1
|
Zhao H, Li D, Xiao X, Liu C, Chen G, Su X, Yan Z, Gu S, Wang Y, Li G, Feng J, Li W, Chen P, Yang J, Li Q. Pluripotency state transition of embryonic stem cells requires the turnover of histone chaperone FACT on chromatin. iScience 2024; 27:108537. [PMID: 38213626 PMCID: PMC10783625 DOI: 10.1016/j.isci.2023.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
The differentiation of embryonic stem cells (ESCs) begins with the transition from the naive to the primed state. The formative state was recently established as a critical intermediate between the two states. Here, we demonstrate the role of the histone chaperone FACT in regulating the naive-to-formative transition. We found that the Q265K mutation in the FACT subunit SSRP1 increased the binding of FACT to histone H3-H4, impaired nucleosome disassembly in vitro, and reduced the turnover of FACT on chromatin in vivo. Strikingly, mouse ESCs harboring this mutation showed elevated naive-to-formative transition. Mechanistically, the SSRP1-Q265K mutation enriched FACT at the enhancers of formative-specific genes to increase targeted gene expression. Together, these findings suggest that the turnover of FACT on chromatin is crucial for regulating the enhancers of formative-specific genes, thereby mediating the naive-to-formative transition. This study highlights the significance of FACT in fine-tuning cell fate transition during early development.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Di Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xue Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifang Chen
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xiaoyu Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhenxin Yan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shijia Gu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yizhou Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiayi Yang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Stefanova ME, Volokh OI, Chertkov OV, Armeev GA, Shaytan AK, Feofanov AV, Kirpichnikov MP, Sokolova OS, Studitsky VM. Structure and Dynamics of Compact Dinucleosomes: Analysis by Electron Microscopy and spFRET. Int J Mol Sci 2023; 24:12127. [PMID: 37569503 PMCID: PMC10419094 DOI: 10.3390/ijms241512127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Formation of compact dinucleosomes (CODIs) occurs after collision between adjacent nucleosomes at active regulatory DNA regions. Although CODIs are likely dynamic structures, their structural heterogeneity and dynamics were not systematically addressed. Here, single-particle Förster resonance energy transfer (spFRET) and electron microscopy were employed to study the structure and dynamics of CODIs. spFRET microscopy in solution and in gel revealed considerable uncoiling of nucleosomal DNA from the histone octamer in a fraction of CODIs, suggesting that at least one of the nucleosomes is destabilized in the presence of the adjacent closely positioned nucleosome. Accordingly, electron microscopy analysis suggests that up to 30 bp of nucleosomal DNA are involved in transient uncoiling/recoiling on the octamer. The more open and dynamic nucleosome structure in CODIs cannot be stabilized by histone chaperone Spt6. The data suggest that proper internucleosomal spacing is an important determinant of chromatin stability and support the possibility that CODIs could be intermediates of chromatin disruption.
Collapse
Affiliation(s)
- Maria E. Stefanova
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Olesya I. Volokh
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Oleg V. Chertkov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Grigory A. Armeev
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Alexey K. Shaytan
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Mikhail P. Kirpichnikov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Olga S. Sokolova
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Biological Faculty, MSU-BIT Shenzhen University, Shenzhen 518115, China
| | - Vasily M. Studitsky
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
3
|
Lodhi N, Singh M, Srivastava R, Sawant SV, Tuli R. Epigenetic malleability at core promoter initiates tobacco PR-1a expression post salicylic acid treatment. Mol Biol Rep 2023; 50:417-431. [PMID: 36335522 DOI: 10.1007/s11033-022-08074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Tobacco's PR-1a gene is induced by pathogen attack or exogenous application of salicylic acid (SA). Nucleosome mapping and chromatin immunoprecipitation assay were used to delineate the histone modifications on the PR-1a promoter. However, the epigenetic modifications of the inducible promoter of the PR-1a gene are not fully understood yet. METHODS AND RESULTS Southern approach was used to scan the promoter of PR-1a to identify presence of nucleosomes, ChIP assays were performed using anti-histones antibodies of repressive chromatin by di- methylated at H3K9 and H4K20 or active chromatin by acetylated H3K9/14 and H4K16 to find epigenetic malleability of nucleosome over core promoter in uninduced or induced state post SA treatment. Class I and II mammalian histone deacetylase (HDAC) inhibitor TSA treatment was used to enhance the expression of PR-1a by facilitating the histone acetylation post SA treatment. Here, we report correlated consequences of the epigenetic modifications correspond to disassembly of the nucleosome (spans from - 102 to + 55 bp, masks TATA and transcription initiation) and repressor complex from core promoter, eventually initiates the transcription of PR-1a gene post SA treatment. While active chromatin marks di and trimethylation of H3K4, acetylation of H3K9 and H4K16 are increased which are associated to the transcription initiation of PR-1a following SA treatment. However, in uninduced state constitutive expression of a negative regulator (SNI1) of AtPR1, suppresses AtPR1 expression by six-fold in Arabidopsis thaliana. Further, we report 50-to-1000-fold increased expression of AtPR1 in uninduced lsd1 mutant plants, up to threefold increased expression of AtPR1 in uninduced histone acetyl transferases (HATs) mutant plants, SNI1 dependent negative regulation of AtPR1, all together our results suggest that inactive state of PR-1a is indeed maintained by a repressive complex. CONCLUSION The study aimed to reveal the mechanism of transcription initiation of tobacco PR-1a gene in presence or absence of SA. This is the first study that reports nucleosome and repressor complex over core promoter region maintains the inactivation of gene in uninduced state, and upon induction disassembling of both initiates the downstream gene activation process.
Collapse
Affiliation(s)
- Niraj Lodhi
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226001, India. .,Mirna Analytics, New York, NY, 19047, USA.
| | - Mala Singh
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226001, India
| | - Rakesh Srivastava
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226001, India
| | - Samir V Sawant
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226001, India
| | - Rakesh Tuli
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226001, India.,University Institute of Engineering & Technology (UIET), Sector 25, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
4
|
McCauley MJ, Morse M, Becker N, Hu Q, Botuyan MV, Navarrete E, Huo R, Muthurajan UM, Rouzina I, Luger K, Mer G, Maher LJ, Williams MC. Human FACT subunits coordinate to catalyze both disassembly and reassembly of nucleosomes. Cell Rep 2022; 41:111858. [PMID: 36577379 PMCID: PMC9807050 DOI: 10.1016/j.celrep.2022.111858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
The histone chaperone FACT (facilitates chromatin transcription) enhances transcription in eukaryotic cells, targeting DNA-protein interactions. FACT, a heterodimer in humans, comprises SPT16 and SSRP1 subunits. We measure nucleosome stability and dynamics in the presence of FACT and critical component domains. Optical tweezers quantify FACT/subdomain binding to nucleosomes, displacing the outer wrap of DNA, disrupting direct DNA-histone (core site) interactions, altering the energy landscape of unwrapping, and increasing the kinetics of DNA-histone disruption. Atomic force microscopy reveals nucleosome remodeling, while single-molecule fluorescence quantifies kinetics of histone loss for disrupted nucleosomes, a process accelerated by FACT. Furthermore, two isolated domains exhibit contradictory functions; while the SSRP1 HMGB domain displaces DNA, SPT16 MD/CTD stabilizes DNA-H2A/H2B dimer interactions. However, only intact FACT tethers disrupted DNA to the histones and supports rapid nucleosome reformation over several cycles of force disruption/release. These results demonstrate that key FACT domains combine to catalyze both nucleosome disassembly and reassembly.
Collapse
Affiliation(s)
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Nicole Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Emily Navarrete
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Ran Huo
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Uma M. Muthurajan
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado, Boulder, CO, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA, USA,Lead contact,Correspondence:
| |
Collapse
|
5
|
Shu J, Ding N, Liu J, Cui Y, Chen C. Transcription elongator SPT6L regulates the occupancies of the SWI2/SNF2 chromatin remodelers SYD/BRM and nucleosomes at transcription start sites in Arabidopsis. Nucleic Acids Res 2022; 50:12754-12767. [PMID: 36453990 PMCID: PMC9825159 DOI: 10.1093/nar/gkac1126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Chromatin remodelers have been thought to be crucial in creating an accessible chromatin environment before transcription activation. However, it is still unclear how chromatin remodelers recognize and bind to the active regions. In this study, we found that chromatin remodelers SPLAYED (SYD) and BRAHMA (BRM) interact and co-occupy with Suppressor of Ty6-like (SPT6L), a core subunit of the transcription machinery, at thousands of the transcription start sites (TSS). The association of SYD and BRM to chromatin is dramatically reduced in spt6l and can be restored mainly by SPT6LΔtSH2, which binds to TSS in a RNA polymerase II (Pol II)-independent manner. Furthermore, SPT6L and SYD/BRM are involved in regulating the nucleosome and Pol II occupancy around TSS. The presence of SPT6L is sufficient to restore the association of the chromatin remodeler SYD to chromatin and maintain normal nucleosome occupancy. Our findings suggest that the two chromatin remodelers can form protein complexes with the core subunit of the transcription machinery and regulate nucleosome occupancy in the early transcription stage.
Collapse
Affiliation(s)
- Jie Shu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Ning Ding
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario N5V 4T3, Canada,Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Chen Chen
- To whom correspondence should be addressed. Tel: +86 20 37252711;
| |
Collapse
|
6
|
Electron microscopy analysis of ATP-independent nucleosome unfolding by FACT. Commun Biol 2022; 5:2. [PMID: 35013515 PMCID: PMC8748794 DOI: 10.1038/s42003-021-02948-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
FACT is a histone chaperone that participates in nucleosome removal and reassembly during transcription and replication. We used electron microscopy to study FACT, FACT:Nhp6 and FACT:Nhp6:nucleosome complexes, and found that all complexes adopt broad ranges of configurations, indicating high flexibility. We found unexpectedly that the DNA binding protein Nhp6 also binds to the C-terminal tails of FACT subunits, inducing more open geometries of FACT even in the absence of nucleosomes. Nhp6 therefore supports nucleosome unfolding by altering both the structure of FACT and the properties of nucleosomes. Complexes formed with FACT, Nhp6, and nucleosomes also produced a broad range of structures, revealing a large number of potential intermediates along a proposed unfolding pathway. The data suggest that Nhp6 has multiple roles before and during nucleosome unfolding by FACT, and that the process proceeds through a series of energetically similar intermediate structures, ultimately leading to an extensively unfolded form. Sivkina et al. present a biochemical and biophysical characterization of the interaction of S. cerevisiae histone chaperone FACT with the nucleosome core particle. They show that FACT adopts a more open geometry in the presence of Nhp6, and together they unfold nucleosomes to an almost extended conformation, suggesting a mechanism for FACT-facilitated disassembly of nucleosomes.
Collapse
|
7
|
Insights into the roles of histone chaperones in nucleosome assembly and disassembly in virus infection. Virus Res 2021; 297:198395. [PMID: 33737155 DOI: 10.1016/j.virusres.2021.198395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022]
Abstract
Nucleosomes are assembled or disassembled with the aid of histone chaperones in a cell. Viruses can exist either as minichromosomes/episomes or can integrate into the host genome and in both the cases the viral proteins interact and manipulate the cellular nucleosome assembly machinery to ensure their survival and propagation. Recent studies have provided insight into the mechanism and role of histone chaperones in nucleosome assembly and disassembly on the virus genome. Further, the interactions between viral proteins and histone chaperones have been implicated in the integration of the virus genome into the host genome. This review highlights the recent progress and future challenges in understanding the role of histone chaperones in viruses with DNA or RNA genome and their role in governing viral pathogenesis.
Collapse
|
8
|
Wang P, Yang W, Zhao S, Nashun B. Regulation of chromatin structure and function: insights into the histone chaperone FACT. Cell Cycle 2021; 20:465-479. [PMID: 33590780 DOI: 10.1080/15384101.2021.1881726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, changes in chromatin accessibility are necessary for chromatin to maintain its highly dynamic nature at different times during the cell cycle. Histone chaperones interact with histones and regulate chromatin dynamics. Facilitates chromatin transcription (FACT) is an important histone chaperone that plays crucial roles during various cellular processes. Here, we analyze the structural characteristics of FACT, discuss how FACT regulates nucleosome/chromatin reorganization and summarize possible functions of FACT in transcription, replication, and DNA repair. The possible involvement of FACT in cell fate determination is also discussed.Abbreviations: FACT: facilitates chromatin transcription, Spt16: suppressor of Ty16, SSRP1: structure-specific recognition protein-1, NTD: N-terminal domain, DD: dimerization domain, MD: middle domain, CTD: C-terminus domain, IDD: internal intrinsically disordered domain, HMG: high mobility group, CID: C-terminal intrinsically disordered domain, Nhp6: non-histone chromosomal protein 6, RNAPII: RNA polymerase II, CK2: casein kinase 2, AID: acidic inner disorder, PIC: pre-initiation complex, IR: ionizing radiation, DDSB: DNA double-strand break, PARlation: poly ADP-ribosylation, BER: base-excision repair, UVSSA: UV-stimulated scaffold protein A, HR: homologous recombination, CAF-1: chromatin assembly factor 1, Asf1: anti-silencing factor 1, Rtt106: regulator of Ty1 transposition protein 106, H3K56ac: H3K56 acetylation, KD: knock down, SETD2: SET domain containing 2, H3K36me3: trimethylation of lysine36 in histone H3, H2Bub: H2B ubiquitination, iPSCs: induced pluripotent stem cells, ESC: embryonic stem cell, H3K4me3: trimethylation of lysine 4 on histone H3 protein subunit, CHD1: chromodomain protein.
Collapse
Affiliation(s)
- Peijun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shuxin Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
9
|
Bäurle I, Trindade I. Chromatin regulation of somatic abiotic stress memory. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5269-5279. [PMID: 32076719 DOI: 10.1093/jxb/eraa098] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
In nature, plants are often subjected to periods of recurrent environmental stress that can strongly affect their development and productivity. To cope with these conditions, plants can remember a previous stress, which allows them to respond more efficiently to a subsequent stress, a phenomenon known as priming. This ability can be maintained at the somatic level for a few days or weeks after the stress is perceived, suggesting that plants can store information of a past stress during this recovery phase. While the immediate responses to a single stress event have been extensively studied, knowledge on priming effects and how stress memory is stored is still scarce. At the molecular level, memory of a past condition often involves changes in chromatin structure and organization, which may be maintained independently from transcription. In this review, we will summarize the most recent developments in the field and discuss how different levels of chromatin regulation contribute to priming and plant abiotic stress memory.
Collapse
Affiliation(s)
- Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Inês Trindade
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
10
|
Sandlesh P, Safina A, Goswami I, Prendergast L, Rosario S, Gomez EC, Wang J, Gurova KV. Prevention of Chromatin Destabilization by FACT Is Crucial for Malignant Transformation. iScience 2020; 23:101177. [PMID: 32498018 PMCID: PMC7267732 DOI: 10.1016/j.isci.2020.101177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 03/23/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
Histone chaperone FACT is commonly expressed and essential for the viability of transformed but not normal cells, and its expression levels correlate with poor prognosis in patients with cancer. FACT binds several components of nucleosomes and has been viewed as a factor destabilizing nucleosomes to facilitate RNA polymerase passage. To connect FACT's role in transcription with the viability of tumor cells, we analyzed genome-wide FACT binding to chromatin in conjunction with transcription in mouse and human cells with different degrees of FACT dependence. Genomic distribution and density of FACT correlated with the intensity of transcription. However, FACT knockout or knockdown was unexpectedly accompanied by the elevation, rather than suppression, of transcription and with the destabilization of chromatin in transformed, but not normal cells. These data suggest that FACT stabilizes and reassembles nucleosomes disturbed by transcription. This function is vital for tumor cells because malignant transformation is accompanied by chromatin destabilization. FACT is essential for viability of the tumor, but not for normal cells FACT level depends on transcription, but transcription does not depend on FACT FACT preserves nucleosomes during transcription to maintain chromatin integrity FACT maintains chromatin in destabilized state during malignant transformation
Collapse
Affiliation(s)
- Poorva Sandlesh
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Imon Goswami
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Laura Prendergast
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Spenser Rosario
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Eduardo C Gomez
- Department of Bioinformatics, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Jianmin Wang
- Department of Bioinformatics, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Carlton and Elm Streets, Buffalo, NY 14127, USA.
| |
Collapse
|
11
|
Gurova KV. Chromatin Stability as a Target for Cancer Treatment. Bioessays 2019; 41:e1800141. [PMID: 30566250 PMCID: PMC6522245 DOI: 10.1002/bies.201800141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/29/2018] [Indexed: 12/14/2022]
Abstract
In this essay, I propose that DNA-binding anti-cancer drugs work more via chromatin disruption than DNA damage. Success of long-awaited drugs targeting cancer-specific drivers is limited by the heterogeneity of tumors. Therefore, chemotherapy acting via universal targets (e.g., DNA) is still the mainstream treatment for cancer. Nevertheless, the problem with targeting DNA is insufficient efficacy due to high toxicity. I propose that this problem stems from the presumption that DNA damage is critical for the anti-cancer activity of these drugs. DNA in cells exists as chromatin, and many DNA-targeting drugs alter chromatin structure by destabilizing nucleosomes and inducing histone eviction from chromatin. This effect has been largely ignored because DNA damage is seen as the major reason for anti-cancer activity. I discuss how DNA-binding molecules destabilize chromatin, why this effect is more toxic to tumoral than normal cells, and why cells die as a result of chromatin destabilization.
Collapse
Affiliation(s)
- Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263. Tel 1-716-845-4760,
| |
Collapse
|
12
|
Wang Q, Jia S, Jiao Y, Xu L, Wang D, Chen X, Hu X, Liang H, Wen N, Zhang S, Guo B, Zhang L. SSRP1 influences colorectal cancer cell growth and apoptosis via the AKT pathway. Int J Med Sci 2019; 16:1573-1582. [PMID: 31839745 PMCID: PMC6909804 DOI: 10.7150/ijms.38439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide with a high incidence rate. Therefore, the molecular basis of colorectal tumorigenesis and evolution must be clarified. Structure-specific recognition protein 1 (SSRP1) is involved in transcriptional regulation, DNA damage repair, and cell cycle regulation and has been confirmed to be highly expressed in various tumor tissues, including colorectal cancer. However, the role of SSRP1 in the development of colorectal cancer remains unclear. Therefore, this study explored the role of SSRP1 in the occurrence and development of colorectal cancer. Using bioinformatics databases, including samples from the Cancer Genome Atlas (TCGA), we confirmed high SSRP1 expression in human colorectal adenocarcinoma tissues. We demonstrated that SSRP1 knockdown via small interfering RNA significantly inhibited the proliferation of colorectal cancer cells and promoted apoptosis through the AKT signaling pathway, suppressing the invasion and migration of colorectal cancer cells in vitro and in vivo. In conclusion, this study demonstrated that SSRP1 silencing influenced the proliferation and apoptosis of colorectal cancer cells via the AKT signaling pathway.
Collapse
Affiliation(s)
- Qian Wang
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yan Jiao
- Department of Hepatobiliary and pancreatic surgery, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Libo Xu
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Ding Wang
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Xuyang Chen
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Xindan Hu
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Hang Liang
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Naiyan Wen
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Shengnan Zhang
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, P. R.China
| | - Ling Zhang
- Department of Pathophysiology, College of Basic Medical Science, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
13
|
Jiang H, Xu S, Chen Y, Li H, Tian L, Zhou H, Zhao Z, Yang C, Zhong Z, Cai G, Su D. The structural basis of human Spt16 N-terminal domain interaction with histone (H3-H4) 2 tetramer. Biochem Biophys Res Commun 2018; 508:864-870. [PMID: 30528735 DOI: 10.1016/j.bbrc.2018.11.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023]
Abstract
FACT (Facilitates Chromatin Transactions) is a heterodimeric protein complex involved in RNA polymerase II transcription elongation, playing essential roles in chromatin remodeling during transcription, replication, and DNA damage repair. The FACT subunit hSpt16 is essential for nucleosome reorganization. The N-terminal domain of hSpt16 (hSpt16-NTD) was recently described as a histone (H3-H4)2-binding domain; however, its mode of interaction remains unknown. In this study, we solved the structure of hSpt16-NTD437 at 2.19 Å and found that a long-disordered region (hSpt16-LDR), after the main body of hSpt16-NTD, is a novel histone-binding motif. Furthermore, hSpt16-LDR interaction with (H3-H4)2 is H3 N-terminal tail-independent. Therefore, Spt16-NTD is a histone H3-H4-specific binding domain with a distinct mechanism of interaction between histones and histone chaperones.
Collapse
Affiliation(s)
- Hua Jiang
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Sidan Xu
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yiping Chen
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Huiyan Li
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Lu Tian
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hongying Zhou
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Zhiwei Zhao
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Zhihui Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Guocai Cai
- Department of Cardiovascular Medicine, The Third Hospital of MianYang (Sichuan Mental Health Center), Sichuan, 621000, PR China
| | - Dan Su
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
14
|
Chang HW, Valieva ME, Safina A, Chereji RV, Wang J, Kulaeva OI, Morozov AV, Kirpichnikov MP, Feofanov AV, Gurova KV, Studitsky VM. Mechanism of FACT removal from transcribed genes by anticancer drugs curaxins. SCIENCE ADVANCES 2018; 4:eaav2131. [PMID: 30417101 PMCID: PMC6221510 DOI: 10.1126/sciadv.aav2131] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/10/2018] [Indexed: 05/21/2023]
Abstract
Human FACT (facilitates chromatin transcription) is a multifunctional protein complex that has histone chaperone activity and facilitates nucleosome survival and transcription through chromatin. Anticancer drugs curaxins induce FACT trapping on chromatin of cancer cells (c-trapping), but the mechanism of c-trapping is not fully understood. Here, we show that in cancer cells, FACT is highly enriched within the bodies of actively transcribed genes. Curaxin-dependent c-trapping results in redistribution of FACT from the transcribed chromatin regions to other genomic loci. Using a combination of biochemical and biophysical approaches, we have demonstrated that FACT is bound to and unfolds nucleosomes in the presence of curaxins. This tight binding to the nucleosome results in inhibition of FACT-dependent transcription in vitro in the presence of both curaxins and competitor chromatin, suggesting a mechanism of FACT trapping on bulk nucleosomes (n-trapping).
Collapse
Affiliation(s)
- Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria E. Valieva
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Răzvan V. Chereji
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jianmin Wang
- Department of Bioinformatics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | - Alexandre V. Morozov
- Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Mikhail P. Kirpichnikov
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Katerina V. Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Vasily M. Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
15
|
Kozlova AL, Valieva ME, Maluchenko NV, Studitsky VM. HMGB Proteins as DNA Chaperones That Modulate Chromatin Activity. Mol Biol 2018. [DOI: 10.1134/s0026893318050096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Gurova K, Chang HW, Valieva ME, Sandlesh P, Studitsky VM. Structure and function of the histone chaperone FACT - Resolving FACTual issues. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30159-7. [PMID: 30055319 PMCID: PMC6349528 DOI: 10.1016/j.bbagrm.2018.07.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
FAcilitates Chromatin Transcription (FACT) has been considered essential for transcription through chromatin mostly based on cell-free experiments. However, FACT inactivation in cells does not cause a significant reduction in transcription. Moreover, not all mammalian cells require FACT for viability. Here we synthesize information from different organisms to reveal the core function(s) of FACT and propose a model that reconciles the cell-free and cell-based observations. We describe FACT structure and nucleosomal interactions, and their roles in FACT-dependent transcription, replication and repair. The variable requirements for FACT among different tumor and non-tumor cells suggest that various FACT-dependent processes have significantly different levels of relative importance in different eukaryotic cells. We propose that the stability of chromatin, which might vary among different cell types, dictates these diverse requirements for FACT to support cell viability. Since tumor cells are among the most sensitive to FACT inhibition, this vulnerability could be exploited for cancer treatment.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria E Valieva
- Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Poorva Sandlesh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Vasily M Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biology Faculty, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
17
|
Large-scale ATP-independent nucleosome unfolding by a histone chaperone. Nat Struct Mol Biol 2016; 23:1111-1116. [PMID: 27820806 DOI: 10.1038/nsmb.3321] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
DNA accessibility to regulatory proteins is substantially influenced by nucleosome structure and dynamics. The facilitates chromatin transcription (FACT) complex increases the accessibility of nucleosomal DNA, but the mechanism and extent of its nucleosome reorganization activity are unknown. Here we determined the effects of FACT from the yeast Saccharomyces cerevisiae on single nucleosomes by using single-particle Förster resonance energy transfer (spFRET) microscopy. FACT binding results in dramatic ATP-independent, symmetrical and reversible DNA uncoiling that affects at least 70% of the DNA within a nucleosome, occurs without apparent loss of histones and proceeds via an 'all-or-none' mechanism. A mutated version of FACT is defective in uncoiling, and a histone mutation that suppresses phenotypes caused by this FACT mutation in vivo restores the uncoiling activity in vitro. Thus, FACT-dependent nucleosome unfolding modulates the accessibility of nucleosomal DNA, and this activity is an important function of FACT in vivo.
Collapse
|