1
|
Modrzejewska M, Zdanowska O. The Role of Heat Shock Protein 70 (HSP70) in the Pathogenesis of Ocular Diseases-Current Literature Review. J Clin Med 2024; 13:3851. [PMID: 38999417 PMCID: PMC11242833 DOI: 10.3390/jcm13133851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Heat shock proteins (HSPs) have been attracting the attention of researchers for many years. HSPs are a family of ubiquitous, well-characterised proteins that are generally regarded as protective multifunctional molecules that are expressed in response to different types of cell stress. Their activity in many organs has been reported, including the heart, brain, and retina. By acting as chaperone proteins, HSPs help to refold denatured proteins. Moreover, HSPs elicit inhibitory activity in apoptotic pathways and inflammation. Heat shock proteins were originally classified into several subfamilies, including the HSP70 family. The aim of this paper is to systematise information from the available literature about the presence of HSP70 in the human eye and its role in the pathogenesis of ocular diseases. HSP70 has been identified in the cornea, lens, and retina of a normal eye. The increased expression and synthesis of HSP70 induced by cell stress has also been demonstrated in eyes with pathologies such as glaucoma, eye cancers, cataracts, scarring of the cornea, ocular toxpoplasmosis, PEX, AMD, RPE, and diabetic retinopathy. Most of the studies cited in this paper confirm the protective role of HSP70. However, little is known about these molecules in the human eye and their role in the pathogenesis of eye diseases. Therefore, understanding the role of HSP70 in the pathophysiology of injuries to the cornea, lens, and retina is essential for the development of new therapies aimed at limiting and/or reversing the processes that cause damage to the eye.
Collapse
Affiliation(s)
- Monika Modrzejewska
- 2nd Department of Ophthalmology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Oliwia Zdanowska
- K. Marcinkowski University Hospital, 65-046 Zielona Góra, Poland
| |
Collapse
|
2
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Carvacrol protects the ARPE19 retinal pigment epithelial cells against high glucose-induced oxidative stress, apoptosis, and inflammation by suppressing the TRPM2 channel signaling pathways. Graefes Arch Clin Exp Ophthalmol 2022; 260:2567-2583. [PMID: 35704089 DOI: 10.1007/s00417-022-05731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The concentration of plasma high glucose (HGu) in diabetes mellitus (DM) induces the retinal pigment epithelial cell (ARPE19) death via the increase of inflammation, cytosolic (cytROS), and mitochondrial (mitROS) free oxygen radical generations. Transient potential melastatin 2 (TRPM2) cation channel is stimulated by cytROS and mitROS. Hence, the cytROS and mitROS-mediated excessive Ca2+ influxes via the stimulation of TRPM2 channel cause to the induction of DM-mediated retina oxidative cytotoxicity. Because of the antioxidant role of carvacrol (CRV), it may modulate oxidative cytotoxicity via the attenuation of TRPM2 in the ARPE19. We aimed to investigate the modulator action of CRV treatment on the HGu-mediated TRPM2 stimulation, oxidative stress, and apoptosis in the ARPE19 cell model. MATERIAL AND METHODS The ARPE19 cells were divided into four groups as normal glucose (NGu), NGu + Carv, HGu, and HGu + CRV. RESULTS The levels of cell death (propidium iodide/Hoechst rate) and apoptosis markers (caspases 3, 8, and 9), cytokine generations (IL-1β and TNF-α), ROS productions (cytROS, mitROS, and lipid peroxidation), TRPM2 currents, and intracellular free Ca2+ (Fluo/3) were increased in the HGu group after the stimulations of hydrogen peroxide and ADP-ribose, although their levels were diminished via upregulation of glutathione and glutathione peroxidase by the treatments of CRV and TRPM2 blockers. CONCLUSION Current results confirmed that the HGu-induced overload Ca2+ influx and oxidative retinal toxicity in the ARPE19 cells were induced by the stimulation of TRPM2, although they were modulated via the inhibition of TRPM2 by CRV. CRV may be noted as a potential therapeutic antioxidant to the TRPM2 activation-mediated retinal oxidative injury.
Collapse
|
4
|
Overexpression of CERKL Protects Retinal Pigment Epithelium Mitochondria from Oxidative Stress Effects. Antioxidants (Basel) 2021; 10:antiox10122018. [PMID: 34943121 PMCID: PMC8698444 DOI: 10.3390/antiox10122018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/02/2023] Open
Abstract
The precise function of CERKL, a Retinitis Pigmentosa (RP) causative gene, is not yet fully understood. There is evidence that CERKL is involved in the regulation of autophagy, stress granules, and mitochondrial metabolism, and it is considered a gene that is resilient against oxidative stress in the retina. Mutations in most RP genes affect photoreceptors, but retinal pigment epithelium (RPE) cells may be also altered. Here, we aimed to analyze the effect of CERKL overexpression and depletion in vivo and in vitro, focusing on the state of the mitochondrial network under oxidative stress conditions. Our work indicates that the depletion of CERKL increases the vulnerability of RPE mitochondria, which show a shorter size and altered shape, particularly upon sodium arsenite treatment. CERKL-depleted cells have dysfunctional mitochondrial respiration particularly upon oxidative stress conditions. The overexpression of two human CERKL isoforms (558 aa and 419 aa), which display different protein domains, shows that a pool of CERKL localizes at mitochondria in RPE cells and that CERKL protects the mitochondrial network—both in size and shape—against oxidative stress. Our results support CERKL being a resilient gene that regulates the mitochondrial network in RPE as in retinal neurons and suggest that RPE cell alteration contributes to particular phenotypic traits in patients carrying CERKL mutations.
Collapse
|
5
|
Liu YC, Yam GHF, Lin MTY, Teo E, Koh SK, Deng L, Zhou L, Tong L, Mehta JS. Comparison of tear proteomic and neuromediator profiles changes between small incision lenticule extraction (SMILE) and femtosecond laser-assisted in-situ keratomileusis (LASIK). J Adv Res 2021; 29:67-81. [PMID: 33842006 PMCID: PMC8020296 DOI: 10.1016/j.jare.2020.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction The tear proteomics and neuromediators are associated with clinical dry eye parameters following refractive surgery. Purpose To investigate and compare the tear proteomic and neuromediator profiles following small incision lenticule extraction (SMILE) versus laser-assisted in-situ keratomileusis (LASIK). Methods In this randomized controlled trial with paired-eye design, 70 patients were randomized to receive SMILE in one eye and LASIK in the other eye. Tear samples were collected preoperatively, and 1 week, 1, 3, 6 and 12 months postoperatively, and were examined for protein concentration changes using sequential window acquisition of all theoretical fragment ion mass spectrometry (SWATH-MS). The data were analyzed with DAVID Bioinformatics Resources for enriched gene ontology terms and over-represented pathways. Tear neuromediators levels were correlated with clinical parameters. Results Post-SMILE eyes had significantly better Oxford staining scores and tear break-up time (TBUT) than post-LASIK eyes at 1 and 3 months, respectively. Tear substance P and nerve growth factor levels were significantly higher in the LASIK group for 3 months and 1 year, respectively. SMILE and LASIK shared some similar biological responses postoperatively, but there was significant up-regulation in leukocyte migration and wound healing at 1 week, humoral immune response and apoptosis at 1 month, negative regulation of endopeptidase activity at 3 to 6 months, and extracellular structure organization at 1 year in the post-LASIK eyes. Tear mucin-like protein 1 and substance P levels were significantly correlated with TBUT (r = -0.47, r = -0.49, respectively). Conclusion Significant differences in the tear neuromediators and proteomics were observed between SMILE and LASIK, even though clinical dry eye signs have subsided and became comparable between 2 procedures.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Gary Hin-Fai Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| | - Molly Tzu-Yu Lin
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Ericia Teo
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Siew-Kwan Koh
- Ocular Proteomics, Singapore Eye Research Institute, Singapore
| | - Lu Deng
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore
| | - Lei Zhou
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Ocular Proteomics, Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Louis Tong
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Ocular Surface Group, Singapore Eye Research Institute, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
6
|
Lyu Q, Wawrzyniuk M, Rutten VPMG, van Eden W, Sijts AJAM, Broere F. Hsp70 and NF-kB Mediated Control of Innate Inflammatory Responses in a Canine Macrophage Cell Line. Int J Mol Sci 2020; 21:ijms21186464. [PMID: 32899721 PMCID: PMC7555705 DOI: 10.3390/ijms21186464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of many inflammatory diseases is associated with the uncontrolled activation of nuclear factor kappa B (NF-κB) in macrophages. Previous studies have shown that in various cell types, heat shock protein 70 (Hsp70) plays a crucial role in controlling NF-κB activity. So far, little is known about the role of Hsp70 in canine inflammatory processes. In this study we investigated the potential anti-inflammatory effects of Hsp70 in canine macrophages as well as the mechanisms underlying these effects. To this end, a canine macrophage cell line was stressed with arsenite, a chemical stressor, which upregulated Hsp70 expression as detected by flow cytometry and qPCR. A gene-edited version of this macrophage cell line lacking inducible Hsp70 was generated using CRISPR-Cas9 technology. To determine the effects of Hsp70 on macrophage inflammatory properties, arsenite-stressed wild-type and Hsp70 knockout macrophages were exposed to lipopolysaccharide (LPS), and the expression of the inflammatory cytokines IL-6, IL-1β and tumor necrosis factor-α (TNF-α) and levels of phosphorylated NF-κB were determined by qPCR and Western Blotting, respectively. Our results show that non-toxic concentrations of arsenite induced Hsp70 expression in canine macrophages; Hsp70 upregulation significantly inhibited the LPS-induced expression of the pro-inflammatory mediators TNF-α and IL-6, as well as NF-κB activation in canine macrophages. Furthermore, the gene editing of inducible Hsp70 by CRISPR-Cas9-mediated gene editing neutralized this inhibitory effect of cell stress on NF-κB activation and pro-inflammatory cytokine expression. Collectively, our study reveals that Hsp70 may regulate inflammatory responses through NF-κB activation and cytokine expression in canine macrophages.
Collapse
Affiliation(s)
- Qingkang Lyu
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
| | - Magdalena Wawrzyniuk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
| | - Victor P. M. G. Rutten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, 0110 Pretoria, South Africa
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
| | - Alice J. A. M. Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (Q.L.); (M.W.); (V.P.M.G.R.); (W.v.E.); (A.J.A.M.S.)
- Correspondence:
| |
Collapse
|
7
|
Kumar R, Soni R, Heindl SE, Wiltshire DA, Khan S. Unravelling the Role of HSP70 as the Unexplored Molecular Target in Age-Related Macular Degeneration. Cureus 2020; 12:e8960. [PMID: 32766003 PMCID: PMC7398729 DOI: 10.7759/cureus.8960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The motive behind writing this paper was to highlight the relationship between heat shock protein 70 (HSP70) and age-related macular degeneration (AMD) to explore the potential role of HSP70 as a molecular target in AMD therapy. We performed a comprehensive literature search in various databases and finally found 43 relevant studies related to our objective. In our research, we found that in AMD, oxidative stress causes increased inflammation and excessive apoptosis due to the accumulation of aberrant proteins in retinal pigment epithelium (RPE) cells. The long-lasting overstimulation of the defence system leads to RPE degeneration and results in visual impairment or vision loss. However, after thorough research, it was found that HSP70's role as an immunomodulator, the guardian of the proteolytic pathway and regulator of apoptosis makes it a potential therapeutic target in AMD.
Collapse
Affiliation(s)
- Rajat Kumar
- Ophthalmology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Ravi Soni
- Neurology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Stacey E Heindl
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Dwayne A Wiltshire
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|