1
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Lima CR, Antunes D, Caffarena E, Carels N. Structural Characterization of Heat Shock Protein 90β and Molecular Interactions with Geldanamycin and Ritonavir: A Computational Study. Int J Mol Sci 2024; 25:8782. [PMID: 39201468 PMCID: PMC11354266 DOI: 10.3390/ijms25168782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Drug repositioning is an important therapeutic strategy for treating breast cancer. Hsp90β chaperone is an attractive target for inhibiting cell progression. Its structure has a disordered and flexible linker region between the N-terminal and central domains. Geldanamycin was the first Hsp90β inhibitor to interact specifically at the N-terminal site. Owing to the toxicity of geldanamycin, we investigated the repositioning of ritonavir as an Hsp90β inhibitor, taking advantage of its proven efficacy against cancer. In this study, we used molecular modeling techniques to analyze the contribution of the Hsp90β linker region to the flexibility and interaction between the ligands geldanamycin, ritonavir, and Hsp90β. Our findings indicate that the linker region is responsible for the fluctuation and overall protein motion without disturbing the interaction between the inhibitors and the N-terminus. We also found that ritonavir established similar interactions with the substrate ATP triphosphate, filling the same pharmacophore zone.
Collapse
Affiliation(s)
- Carlyle Ribeiro Lima
- Laboratory of Biological System Modeling, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Deborah Antunes
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
| | - Ernesto Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
3
|
Long L, Zhang H, Zhou Z, Duan L, Fan D, Wang R, Xu S, Qiao D, Zhu W. Pyrrole-containing hybrids as potential anticancer agents: An insight into current developments and structure-activity relationships. Eur J Med Chem 2024; 273:116470. [PMID: 38762915 DOI: 10.1016/j.ejmech.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Cancer poses a significant threat to human health. Therefore, it is urgent to develop potent anti-cancer drugs with excellent inhibitory activity and no toxic side effects. Pyrrole and its derivatives are privileged heterocyclic compounds with significant diverse pharmacological effects. These compounds can target various aspects of cancer cells and have been applied in clinical settings or are undergoing clinical trials. As a result, pyrrole has emerged as a promising drug scaffold and has been further probed to get novel entities for the treatment of cancer. This article reviews recent research progress on anti-cancer drugs containing pyrrole. It focuses on the mechanism of action, biological activity, and structure-activity relationships of pyrrole derivatives, aiming to assist in designing and synthesizing innovative pyrrole-based anti-cancer compounds.
Collapse
Affiliation(s)
- Li Long
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - ZhiHui Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Lei Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
4
|
Xu Y, Yang J, Han X, Gan C, Wei X. Active substance and mechanisms of Actinidia chinensis Planch for the treatment of breast cancer was explored based on network pharmacology and in silico study. Medicine (Baltimore) 2024; 103:e37829. [PMID: 38608062 PMCID: PMC11018190 DOI: 10.1097/md.0000000000037829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
In this paper, our objective was to investigate the potential mechanisms of Actinidia chinensis Planch (ACP) for breast cancer treatment with the application of network pharmacology, molecular docking, and molecular dynamics. "Mihoutaogen" was used as a key word to query the Traditional Chinese Medicine Systems Pharmacology database for putative ingredients of ACP and its related targets. DrugBank, GeneCards, Online Mendelian Inheritance in Man, and therapeutic target databases were used to search for genes associated with "breast cancer." Using Cytoscape 3.9.0 we then constructed the protein-protein interaction and drug-ingredient-target-disease networks. An enrichment analysis of Kyoto encyclopedia of genes and genomes pathway and gene ontology were performed to exploration of the signaling pathways associated with ACP for breast cancer treatment. Discovery Studio software was applied to molecular docking. Finally, the ligand-receptor complex was subjected to a 50-ns molecular dynamics simulation using the Desmond_2020.4 tools. Six main active ingredients and 176 targets of ACP and 2243 targets of breast cancer were screened. There were 118 intersections of targets for both active ingredients and diseases. Tumor protein P53 (TP53), AKT serine/threonine kinase 1 (AKT1), estrogen receptor 1 (ESR1), Erb-B2 receptor tyrosine kinase 2 (ERBB2), epidermal growth factor receptor (EGFR), Jun Proto-Oncogene (JUN), and Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) selected as the most important genes were used for verification by molecular docking and molecular dynamics simulation. The primary active compounds of ACP against breast cancer were predicted preliminarily, and its mechanism was studied, thereby providing a theoretical basis for future clinical studies.
Collapse
Affiliation(s)
- Yujing Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Jinrong Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Xiaoyu Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Chunchun Gan
- School of Medicine, Quzhou College of Technology, Quzhou 324000, P. R. China
| | - Xiaopeng Wei
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| |
Collapse
|
5
|
Chin HK, Lu MC, Hsu KC, El-Shazly M, Tsai TN, Lin TY, Shih SP, Lin TE, Wen ZH, Yang YCSH, Liu YC. Exploration of anti-leukemic effect of soft coral-derived 13-acetoxysarcocrassolide: Induction of apoptosis via oxidative stress as a potent inhibitor of heat shock protein 90 and topoisomerase II. Kaohsiung J Med Sci 2023. [PMID: 37052190 DOI: 10.1002/kjm2.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
13-Acetoxysarcocrassolide (13-AC) is a marine cembranoid derived from the aquaculture soft coral of Lobophytum crassum. The cytotoxic effect of 13-AC against leukemia cells was previously reported but its mechanism of action is still unexplored. In the current study, we showed that 13-AC induced apoptosis of human acute lymphoblastic leukemia Molt4 cells, as evidenced by the cleavage of PARP and caspases, phosphatidylserine externalization, as well as the disruption of mitochondrial membrane potential. The use of N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, attenuated the cytotoxic effect induced by 13-AC. Molecular docking and thermal shift assay indicated that the cytotoxic mechanism of action of 13-AC involved the inhibition of heat shock protein 90 (Hsp 90) activity by eliciting the level of Hsp 70 and topoisomerase IIα in Molt4 cells. 13-AC also exhibited potent antitumor activity by reducing the tumor volume (48.3%) and weight (72.5%) in the in vivo Molt4 xenograft mice model. Our findings suggested that the marine cembranoid, 13-AC, acted as a dual inhibitor of Hsp 90 and topoisomerase IIα, exerting more potent apoptotic activity via the enhancement of ROS generation.
Collapse
Affiliation(s)
- Hsien-Kuo Chin
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Tsen-Ni Tsai
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tzu-Yung Lin
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Tony Eight Lin
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cellular Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Xu Y, Wu Q, Tang Z, Tan Z, Pu D, Tan W, Zhang W, Liu S. Comprehensive Analysis of Necroptosis-Related Genes as Prognostic Factors and Immunological Biomarkers in Breast Cancer. J Pers Med 2022; 13:jpm13010044. [PMID: 36675706 PMCID: PMC9863352 DOI: 10.3390/jpm13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Breast cancer (BC) is a lethal malignancy with a poor prognosis. Necroptosis is critical in the progression of cancer. However, the expression of genes involved in necroptosis in BC and their association with prognosis remain unclear. We investigated the predictive potential of necroptosis-related genes in BC samples from the TCGA dataset. We used LASSO regression to build a risk model consisting of twelve necroptosis-related genes in BC. Using the necroptosis-related risk model, we were able to successfully classify BC patients into high- and low-risk groups with significant prognostic differences (p = 4.872 × 10 -7). Additionally, we developed a matched nomogram predicting 5, 7, and 10-year overall survival in BC patients based on this necroptosis-related risk model. Our next step was to perform multiple GSEA analyses to explore the biological pathways through which these necroptosis-related risk genes influence cancer progression. For these twelve risk model genes, we analyzed CNV, SNV, OS, methylation, immune cell infiltration, and drug sensitivity in pan-cancer. In addition, immunohistochemical data from the THPA database were used to validate the protein expression of these risk model genes in BC. Taken together, we believe that necroptosis-related genes are considered potential therapeutic targets in BC and should be further investigated.
Collapse
|
7
|
Xu Y, Wu Q, Tang Z, Tan Z, Pu D, Tan W, Zhang W, Liu S. Comprehensive Analysis of Necroptosis-Related Genes as Prognostic Factors and Immunological Biomarkers in Breast Cancer. J Pers Med 2022; 13:44. [PMID: 36675706 PMCID: PMC9863352 DOI: 10.3390/jpm13010044;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 10/11/2024] Open
Abstract
Breast cancer (BC) is a lethal malignancy with a poor prognosis. Necroptosis is critical in the progression of cancer. However, the expression of genes involved in necroptosis in BC and their association with prognosis remain unclear. We investigated the predictive potential of necroptosis-related genes in BC samples from the TCGA dataset. We used LASSO regression to build a risk model consisting of twelve necroptosis-related genes in BC. Using the necroptosis-related risk model, we were able to successfully classify BC patients into high- and low-risk groups with significant prognostic differences (p = 4.872 × 10 −7). Additionally, we developed a matched nomogram predicting 5, 7, and 10-year overall survival in BC patients based on this necroptosis-related risk model. Our next step was to perform multiple GSEA analyses to explore the biological pathways through which these necroptosis-related risk genes influence cancer progression. For these twelve risk model genes, we analyzed CNV, SNV, OS, methylation, immune cell infiltration, and drug sensitivity in pan-cancer. In addition, immunohistochemical data from the THPA database were used to validate the protein expression of these risk model genes in BC. Taken together, we believe that necroptosis-related genes are considered potential therapeutic targets in BC and should be further investigated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
8
|
HSPA12A Stimulates p38/ERK-AP-1 Signaling to Promote Angiogenesis and Is Required for Functional Recovery Postmyocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2333848. [PMID: 35783189 PMCID: PMC9247843 DOI: 10.1155/2022/2333848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Angiogenesis plays a critical role in wound healing postmyocardial infarction (MI). However, there is still a lack of ideal angiogenic therapeutics for rescuing ischemic hearts clinically, suggesting that a more understanding regarding angiogenesis regulation is urgently needed. Heat shock protein A12A (HSPA12A) is an atypical member of the HSP70 family. Here, we demonstrated that HSPA12A was upregulated during endothelial tube formation, a characteristic of in vitro angiogenesis. Intriguingly, overexpression of HSPA12A promoted in vitro angiogenic characteristics including proliferation, migration, and tube formation of endothelial cells. By contrast, deficiency of HSPA12A impaired myocardial angiogenesis and worsened cardiac dysfunction post-MI in mice. The expression of genes related to angiogenesis (VEGF, VEGFR2, and Ang-1) was decreased by HSPA12A deficiency in MI hearts of mice, whereas their expression was increased by HSPA12A overexpression in endothelial cells. HSPA12A overexpression in endothelial cells increased phosphorylation levels and nuclear localization of AP-1, a transcription factor dominating angiogenic gene expression. Also, HSPA12A increased p38 and ERK phosphorylation levels, whereas inhibition of p38 or ERKs diminished the HSPA12A-promoted AP-1 phosphorylation and nuclear localization, as well as VEGF and VEGFR2 expression in endothelial cells. Notably, inhibition of either p38 or ERKs diminished the HSPA12A-promoted in vitro angiogenesis characteristics. The findings identified HSPA12A as a novel angiogenesis activator, and HSPA12A might represent a viable strategy for the management of myocardial healing in patients with ischemic heart diseases.
Collapse
|
9
|
Arunachalam K, Yang X, San TT. Tinospora cordifolia (Willd.) Miers: Protection mechanisms and strategies against oxidative stress-related diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114540. [PMID: 34509604 DOI: 10.1016/j.jep.2021.114540] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia (Willd.) Miers (Menispermaceae) is a Mediterranean herb, used in Ayurvedic, Siddha, Unani, and folk medicines. The herb is also used in conventional medicine to treat oxidative stress-related diseases and conditions, including inflammation, pain, diarrhea, asthma, respiratory infections, cancer, diabetes, and gastrointestinal disorders. AIM OF THE REVIEW The taxonomy, botanical classification, geographical distribution, and ethnobotanical uses of T. cordifolia, as well as the phytochemical compounds found in the herb, the toxicology of and pharmacological and clinical studies on the effects of T. cordifolia are all covered in this study. MATERIALS AND METHODS To gather information on T. cordifolia, we used a variety of scientific databases, including Scopus, Google Scholar, PubMed, and Science Direct. The information discussed focuses on biologically active compounds found in T. cordifolia, and common applications and pharmacological activity of the herb, as well as toxicological and clinical studies on its properties. RESULTS The findings of this study reveal a connection between the use of T. cordifolia in conventional medicine and its antioxidant, anti-inflammatory, antihypertensive, antidiabetic, anticancer, immunomodulatory, and other biological effects. The entire plant, stem, leaves, root, and extracts of T. cordifolia have been shown to have a variety of biological activities, including antioxidant, antimicrobial, antiviral, antiparasitic, antidiabetic, anticancer, anti-inflammatory, analgesic and antipyretic, hepatoprotective, and cardioprotective impact. Toxicological testing demonstrated that this plant may have medicinal applications. T. cordifolia contains a variety of biologically active compounds from various chemical classes, including alkaloids, terpenoids, sitosterols, flavonoids, and phenolic acids. Based on the reports researched for this review, we believe that chemicals in T. cordifolia may activate Nrf2, which leads to the overexpression of antioxidant enzymes such as CAT, GPx, GST, and GR, and thereby induces the adaptive response to oxidative stress. T. cordifolia is also able to reduce NF-κB signalling by inhibiting PI3K/Akt, activating AMPK and sirtuins, and downregulating PI3K/Akt. CONCLUSIONS Our findings indicate that the pharmacological properties displayed by T. cordifolia back up its conventional uses. Antimicrobial, antiviral, antioxidant, anticancer, anti-inflammatory, antimutagenic, antidiabetic, nephroprotective, gastroprotective, hepatoprotective, and cardioprotective activities were all demonstrated in T. cordifolia stem extracts. To validate pharmacodynamic targets, further research is needed to evaluate the molecular mechanisms of the known compounds against gastrointestinal diseases, inflammatory processes, and microbial infections, as immunostimulants, and in chemotherapy. The T. cordifolia safety profile was confirmed in a toxicological analysis, which prompted pharmacokinetic assessment testing to confirm its bioavailability.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| | - Thae Thae San
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| |
Collapse
|
10
|
Differential expression of angiogenesis markers HSP70, HSP90, VEGF and pERK1/2 in both components of dedifferentiated chondrosarcomas. J Bone Oncol 2021; 29:100370. [PMID: 34094840 PMCID: PMC8167291 DOI: 10.1016/j.jbo.2021.100370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Dedifferentiated chondrosarcomas (DDCS) are highly malignant bimorphic mesenchymal tumors with poor outcome and limited treatment options. Genes and proteins involved in angiogenesis play an important role in the development of invasion and metastasis. Immunohistochemical stains targeting HSP70, pERK1/2 and VEGFA were applied to a TMA containing 29 DDCS cases representing both tumor components. Higher expression of HSP70 and pERK1/2 was noted in the dedifferentiated component. RNA sequencing performed in 8 paired cases of DDCS comparing well differentiated and dedifferentiated components, showed higher expression of several HSP70 family members and HSP90 in the dedifferentiated component. Furthermore, high mobility group AT-hook 2 (HMAG2) and SET nuclear proto-oncogene demonstrated higher expression in the dedifferentiated component. Thus, the well differentiated and dedifferentiated components of DDCS are different, histologically and transcriptomically. The dedifferentiated component of DDCS shows higher expression of markers that are associated with malignant behavior. Some of these may represent future treatment targets.
Collapse
|
11
|
A new pyrrole based small molecule from Tinospora cordifolia induces apoptosis in MDA-MB-231 breast cancer cells via ROS mediated mitochondrial damage and restoration of p53 activity. Chem Biol Interact 2019; 299:120-130. [DOI: 10.1016/j.cbi.2018.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022]
|