation was evaluated by measuring the levels of GFAP, AQP4, and phospho-active extracellular signal-regulated kinase (pERK). RESULTS Under both basal and high glucose concentrations rMC-1 were viable, but their response to glucose excursions was different. In N cells kept under normal (5 mM) glucose, a significant glial activation was measured not only in response to constant high glucose but also to alternating low/high glucose. In H cells, adapted to 25 mM glucose, a significant response was observed only after exposition to a lower (5 mM) glucose concentration. CONCLUSION Our results highlight Müller cells activation in response to glucose variability and a different susceptibility depending on the basal glucose conditions.
Collapse
Affiliation(s)
- Fabiana Picconi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Endocrinology, Diabetes and Metabolism, S. Giovanni Calibita Fatebenefratelli Hospital, Rome, Italy
| | | | - Francesca Sciarretta
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Chiara Fulci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Michela Nali
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Simona Frontoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
- Unit of Endocrinology, Diabetes and Metabolism, S. Giovanni Calibita Fatebenefratelli Hospital, Rome, Italy.
| | | | - Anna Maria Caccuri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Center Nanoscience, Nanotechnology, Innovative Instrumentation (NAST), University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|