1
|
Aref M, Sisakhtnezhad S, Fallahi H. Investigating the effect of Quercetin in the presence of CoCl 2 as an inducing hypoxia agent on the biological characteristics of human telomerase reverse transcription-immortalized adipose tissue-derived MSCs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117389. [PMID: 39577050 DOI: 10.1016/j.ecoenv.2024.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Studying the effect of small chemical molecules on stem cell characteristics under normoxia and hypoxia conditions is crucial to discovering the best conditions for effective biomedical applications. This study aimed to investigate the effect of Quercetin (QC; a flavonoid) in the presence of CoCl2 as a mimicking hypoxia chemical on the biological features of human telomerase reverse transcription-immortalized mesenchymal stem cell (hTERT-MSC) lines. The effect of CoCl2, QC, and their combination on the viability, proliferation, and migration of hTERT-MSCs were evaluated by MTT, Trypan-blue staining and cell counting by hemocytometer, and in vitro wound healing assays, respectively. Moreover, the effect of treatments on the reactive oxygen species (ROS) production, cell cycle, and HIF1a, c-MET, H19, and CASP3 gene expression was assessed by NBT, PI-staining and flow-cytometry, and real-time PCR assays, respectively. We found that CoCl2 and QC have different effects on the viability, proliferation, and migration of hTERT-MSCs in a dose-dependent manner. In addition, CoCl2 and QC affect ROS levels in cells in a dose- and time-dependent manner. While CoCl2 up-regulated HIF1a, QC and CoCl2 down-regulated CASP3 and c-MET in hTERT-MSCs. Moreover, QC reduced HIF1a and lncRNA-H19 expression in cells. Furthermore, in the presence of CoCl2, QC at low concentrations reduced hTERT-MSC survival, proliferation, and migration at 48 h; however, at high concentrations, it induced cell survival and proliferation. The combination treatment also up-regulated ROS levels and down-regulated the investigated genes in cells. Altogether, we conclude that QC at high concentrations under CoCl2-mediated hypoxia and short exposure time induces hTERT-MSCs survival and proliferation.
Collapse
Affiliation(s)
- Maryam Aref
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | | | - Hossein Fallahi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Meng Z, Zhong X, Liang D, Ma X, Chen W, He X. MiR-143-5p regulates the proangiogenic potential of human dental pulp stem cells by targeting HIF-1α/RORA under hypoxia: A laboratory investigation in pulp regeneration. Int Endod J 2024; 57:1802-1818. [PMID: 39126298 DOI: 10.1111/iej.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
AIM Angiogenesis is a key event in the successful healing of pulp injuries, and hypoxia is the main stimulator of pulpal angiogenesis. In this study, we investigated the effect of hypoxia on the proangiogenic potential of human dental pulp stem cells (hDPSCs) and the role of miR-143-5p in the process. METHODOLOGY Human dental pulp stem cells were isolated, cultured and characterized in vitro. Cobalt chloride (CoCl2) was used to induce hypoxia in hDPSCs. CCK-8 and Transwell assays were used to determine the effect of hypoxia on hDPSCs proliferation and migration. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting (WB) and ELISA were performed to assess the mRNA and protein levels of HIF-1α and angiogenic cytokines in hDPSCs. The effect of hypoxia on hDPSCs proangiogenic potential was measured in vitro using Matrigel tube formation and chick chorioallantoic membrane (CAM) assays. Recombinant lentiviral vectors were constructed to stably overexpress or inhibit miR-143-5p in hDPSCs, and the proangiogenic effects were assessed using qRT-PCR, WB, and tube formation assays. miR-143-5p target genes were identified and verified using bioinformatics prediction tools, dual-luciferase reporter assays and RNA pull-down experiments. Finally, a subcutaneous transplantation model in nude mice was used to determine the effects of hypoxia treatment and miR-143-5p overexpression/inhibition in hDPSCs in dental pulp regeneration. RESULTS Hypoxia promotes hDPSCs proliferation, migration and proangiogenic potential. The in vivo experiments showed that hypoxia treatment (50 and 100 μM CoCl2) promoted pulp angiogenesis and dentine formation. In contrast to the levels of proangiogenic factors, miR-143-5p levels decreased with increasing CoCl2 concentration. miR-143-5p inhibition significantly promoted proangiogenic potential of hDPSCs, whereas miR-143-5p overexpression inhibited angiogenesis in vitro. Dual-luciferase reporter assay identified retinoic acid receptor-related orphan receptor alpha (RORA) as an miR-143-5p target gene in hDPSCs. RNA pull-down experiments demonstrated that HIF-1α and RORA were pulled down by biotin-labelled miR-143-5p, and the levels of HIF-1α and RORA bound to miR-143-5p in the hypoxia group were lower than those in the normoxia group. Inhibition of miR-143-5p expression in hDPSCs promoted ectopic dental pulp tissue regeneration. CONCLUSIONS CoCl2-induced hypoxia promotes hDPSCs-driven paracrine angiogenesis and pulp regeneration. The inhibition of miR-143-5p upregulates the proangiogenic potential of hDPSCs under hypoxic conditions by directly targeting HIF-1α and RORA.
Collapse
Affiliation(s)
- Zijun Meng
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyi Zhong
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- General Dental Clinic I, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dan Liang
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xuemeng Ma
- Department of Oral Pathology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenxia Chen
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xuan He
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Ma M. Role of Hypoxia in Mesenchymal Stem Cells from Dental Pulp: Influence, Mechanism and Application. Cell Biochem Biophys 2024; 82:535-547. [PMID: 38713403 PMCID: PMC11344735 DOI: 10.1007/s12013-024-01274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Mesenchymal stem cells (MSCs) from dental pulp (DP-MSCs), which include dental pulp stem cells (DPSCs) isolated from permanent teeth and stem cells from human exfoliated deciduous teeth (SHED), have emerged as highly promising cell sources for tissue regeneration, due to their high proliferative rate, multi-lineage differentiation capability and non-invasive accessibility. DP-MSCs also exert extensive paracrine effects through the release of extracellular vesicles (EVs) and multiple trophic factors. To be noted, the microenvironment, commonly referred to as the stem cell niche, plays a crucial role in shaping the functionality and therapeutic effects of DP-MSCs, within which hypoxia has garnered considerable attention. Extensive research has demonstrated that hypoxic conditions profoundly impact DP-MSCs. Specifically, hypoxia promotes DP-MSC proliferation, survival, stemness, migration, and pro-angiogenic potential while modulating their multi-lineage differentiation capacity. Furthermore, hypoxia stimulates the paracrine activities of DP-MSCs, leading to an increased production of EVs and soluble factors. Considering these findings, hypoxia preconditioning has emerged as a promising approach to enhance the therapeutic potential of DP-MSCs. In this comprehensive review, we provide a systematic overview of the influence of hypoxia on DP-MSCs, shedding light on the underlying mechanisms involved. Moreover, we also discuss the potential applications of hypoxia-preconditioned DP-MSCs or their secretome in tissue regeneration. Additionally, we delve into the methodologies employed to simulate hypoxic environments. This review aims to promote a comprehensive and systematic understanding of the hypoxia-induced effects on DP-MSCs and facilitate the refinement of regenerative therapeutic strategies based on DP-MSCs.
Collapse
Affiliation(s)
- Muyuan Ma
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Yasan GT, Gunel-Ozcan A. Hypoxia and Hypoxia Mimetic Agents As Potential Priming Approaches to Empower Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2024; 19:33-54. [PMID: 36642875 DOI: 10.2174/1574888x18666230113143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 01/17/2023]
Abstract
Mesenchymal stem cells (MSC) exhibit self-renewal capacity and multilineage differentiation potential, making them attractive for research and clinical application. The properties of MSC can vary depending on specific micro-environmental factors. MSC resides in specific niches with low oxygen concentrations, where oxygen functions as a metabolic substrate and a signaling molecule. Conventional physical incubators or chemically hypoxia mimetic agents are applied in cultures to mimic the original low oxygen tension settings where MSC originated. This review aims to focus on the current knowledge of the effects of various physical hypoxic conditions and widely used hypoxia-mimetic agents-PHD inhibitors on mesenchymal stem cells at a cellular and molecular level, including proliferation, stemness, differentiation, viability, apoptosis, senescence, migration, immunomodulation behaviors, as well as epigenetic changes.
Collapse
Affiliation(s)
| | - Aysen Gunel-Ozcan
- Department of Stem Cell Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Sarath Kumar K, Kritika S, Karthikeyan NS, Sujatha V, Mahalaxmi S, Ravichandran C. Development of cobalt-incorporated chitosan scaffold for regenerative potential in human dental pulp stem cells: An in vitro study. Int J Biol Macromol 2023; 253:126574. [PMID: 37648130 DOI: 10.1016/j.ijbiomac.2023.126574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
The aim of the study was to comparatively evaluate chitosan and Cobalt incorporated chitosan (CoCH) scaffold at varying concentrations in terms of their material characteristics, cytotoxicity and cell adhesion potential. In the present study, cobalt incorporated chitosan scaffolds at varying concentrations were prepared and dried. The synthesised scaffolds were characterised using XRD, FTIR, SEM-EDX and BET which revealed amorphous, porous surface of CoCH scaffolds and FTIR analysis showed the complexation confirming the chelation of cobalt with chitosan. The experimental scaffolds proved to be non-cytotoxic when compared to chitosan scaffolds on XTT analysis. Cell-seeding assay revealed enhanced adherence of hDPSCs to CoCH scaffold at 1:1 ratio in the concentration of 100 mL of 100 μmol/L cobalt chloride solution in 100mL of 2% chitosan solution, when compared to other groups. The results highlighted that 100 μmol/L concentration of cobalt chloride when incorporated in 1:1 ratio into 2 % CH solution yields a promising porous, biocompatible scaffold with enhanced cellular adhesion for dentin-pulp regeneration.
Collapse
Affiliation(s)
- K Sarath Kumar
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science & Technology, Ramapuram Campus, Bharathi Salai, Ramapuram, Chennai 600 089, Tamil Nadu, India
| | - Selvakumar Kritika
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science & Technology, Ramapuram Campus, Bharathi Salai, Ramapuram, Chennai 600 089, Tamil Nadu, India
| | | | - Venkatappan Sujatha
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science & Technology, Ramapuram Campus, Bharathi Salai, Ramapuram, Chennai 600 089, Tamil Nadu, India.
| | - Sekar Mahalaxmi
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Ramapuram, SRM Institute of Science & Technology, Ramapuram Campus, Bharathi Salai, Ramapuram, Chennai 600 089, Tamil Nadu, India
| | - Cingaram Ravichandran
- Department of Chemistry, Easwari Engineering College, Bharathi Salai, Ramapuram, Chennai 600 089, Tamil Nadu, India
| |
Collapse
|
6
|
Shevchenko JA, Nazarov KV, Alshevskaya AA, Sennikov SV. Erythroid Cells as Full Participants in the Tumor Microenvironment. Int J Mol Sci 2023; 24:15141. [PMID: 37894821 PMCID: PMC10606658 DOI: 10.3390/ijms242015141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The tumor microenvironment is an important factor that can determine the success or failure of antitumor therapy. Cells of hematopoietic origin are one of the most important mediators of the tumor-host interaction and, depending on the cell type and functional state, exert pro- or antitumor effects in the tumor microenvironment or in adjacent tissues. Erythroid cells can be full members of the tumor microenvironment and exhibit immunoregulatory properties. Tumor growth is accompanied by the need to obtain growth factors and oxygen, which stimulates the appearance of the foci of extramedullary erythropoiesis. Tumor cells create conditions to maintain the long-term proliferation and viability of erythroid cells. In turn, tumor erythroid cells have a number of mechanisms to suppress the antitumor immune response. This review considers current data on the existence of erythroid cells in the tumor microenvironment, formation of angiogenic clusters, and creation of optimal conditions for tumor growth. Despite being the most important life-support function of the body, erythroid cells support tumor growth and do not work against it. The study of various signaling mechanisms linking tumor growth with the mobilization of erythroid cells and the phenotypic and functional differences between erythroid cells of different origin allows us to identify potential targets for immunotherapy.
Collapse
Affiliation(s)
- Julia A. Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| | - Kirill V. Nazarov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
| | - Alina A. Alshevskaya
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (J.A.S.); (K.V.N.)
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution, Ministry of Health of the Russian Federation, Higher Education I.M. Sechenov First Moscow State Medical University, Sechenov University, 119048 Moscow, Russia;
| |
Collapse
|
7
|
Pádua D, Figueira P, Pinto M, Maia AF, Peixoto J, Lima RT, Pombinho A, Pereira CF, Almeida R, Mesquita P. High-Throughput Drug Screening Revealed That Ciclopirox Olamine Can Engender Gastric Cancer Stem-like Cells. Cancers (Basel) 2023; 15:4406. [PMID: 37686684 PMCID: PMC10487151 DOI: 10.3390/cancers15174406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer stem cells (CSCs) are relevant therapeutic targets for cancer treatment. Still, the molecular circuits behind CSC characteristics are not fully understood. The low number of CSCs can sometimes be an obstacle to carrying out assays that explore their properties. Thus, increasing CSC numbers via small molecule-mediated cellular reprogramming appears to be a valid alternative tool. Using the SORE6-GFP reporter system embedded in gastric non-CSCs (SORE6-), we performed a high-throughput image-based drug screen with 1200 small molecules to identify compounds capable of converting SORE6- to SORE6+ (CSCs). Here, we report that the antifungal agent ciclopirox olamine (CPX), a potential candidate for drug repurposing in cancer treatment, is able to reprogram gastric non-CSCs into cancer stem-like cells via activation of SOX2 expression and increased expression of C-MYC, HIF-1α, KLF4, and HMGA1. This reprogramming depends on the CPX concentration and treatment duration. CPX can also induce cellular senescence and the metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis. We also disclose that the mechanism underlying the cellular reprogramming is similar to that of cobalt chloride (CoCl2), a hypoxia-mimetic agent.
Collapse
Affiliation(s)
- Diana Pádua
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Paula Figueira
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - Mariana Pinto
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - André Filipe Maia
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IBMC—Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| | - Joana Peixoto
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - Raquel T. Lima
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
- Pathology Department, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - António Pombinho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IBMC—Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| | - Carlos Filipe Pereira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Raquel Almeida
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
- Pathology Department, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Patrícia Mesquita
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
8
|
Skalny AV, Aschner M, Silina EV, Stupin VA, Zaitsev ON, Sotnikova TI, Tazina SI, Zhang F, Guo X, Tinkov AA. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023; 13:1006. [PMID: 37371586 DOI: 10.3390/biom13061006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of the present study was to review recent epidemiological and clinical data on the association between selected minerals and trace elements and osteoporosis, as well as to discuss the molecular mechanisms underlying these associations. We have performed a search in the PubMed-Medline and Google Scholar databases using the MeSH terms "osteoporosis", "osteogenesis", "osteoblast", "osteoclast", and "osteocyte" in association with the names of particular trace elements and minerals through 21 March 2023. The data demonstrate that physiological and nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-regulation of BMP-2 and Wnt/β-catenin signaling, as well as other pathways. miRNA and epigenetic effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorptive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which promoted bone resorption and impaired bone formation. Concomitant with the results of the laboratory studies, several clinical trials and epidemiological studies demonstrated that supplementation with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ekaterina V Silina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Victor A Stupin
- Department of Hospital Surgery No. 1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg N Zaitsev
- Department of Physical Education, Yaroslavl State Technical University, 150023 Yaroslavl, Russia
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
9
|
Li Q, Zhang W, Deng J, Li Q, Fu X, Kou Y, Han N. Ameliorative Effects of Extracellular Vesicles Derived from Mesenchymal Stem Cells on Apoptosis and Differentiation of Osteoblasts Treated with CoCl 2. Cell Reprogram 2023; 25:99-108. [PMID: 37184657 DOI: 10.1089/cell.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Severe osteoporotic fracture occurring in sites with inadequate blood supply can cause irreversible damage to cells, particularly osteoblasts, with current drug and surgical interventions exhibiting limitations for elderly individuals. As participants mediating intercellular communication, extracellular vesicles (EVs) are rarely reported to play functional roles in osteoblasts under hypoxia. Our study mainly investigated the effects of bone marrow mesenchymal stem cells-derived EVs (BMSCs-EVs) on apoptosis and differentiation of osteoblasts treated with CoCl2. Primary rat BMSCs and osteoblasts were extracted as required for the following experiments. Cell counting kit 8 assay was used to explore the concentration of CoCl2 for treating osteoblasts, and we found that 100 μM CoCl2 was appropriate to treat osteoblasts for 48 hours. The analysis of flow cytometer showed that CoCl2-treated osteoblasts apoptosis can be ameliorated when cocultured with BMSCs-EVs. Further findings revealed that reactive oxygen species (ROS) was related to CoCl2-induced apoptosis. In addition, our results demonstrated that EVs exerted an important role in increasing expression levels of ALP, BMP-2, OCN, and OSTERIX under hypoxia. Similarly, the functional effects of BMSCs-EVs were observed on the osteoblasts mineralization. In summary, these findings provide insight that BMSCs-EVs might decrease the effect of CoCl2-induced apoptosis through inhibiting ROS, and promote osteogenic differentiation under hypoxia.
Collapse
Affiliation(s)
- Qicheng Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Wei Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Jin Deng
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Qiuya Li
- Department of Hand Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Xiaoyang Fu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
| | - Yuhui Kou
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
- National Center of Trauma Medicine, Beijing, China
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, China
- National Center of Trauma Medicine, Beijing, China
| |
Collapse
|
10
|
Fang L, Feng Z, Mei J, Zhou J, Lin Z. [Hypoxia promotes differentiation of human induced pluripotent stem cells into embryoid bodies in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:929-936. [PMID: 35790445 DOI: 10.12122/j.issn.1673-4254.2022.06.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate effects of physiological hypoxic conditions on suspension and adherence of embryoid bodies (EBs) during differentiation of human induced pluripotent stem cells (hiPSCs) and explore the underlying mechanisms. METHODS EBs in suspension culture were divided into normoxic (21% O2) and hypoxic (5% O2) groups, and those in adherent culture were divided into normoxic, hypoxic and hypoxia + HIF-1α inhibitor (echinomycin) groups. After characterization of the pluripotency with immunofluorescence assay, the hiPSCs were digested and suspended under normoxic and hypoxic conditions for 5 days, and the formation and morphological changes of the EBs were observed microscopically; the expressions of the markers genes of the 3 germ layers in the EBs were detected. The EBs were then inoculated into petri dishes for further culture in normoxic and hypoxic conditions for another 2 days, after which the adhesion and peripheral expansion rate of the adherent EBs were observed; the changes in the expressions of HIF-1α, β-catenin and VEGFA were detected in response to hypoxic culture and echinomycin treatment. RESULTS The EBs cultured in normoxic and hypoxic conditions were all capable of differentiation into the 3 germ layers. The EBs cultured in hypoxic conditions showed reduced apoptotic debris around them with earlier appearance of cystic EBs and more uniform sizes as compared with those in normoxic culture. Hypoxic culture induced more adherent EBs than normoxic culture (P < 0.05) with also a greater outgrowth rate of the adherent EBs (P < 0.05). The EBs in hypoxic culture showed significantly up-regulated mRNA expressions of β-catenin and VEGFA (P < 0.05) and protein expressions of HIF-1 α, β-catenin and VEGFA (P < 0.05), and their protein expresisons levels were significantly lowered after treatment with echinomycin (P < 0.05). CONCLUSION Hypoxia can promote the formation and maturation of suspended EBs and enhance their adherence and post-adherent proliferation without affecting their pluripotency for differentiation into all the 3 germ layers. Our results provide preliminary evidence that activation of HIF-1α/β-catenin/VEGFA signaling pathway can enhance the differentiation potential of hiPSCs.
Collapse
Affiliation(s)
- L Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Z Feng
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan 528200, China
| | - J Mei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - J Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Z Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
11
|
Di Mattia M, Mauro A, Delle Monache S, Pulcini F, Russo V, Berardinelli P, Citeroni MR, Turriani M, Peserico A, Barboni B. Hypoxia-Mimetic CoCl2 Agent Enhances Pro-Angiogenic Activities in Ovine Amniotic Epithelial Cells-Derived Conditioned Medium. Cells 2022; 11:cells11030461. [PMID: 35159271 PMCID: PMC8834320 DOI: 10.3390/cells11030461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Amniotic epithelial stem cells (AECs) are largely studied for their pro-regenerative properties. However, it remains undetermined if low oxygen (O2) levels that AECs experience in vivo can be of value in maintaining their biological properties after isolation. To this aim, the present study has been designed to evaluate the effects of a hypoxia-mimetic agent, cobalt chloride (CoCl2), on AECs’ stemness and angiogenic activities. First, a CoCl2 dose-effect was performed to select the concentration able to induce hypoxia, through HIF-1α stabilization, without promoting any cytotoxicity effect assessed through the analysis of cell vitality, proliferation, and apoptotic-related events. Then, the identified CoCl2 dose was evaluated on the expression and angiogenic properties of AECs’ stemness markers (OCT-4, NANOG, SOX-2) by analysing VEGF expression, angiogenic chemokines’ profiles, and AEC-derived conditioned media activity through an in vitro angiogenic xeno-assay. Results demonstrated that AECs are sensitive to the cytotoxicity effects of CoCl2. The unique concentration leading to HIF-1α stabilization and nuclear translocation was 10 µM, preserving cell viability and proliferation up to 48 h. CoCl2 exposure did not modulate stemness markers in AECs while progressively decreasing VEGF expression. On the contrary, CoCl2 treatment promoted a significant short-term release of angiogenic chemokines in culture media (CM). The enrichment in bio-active factors was confirmed by the ability of CoCl2-derived CM to induce HUVEC growth and the cells’ organization in tubule-like structures. These findings demonstrate that an appropriate dose of CoCl2 can be adopted as a hypoxia-mimetic agent in AECs. The short-term, chemical-induced hypoxic condition can be targeted to enhance AECs’ pro-angiogenic properties by providing a novel approach for stem cell-free therapy protocols.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
- Correspondence:
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.D.M.); (F.P.)
- StemTeCh Group, Via L. Polacchi 11, 66100 Chieti, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.D.M.); (F.P.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Paolo Berardinelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Maria Rita Citeroni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Maura Turriani
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| |
Collapse
|
12
|
Huang L, Zheng Z, Bai D, Han X. Stem Cells from Human Exfoliated Deciduous Teeth and their Promise as Preventive and Therapeutic Strategies for Neurological Diseases and Injuries. Curr Stem Cell Res Ther 2021; 17:527-536. [PMID: 34967291 DOI: 10.2174/1574888x17666211229155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Stem cells from human exfoliated deciduous teeth (SHEDs) are relatively easy to isolate from exfoliated deciduous teeth, which are obtained via dental therapy as biological waste. SHEDs originate from the embryonic neural crest and therefore have considerable potential for neurogenic differentiation. Currently, an increasing amount of research attention is focused on the therapeutic applications of SHEDs in neurological diseases and injuries. In this article, we summarize the biological characteristics of SHEDs and the potential role of SHEDs and their derivatives, including conditioned medium from SHEDs and the exosomes they secrete, in the prevention and treatment of neurological diseases and injuries.
Collapse
Affiliation(s)
- Lingyi Huang
- West China College of Stomatology/ State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Zizhuo Zheng
- West China College of Stomatology/ State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Ding Bai
- West China College of Stomatology/ State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Xianglong Han
- West China College of Stomatology/ State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Okić-Đorđević I, Obradović H, Kukolj T, Petrović A, Mojsilović S, Bugarski D, Jauković A. Dental mesenchymal stromal/stem cells in different microenvironments— implications in regenerative therapy. World J Stem Cells 2021; 13:1863-1880. [PMID: 35069987 PMCID: PMC8727232 DOI: 10.4252/wjsc.v13.i12.1863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Current research data reveal microenvironment as a significant modifier of physical functions, pathologic changes, as well as the therapeutic effects of stem cells. When comparing regeneration potential of various stem cell types used for cytotherapy and tissue engineering, mesenchymal stem cells (MSCs) are currently the most attractive cell source for bone and tooth regeneration due to their differentiation and immunomodulatory potential and lack of ethical issues associated with their use. The microenvironment of donors and recipients selected in cytotherapy plays a crucial role in regenerative potential of transplanted MSCs, indicating interactions of cells with their microenvironment indispensable in MSC-mediated bone and dental regeneration. Since a variety of MSC populations have been procured from different parts of the tooth and tooth-supporting tissues, MSCs of dental origin and their achievements in capacity to reconstitute various dental tissues have gained attention of many research groups over the years. This review discusses recent advances in comparative analyses of dental MSC regeneration potential with regards to their tissue origin and specific microenvironmental conditions, giving additional insight into the current clinical application of these cells.
Collapse
Affiliation(s)
- Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Anđelija Petrović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
14
|
Wei X, Li J, Liu H, Niu C, Chen D. Salidroside promotes the osteogenic and odontogenic differentiation of human dental pulp stem cells through the BMP signaling pathway. Exp Ther Med 2021; 23:55. [PMID: 34917181 PMCID: PMC8630442 DOI: 10.3892/etm.2021.10977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Regenerative endodontics, as an alternative approach, aims to regenerate dental pulp-like tissues and is garnering the attention of clinical dentists. This is due to its reported biological benefits for dental therapeutics. Stem cells and their microenvironment serve an important role in the process of pulp regeneration. Regulation of the stem cell microenvironment and the directed differentiation of stem cells is becoming a topic of intensive research. Salidroside (SAL) is extracted from the root of Rhodiola rosea and it has been reported that SAL exerts antiaging, neuroprotective, hepatoprotective, cardioprotective and anticancer effects. However, the ability of SAL to regulate the osteo/odontogenic differentiation of hDPSCs remains to be elucidated. In the present study, the effect of SAL on the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells (hDPSCs) was investigated. This was achieved by performing CCK-8 ARS staining assay, reverse transcription-quantitative PCR to detect mRNA of ALP, OSX, RUNX2, OCN, DSPP and BSP, western blotting to detect the protein of MAPK, Smad1/5/8, OSX, RUNX2, BSP and GAPDH and immunofluorescence assays to detect DSPP. The results indicated that SAL promoted the cell viability and the osteogenic/odontogenic differentiation of hDPSCs whilst increasing the expression of genes associated with osteogenic/odontogenic differentiation by ARS staining assay. In addition, SAL promoted osteogenic and odontogenic differentiation by activating the phosphorylation of Smad1/5/8. Collectively, these findings suggest that SAL promoted the osteogenic and odontogenic differentiation of hDPSCs activating the BMP signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Wei
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Jiayang Li
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Hui Liu
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Chenguang Niu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Dong Chen
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| |
Collapse
|
15
|
Jeyaraman N, Prajwal GS, Jeyaraman M, Muthu S, Khanna M. Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. OSTEOLOGY 2021; 1:149-174. [DOI: 10.3390/osteology1030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.
Collapse
|
16
|
Di Mattia M, Mauro A, Citeroni MR, Dufrusine B, Peserico A, Russo V, Berardinelli P, Dainese E, Cimini A, Barboni B. Insight into Hypoxia Stemness Control. Cells 2021; 10:cells10082161. [PMID: 34440930 PMCID: PMC8394199 DOI: 10.3390/cells10082161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Recently, the research on stemness and multilineage differentiation mechanisms has greatly increased its value due to the potential therapeutic impact of stem cell-based approaches. Stem cells modulate their self-renewing and differentiation capacities in response to endogenous and/or extrinsic factors that can control stem cell fate. One key factor controlling stem cell phenotype is oxygen (O2). Several pieces of evidence demonstrated that the complexity of reproducing O2 physiological tensions and gradients in culture is responsible for defective stem cell behavior in vitro and after transplantation. This evidence is still worsened by considering that stem cells are conventionally incubated under non-physiological air O2 tension (21%). Therefore, the study of mechanisms and signaling activated at lower O2 tension, such as those existing under native microenvironments (referred to as hypoxia), represent an effective strategy to define if O2 is essential in preserving naïve stemness potential as well as in modulating their differentiation. Starting from this premise, the goal of the present review is to report the status of the art about the link existing between hypoxia and stemness providing insight into the factors/molecules involved, to design targeted strategies that, recapitulating naïve O2 signals, enable towards the therapeutic use of stem cell for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
- Correspondence: ; Tel.: +39-086-1426-6888; Fax: +39-08-6126-6860
| | - Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
- Center of Advanced Studies and Technology (CAST), 66100 Chieti, Italy
| | - Alessia Peserico
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Enrico Dainese
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| |
Collapse
|
17
|
Arab‐Ahmadi S, Irani S, Bakhshi H, Atyabi F, Ghalandari B. Immobilization of cobalt‐loaded laponite/carboxymethyl chitosan on polycaprolactone nanofiber for improving osteogenesis and angiogenesis activities. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samira Arab‐Ahmadi
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Hadi Bakhshi
- Department of Functional Polymer Systems Fraunhofer Institute for Applied Polymer Research IAP Potsdam Germany
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
- Nanotechnology Research Centre, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Behafarid Ghalandari
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
18
|
Modulation of the Dental Pulp Stem Cell Secretory Profile by Hypoxia Induction Using Cobalt Chloride. J Pers Med 2021; 11:jpm11040247. [PMID: 33808091 PMCID: PMC8066657 DOI: 10.3390/jpm11040247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
The action of stem cells is mediated by their paracrine secretions which comprise the secretory profile. Various approaches can be used to modify the secretory profile of stem cells. Creating a hypoxic environment is one method. The present study aims to demonstrate the influence of CoCl2 in generating hypoxic conditions in a dental pulp stem cell (DPSCs) culture, and the effect of this environment on their secretory profile. DPSCs that were isolated from human permanent teeth were characterized and treated with different concentrations of CoCl2 to assess their viability by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and proliferation by a cell counting kit (CCK)-8 assay. The gene expression level of hypoxia-inducible factor 1-alpha (HIF-1α) was analyzed by quantitative real time polymerase chain reaction (qRT-PCR) to demonstrate a hypoxic environment. Comparative evaluation of the growth factors and cytokines were done by cytometric bead array. Gene expression levels of transcription factors OCT4 and SOX2 were analyzed by qRT-PCR to understand the effect of CoCl2 on stemness in DPSCs. DPSCs were positive for MSC-specific markers. Doses of CoCl2, up to 20 µM, did not negatively affect cell viability; in low doses (5 µM), it promoted cell survival. Treatment with 10 µM of CoCl2 significantly augmented the genetic expression of HIF-1α. Cells treated with 10 µM of CoCl2 showed changes in the levels of growth factors and cytokines produced. It was very evident that CoCl2 also increased the expression of OCT4 and SOX2, which is the modulation of stemness of DPSCs. A CoCl2 treatment-induced hypoxic environment modulates the secretory profile of DPSCs.
Collapse
|
19
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
20
|
Vladov I, Petrova E, Pavlova E, Tinkov AA, Ajsuvakova OP, Skalny AV, Gluhcheva Y. Alterations in Blood Metabolic Parameters of Immature Mice After Subchronic Exposure to Cobalt Chloride. Biol Trace Elem Res 2021; 199:588-593. [PMID: 32405686 DOI: 10.1007/s12011-020-02161-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022]
Abstract
The wide use of cobalt (Co) in food, industry, and medical devices requires full elucidation of its biological effects on tissues and organs. The aim was to assess serum metabolic alterations in immature mice after subchronic exposure to CoCl2. Pregnant ICR mice were subjected to a daily dose of 75 mg cobalt chloride/kg body weight (CoCl2x6H2O) 2-3 days before they gave birth, and treatment continued until days 25 and 30 after delivery. The compound was dissolved in and obtained with regular tap water. ICP-DRC-MS analysis showed significantly elevated serum Co2+ and diverse alterations in metabolic parameters of 25- and 30-day-old pups after exposure to CoCl2. Cholesterol and urea levels were significantly elevated in day 25 mice while HDL-C and LDL-C were reduced. In day 30, Co-exposed mice LDL-C and triglycerides were significantly increased while the total cholesterol level remained unchanged. Alkaline phosphatase was significantly reduced in day 25 Co-exposed mice. Blood glucose level of Co-exposed mice remained close to the untreated controls. Total protein content was slightly increased in day 30 mice. Co-exposure reduced albumin content and albumin/globulin ratio but increased significantly globulin content. Co administration showed strong correlation with cholesterol, urea, and HDL-C in both day 25 and 30 mice. Inverse correlation was found with alkaline phosphatase and albumin for day 25 and with triglycerides, globulin, and total protein content in day 30 Co-exposed mice. Subchronic CoCl2 exposure of immature mice induced significant changes in key metabolic parameters suggesting possible further disturbances in energy metabolism, osteogenesis, and reproduction.
Collapse
Affiliation(s)
- Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Emilia Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Ekaterina Pavlova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Alexey A Tinkov
- Yaroslavl State University, Sovetskaya Str., 14, Yaroslavl, 150000, Russia
- IM Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Olga P Ajsuvakova
- Yaroslavl State University, Sovetskaya Str., 14, Yaroslavl, 150000, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Sovetskaya Str., 14, Yaroslavl, 150000, Russia
- IM Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria.
| |
Collapse
|
21
|
Protective Effects of Adiponectin against Cobalt Chloride-Induced Apoptosis of Smooth Muscle Cells via cAMP/PKA Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7169348. [PMID: 33102590 PMCID: PMC7576343 DOI: 10.1155/2020/7169348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
Adiponectin (APN) is an adipokine secreted from adipose tissue and exhibits biological functions such as microcirculation-regulating, hearing-protective, and antiapoptotic. However, the effect of APN on the apoptosis of spiral arterial smooth muscle cells (SMCs) under hypoxic conditions in vitro is not clear. We used cobalt chloride (CoCl2) to simulate chemical hypoxia in vitro, and the SMCs were pretreated with APN and then stimulated with CoCl2. The viability of cells and apoptosis were assessed by CCK-8 and flow cytometry, respectively. Superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, cAMP level, and the activity of PKA were detected by ELISA. Protein expression and localization were studied by Western blot and immunofluorescence analysis. In the present study, we found that APN exhibits antiapoptosis effects. CoCl2 exhibited decreased cell viability, increased apoptosis and MDA levels, and decreased SOD activity in a concentration-dependent manner, compared with the control group. Moreover, CoCl2 upregulated the expression levels of Bax and cleaved caspase-3 and then downregulated Bcl-2 levels in a time-dependent manner. Compared with the CoCl2 group, the group pretreated with APN had increased cell viability, SOD activity, PKA activity, cAMP level, and PKA expression, but decreased MDA levels and apoptosis. Lastly, the protective effect of APN was blocked by cAMP inhibitor SQ22536 and PKA inhibitor H 89. These results showed that APN protected SMCs against CoCl2-induced hypoxic injury via the cAMP/PKA signaling pathway.
Collapse
|
22
|
Xie F, He J, Chen Y, Hu Z, Qin M, Hui T. Multi-lineage differentiation and clinical application of stem cells from exfoliated deciduous teeth. Hum Cell 2020; 33:295-302. [PMID: 32006349 DOI: 10.1007/s13577-020-00323-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) have now been considered one of the most promising sources of stem cells for tissue engineering and stem cell therapies due to their stemness and potential to differentiate into other cell lines. The high proliferation rate, the differentiation capacity, the easy access and less ethical concerns make SHED a brilliant solution for many diseases. The purpose of this review is to describe current knowledge of SHED's capability of differentiation, applications and immune status and to draw attention to further research on the mechanism and the dependability of stem cell therapy with SHED.
Collapse
Affiliation(s)
- Fei Xie
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Jie He
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Yingyi Chen
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Ziqi Hu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China.
| | - Tianqian Hui
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, People's Republic of China.
| |
Collapse
|