1
|
Tang M, Liu W. Tropisetron attenuates high glucose-induced oxidative stress and inflammation in ARPE-19 cells in vitro via regulating SIRT1/ROCK1 signaling. Drug Dev Res 2024; 85:e70002. [PMID: 39381984 DOI: 10.1002/ddr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Diabetic retinopathy (DR) is the leading cause of acquired blindness in diabetic patients. Tropisetron (TRO) exerts potent therapeutic effects against diabetic tissues. The present study aimed to investigate the effects of TRO on retinal injury under diabetic condition. Human retinal pigment epithelial cell line ARPE-19 was treated with high glucose (HG) for 48 h to mimic hyperglycemia-induced retinal damage and subsequently treated with multiple concentrations of TRO for therapeutic intervention. Cell viability and lactate dehydrogenase (LDH) release were detected to assess cell damage. The production of inflammatory cytokines and oxidative stress-related factors was evaluated by corresponding commercial kits. Cell apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The expression of inflammation-, apoptosis-, and SIRT1/ROCK1-related proteins was examined using western blot analysis. Additionally, ARPE-19 cells were transfected with over-express ROCK1 (Ov-ROCK1) or pretreatment with SIRT1 inhibitor EX527 to perform the rescue experiments. TRO alleviated cell damage in HG-induced ARPE-19 cells through elevating cell viability and reducing LDH release. HG-caused excessive production of TNF-α, IL-1β and IL-6, ROS, malondialdehyde and decreased superoxide dismutase activity were partly inhibited by TRO treatment. HG-induced cell apoptosis, accompanied with the upregulation of proapoptotic proteins and the downregulation of antiapoptotic proteins, was hindered by TRO treatment. HG led to the loss of SIRT1 and an elevation of ROCK1 in ARPE-19 cells, which was reversed following TRO treatment. Furthermore, pretreatment with EX527 or transfected with Ov-ROCK1 partially abolished the protective role of TRO against inflammation, oxidative stress and cell apoptosis in HG-challenged ARPE-19 cells. TRO exerted a protective role against HG-caused ARPE-19 cells inflammation, oxidative stress and cell apoptosis by regulating SIRT1/ROCK1 axis, suggesting that TRO might be therapeutic agent for alleviating retinal pigment epithelial cell damage in DR.
Collapse
Affiliation(s)
- Mingxia Tang
- Medical College, Yangzhou University, Yangzhou, China
| | - Wei Liu
- Medical College, Yangzhou University, Yangzhou, China
- Department of Ophthalmology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| |
Collapse
|
2
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Hasegawa K, Tamaki M, Shibata E, Inagaki T, Minato M, Yamaguchi S, Shimizu I, Miyakami S, Tada M, Wakino S. Ability of NAD and Sirt1 to epigenetically suppress albuminuria. Clin Exp Nephrol 2024; 28:599-607. [PMID: 38587753 PMCID: PMC11190001 DOI: 10.1007/s10157-024-02502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
The time for diabetic nephropathy (DN) to progress from mild to severe is long. Thus, methods to continuously repress DN are required to exert long-lasting effects mediated through epigenetic regulation. In this study, we demonstrated the ability of nicotinamide adenine dinucleotide (NAD) and its metabolites to reduce albuminuria through Sirt1- or Nampt-dependent epigenetic regulation. We previously reported that proximal tubular Sirt1 was lowered before glomerular Sirt1. Repressed glomerular Sirt1 was found to epigenetically elevate Claudin-1. In addition, we reported that proximal tubular Nampt deficiency epigenetically augmented TIMP-1 levels in Sirt6-mediated pathways, leading to type-IV collagen deposition and diabetic fibrosis. Altogether, we propose that the Sirt1/Claudin-1 axis may be crucial in the onset of albuminuria at the early stages of DN and that the Nampt/Sirt6/TIMP-1 axis promotes diabetic fibrosis in the middle to late stages of DN. Finally, administration of NMN, an NAD precursor, epigenetically potentiates the regression of the onset of DN to maintain Sirt1 and repress Claudin-1 in podocytes, suggesting the potential use of NAD metabolites as epigenetic medications for DN.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Masanori Tamaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Eriko Shibata
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Taizo Inagaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masanori Minato
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Sumiyo Yamaguchi
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ikuko Shimizu
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shinji Miyakami
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Miho Tada
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shu Wakino
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
4
|
Mirshafa A, Shokati Sayyad M, Mohammadi E, Talebpour Amiri F, Shaki F. 5-HT3 antagonist, tropisetron, ameliorates age-related renal injury induced by D-galactose in male mice: Up-regulation of sirtuin 1. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:577-587. [PMID: 38629089 PMCID: PMC11017841 DOI: 10.22038/ijbms.2024.74025.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/14/2023] [Indexed: 04/19/2024]
Abstract
Objectives The kidney ages faster than other organs due to changes in energy metabolism, mitochondrial dysfunction, and oxidative stress. This study looked into the anti-aging effect of tropisetron. Materials and Methods D-galactose was administrated subcutaneously in a mouse model for eight weeks in order to induce renal aging. Three separate intraperitoneal doses of tropisetron (1, 3, and 5 mg/kg body weight) were given at the same time. We assessed markers of mitochondrial dysfunction, oxidative stress, and inflammation. Via Real-Time PCR, the expressions of genes linked to aging (SIRT1) and apoptosis (Bax and Bcl-2) were ascertained. In addition, an assessment of histopathological changes, blood urea nitrogen, and creatinine concentrations was done. Results In kidney tissue, tropisetron reduces mitochondrial dysfunction and oxidative stress, which are caused by D-galactose-induced overproduction of inflammatory mediators. Additionally, tropisetron demonstrated antiapoptotic activity in renal tissue and augmented the decrease in SIRT1 gene expression associated with D-galactose administration. Besides, tropisetron significantly improved the histological alterations in the renal tissues of aged mice and effectively decreased the elevated levels of creatinine and also blood urea nitrogen. Conclusion The results provided additional insight into the effect of tropisetron on renal aging and the underlying mechanisms, particularly through its ability to modulate SIRT1 signaling.
Collapse
Affiliation(s)
- Atefeh Mirshafa
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | | | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Gao Y, Zhang Y, Liu W, Zhang N, Gao Q, Shangguan J, Li N, Zhao Y, Jia Y. Danggui Buxue decoction alleviates cyclophosphamide-induced myelosuppression by regulating β-hydroxybutyric acid metabolism and suppressing oxidative stress. PHARMACEUTICAL BIOLOGY 2023; 61:710-721. [PMID: 37096658 PMCID: PMC10132245 DOI: 10.1080/13880209.2023.2201606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Danggui Buxue Decoction (DBD) is an effective complementary medicine in alleviating myelosuppression after chemotherapy (MAC). However, its mechanism of action is elusive. OBJECTIVE To illustrate that regulating β-hydroxybutyric acid (β-OHB) metabolism and suppressing oxidative stress could be a potential mechanism of action for DBD in alleviating MAC. MATERIALS AND METHODS After HPLC quantification and dose testing (3, 6 and 10 g/kg, gavage) of DBD, Sprague-Dawley rats were divided into control, cyclophosphamide (CTX) (30 mg/kg CTX for 5 days, intraperitoneal administration) and CTX + DBD groups (6 g/kg DBD for 14 days, gavage). Blood cell counts, thigh bone histological examination, β-OHB levels, oxidative stress indices and HDAC1 activity were tested. The biological function of β-OHB was verified in vitro (hBMSC cells were incubated in culture mediums that contained 40 μM CTX and β-OHB in 0, 1, 2.5, 5, 10 mM) and in vivo (MAC rat model, 3 g/kg β-OHB for 14 days, gavage). RESULTS Rats in the CTX + DBD group showed upregulated blood cell counts (118-243%), β-OHB levels (495 nmol/mL in blood, 122 nmol/mg in marrow supernatant) and downregulated HDAC1 activity (59%), and oxidative stress indices (60-85%). In vitro, 5 mM β-OHB improved hBMSC cell migration (123%) and proliferation (131%). In vivo, rats treated with 3 g/kg β-OHB showed upregulated blood cell counts (121-182%) and downregulated HDAC1 activity (64%) and oxidative stress indices (65-83%). DISCUSSION AND CONCLUSIONS DBD, a traditional Chinese medicine, alleviates MAC by intervening in β-OHB metabolism and oxidative stress.
Collapse
Affiliation(s)
- Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
- Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang, P. R. China
- CONTACT Yiqiao Gao
| | - Yixin Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
- Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang, P. R. China
| | - Wei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
| | - Nan Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
| | | | - Na Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
- Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang, P. R. China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
- Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang Medical University, Xinxiang, P. R. China
| | - Yanlong Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, P. R. China
- Yanlong Jia School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan453003, P. R. China
| |
Collapse
|
6
|
Abo-Elghiet F, Ahmed AH, Aly HF, Younis EA, Rabeh MA, Alshehri SA, Alshahrani KSA, Mohamed SA. D-Pinitol Content and Antioxidant and Antidiabetic Activities of Five Bougainvillea spectabilis Willd. Cultivars. Pharmaceuticals (Basel) 2023; 16:1008. [PMID: 37513920 PMCID: PMC10385032 DOI: 10.3390/ph16071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus is a major challenge for global health, and Bougainvillea spectabilis Willd. (B. spectabilis) is a widely used herbal remedy with diverse cultivars traditionally used for diabetes treatment. However, the comparative efficacy of these cultivars remains ambiguous. This study aimed to evaluate the D-pinitol content and DPPH radical-scavenging activity of methanolic leaves extracts of five B. spectabilis cultivars. Furthermore, the effects of these cultivars on various parameters, including blood glucose levels, oxidative stress markers, inflammatory cytokines, lipid profiles, liver enzymes, renal function markers, and histopathological changes, were assessed in STZ-induced diabetic rats after one month of oral daily treatment. All tested cultivars demonstrated significant improvements in the measured parameters, albeit to varying extents. Notably, the LOE cultivar, distinguished by its orange bracts, exhibited the highest efficacy, surpassing the effectiveness of glibenclamide, an antidiabetic medication, and displayed the highest concentration of D-pinitol. These findings underscore the importance of carefully selecting the appropriate B. spectabilis cultivar to maximize the antidiabetic efficacy, with a particular emphasis on the correlation between antidiabetic activity and D-pinitol concentrations.
Collapse
Affiliation(s)
- Fatma Abo-Elghiet
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt; (A.H.A.); (S.A.M.)
| | - Amal H. Ahmed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt; (A.H.A.); (S.A.M.)
| | - Hanan F. Aly
- Department of Therapeutic Chemistry, National Research Centre (NRC), El Behouth St., Giza 12311, Egypt; (H.F.A.); (E.A.Y.)
| | - Eman A. Younis
- Department of Therapeutic Chemistry, National Research Centre (NRC), El Behouth St., Giza 12311, Egypt; (H.F.A.); (E.A.Y.)
| | - Mohamed A. Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (M.A.R.); (S.A.A.)
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (M.A.R.); (S.A.A.)
| | | | - Shaza A. Mohamed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt; (A.H.A.); (S.A.M.)
| |
Collapse
|
7
|
Wu N, Lu C, Wang Y, Liu L, Lu D, Zhou Y, He M, Zhang X, Song G. Semiconducting Polymer Nanoparticles-Manganese Based Chemiluminescent Platform for Determining Total Antioxidant Capacity in Diabetic Mice. Anal Chem 2023; 95:6603-6611. [PMID: 37043629 DOI: 10.1021/acs.analchem.2c05624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The total antioxidant capacity (TAC) is a key indicator of the body's resistance to oxidative stress injury in diabetic patients. The measurement of TAC is important for effectively evaluating the redox state to prevent and control the occurrence of diabetes complications. However, there is a lack of a simple, convenient, and reliable method to detect the total antioxidant capacity in diabetes. Herein, we design a novel chemiluminescent platform based on semiconducting polymer nanoparticles-manganese (SPNs-MnVII) to detect the total antioxidant capacity of urine in diabetic mice. We synthesize semiconducting polymer nanoparticles with four different structures and discover the ability of MnVII to produce singlet oxygen (1O2) that is employed to excite thiophene-based SPNs (PFODBT) to emit near-infrared chemiluminescence. Notably, the chemiluminescent intensity has a good linear relationship with the concentration of MnVII (detection limit: 2.8 μM). Because antioxidants (e.g., glutathione or ascorbic acid) can react with MnVII, such a chemiluminescent tool of SPNs (PFODBT)-MnVII can detect the glutathione or ascorbic acid with a larger responsive range. Furthermore, the total antioxidant capacity of urine from mice is evaluated via SPNs (PFODBT)-MnVII, and there are statistically significant differences between diabetic and healthy mice. Thus, this new chemiluminescent platform of SPNs (PFODBT)-MnVII is convenient, efficient, and sensitive, which is promising for monitoring antioxidant therapy of diabetes.
Collapse
Affiliation(s)
- Na Wu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Youjuan Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liuhui Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dingyou Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ying Zhou
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Min He
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Li S, Lin Z, Xiao H, Xu Z, Li C, Zeng J, Xie X, Deng L, Huang H. Fyn deficiency inhibits oxidative stress by decreasing c-Cbl-mediated ubiquitination of Sirt1 to attenuate diabetic renal fibrosis. Metabolism 2023; 139:155378. [PMID: 36538986 DOI: 10.1016/j.metabol.2022.155378] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Oxidative stress (OS) is the main cause leading to diabetic renal fibrosis. Recently, Fyn was paid much attention on OS and emerged as a pivotal player in acute kidney injury, while whether Fyn regulates oxidative stress in chronic diabetes nephropathy (DN) has not been clarified yet. The purpose of this study was to identify the role of Fyn in DN and elucidated its regulatory mechanism. METHODS The db/db mice and littermate control C57BKS/J mice were injected by tail vein with Fyn interfering adenovirus or Fyn overexpressing adenovirus to investigate the role of Fyn in vivo. Primary glomerular mesangial cells (GMCs) were used for in vitro studies. RESULTS Fyn was up-regulated in high glucose (HG)-induced GMCs and kidneys of diabetic mice. Additionally, Fyn knockdown reduced the level of OS in HG-induced GMCs and kidneys of diabetic mice, thereby ameliorating diabetic renal fibrosis. While overexpression of Fyn significantly increased the level of OS in GMCs and kidney tissues, resulting in renal damage. Moreover, Fyn deficiency exerted antioxidant effects by activating the Sirt1/Foxo3a pathway. Mechanistically, Fyn facilitated the combination of c-Cbl and Sirt1 by phosphorylating c-Cbl at Tyr731, which triggered K48-linked polyubiquitination of Sirt1 at Lys377 and Lys513 by c-Cbl and promoted Sirt1 degradation, impairing the antioxidant effects of Foxo3a. CONCLUSIONS Fyn deficiency promoted Foxo3a nuclear transcription via reducing the ubiquitination of Sirt1 by c-Cbl, thereby alleviating renal oxidative damage in diabetic mice. These results identified Fyn as a potential therapeutic target against DN.
Collapse
Affiliation(s)
- Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuting Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Ameliorative Potential of Resveratrol in Dry Eye Disease by Restoring Mitochondrial Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1013444. [PMID: 35664941 PMCID: PMC9162831 DOI: 10.1155/2022/1013444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Methods The mitochondrial dysfunction of HCE-2 human corneal epithelial cells was induced by high osmotic pressure exposure and treated with resveratrol (50 μM). Western blotting was used to detect the expression of the antioxidant proteins SOD2, GPx, and SIRT1, and flow cytometry was used to detect cell apoptosis and ROS production. The DED mouse model was induced by 0.2% benzalkonium chloride (BAC) and treated with resveratrol. The tear yield was measured by the phenol cotton thread test, the density of cup cells in the conjunctiva was measured by periodic acid-Schiff (PAS) staining, and the expression levels of SIRT1, GPx, and SOD2 in lacrimal glands were detected by Western blotting. Results In hypertonic conditions, the apoptosis of HCE-2 cells increased, the expression of the antioxidant proteins SOD2 and GPx decreased, ROS production increased, and the expression of SIRT1 protein, an essential regulator of mitochondrial function, was downregulated. Treatment with resveratrol reversed the mitochondrial dysfunction mediated by high osmotic pressure. In the DED mouse model, resveratrol treatment promoted tear production and goblet cell number in DED mice, decreased corneal fluorescein staining, upregulated SIRT1 expression, and induced SOD2 and GPx expression in DED mice. Conclusion Resveratrol alleviates mitochondrial dysfunction by promoting SIRT1 expression, thus reducing ocular surface injury in mice with dry eye. This study suggests a new path against DED.
Collapse
|
10
|
Iida M, Ohtomo S, Wada NA, Ueda O, Tsuboi Y, Kurata A, Jishage KI, Horiba N. TNF-α induces Claudin-1 expression in renal tubules in Alport mice. PLoS One 2022; 17:e0265081. [PMID: 35271660 PMCID: PMC8912176 DOI: 10.1371/journal.pone.0265081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Claudin-1 (CL-1) is responsible for the paracellular barrier function of glomerular parietal epithelial cells (PEC) in kidneys, but the role of CL-1 in proximal tubules remains to be elucidated. In this study, to evaluate CL-1 as a potential therapeutic drug target for chronic kidney disease, we investigated change of CL-1 expression in the proximal tubules of diseased kidney and elucidated the factors that induced this change. We established Alport mice as a kidney disease model and investigated the expression of CL-1 in diseased kidney using quantitative PCR and immunohistochemistry (IHC). Compared to wild type mice, Alport mice showed significant increases in plasma creatinine, urea nitrogen and urinary albumin excretion. CL-1 mRNA was increased significantly in the kidney cortex and CL-1 was localized on the adjacent cell surfaces of PECs and proximal tubular epithelial cells. The infiltration of inflammatory cells around proximal tubules and a significant increase in TNF-α mRNA were observed in diseased kidneys. To reveal factors that induce CL-1, we analyzed the induction of CL-1 by albumin or tumor necrosis factor (TNF)-α in human proximal tubular cells (RPTEC/TERT1) using quantitative PCR and Western blotting. TNF-α increased CL-1 expression dose-dependently, though albumin did not affect CL-1 expression in RPTEC/TERT1. In addition, both CL-1 and TNF-α expression were significantly increased in UUO mice, which are commonly used as a model of tubulointerstitial inflammation without albuminuria. These results indicate that CL-1 expression is induced by inflammation, not by albuminuria in diseased proximal tubules. Moreover, we examined the localization of CL-1 in the kidney of IgA nephropathy patients by IHC and found CL-1 expression was also elevated in the proximal tubular cells. Taken together, CL-1 expression is increased in the proximal tubular epithelial cells of diseased kidney. Inflammatory cells around the tubular epithelium may produce TNF-α which in turn induces CL-1 expression.
Collapse
Affiliation(s)
- Manami Iida
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Shuichi Ohtomo
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Naoko A. Wada
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Otoya Ueda
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yoshinori Tsuboi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Atsuo Kurata
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Kou-ichi Jishage
- Chugai Research Institute for Medical Science Inc., Gotemba, Shizuoka, Japan
| | - Naoshi Horiba
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
11
|
Abstract
Diabetes mellitus (DM) is gradually attacking the health and life of people all over the world. Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of DM, whose mechanism is complex and still lacks research. Sirtuin family is a class III histone deacetylase with highly conserved NAD+ binding domain and catalytic functional domain, while different N-terminal and C-terminal structures enable them to bind different deacetylated substrates to participate in the cellular NAD+ metabolism. The kidney is an organ rich in NAD+ and database exploration of literature shows that the Sirtuin family has different expression localization in renal, cellular, and subcellular structures. With the progress of modern technology, a variety of animal models and reagents for the Sirtuin family and DKD emerged. Machine learning in the literature shows that the Sirtuin family can regulate pathophysiological injury mainly in the glomerular filtration membrane, renal tubular absorption, and immune inflammation through various mechanisms such as epigenetics, multiple signaling pathways, and mitochondrial function. These mechanisms are the key nodes participating in DKD. Thus, it is of great significance for target therapy to study biological functions of the Sirtuin family and DKD regulation mechanism in-depth.
Collapse
Affiliation(s)
- Che Bian
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Huiwen Ren,
| |
Collapse
|
12
|
Karimollah A, Hemmatpur A, Hosseini N, Manshadi MD. Tropisetron balances immune responses via TLR2, TLR4 and JAK2/STAT3 signalling pathway in LPS-stimulated PBMCs. Basic Clin Pharmacol Toxicol 2021; 128:669-676. [PMID: 33523585 DOI: 10.1111/bcpt.13565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 11/28/2022]
Abstract
Numerous documents have been stated that tropisetron, an antagonist of the 5-HT3 receptor and α7nAChR agonist, modulates immune responses. However, the mechanistic basis for this aspect of tropisetron action is largely unknown. Here, the immuno-modulatory effects of tropisetron are investigated, focusing on the possible molecular targets and the mechanisms. Aside from the well-characterized role in immune signalling, JAK2/STAT3, TLR2 and TLR4 are signal transducers linked to both immuno-modulatory actions of acetylcholine and serotonin. Therefore, we evaluated their involvement in the immunoregulatory effects of tropisetron. To test the hypothesis, we assessed the expression of pro-/anti-inflammatory cytokines including TNF-α, IL-1β, IL-17 and IL-10 following tropisetron treatment in lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) derived from healthy subjects. Tropisetron up-regulates the transcription of TLR2, TLR4, JAK2 and STAT3 genes. Tropisetron also increases the expression of target pro-inflammatory cytokines, although considerably suppresses the pro-inflammatory cytokines (IL-1β, IL-17 and TNF-α) levels in media. Tropisetron notably promotes both IL-10 gene expression and secretion. These findings confirm the antiphlogistic properties of tropisetron. The present data also shed light on a new aspect of tropisetron immune-modulatory action that engaged TLR2, TLR4 and JAK2/STAT3 signalling cascades.
Collapse
Affiliation(s)
- Alireza Karimollah
- Department of Pharmacology, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Anahid Hemmatpur
- Department of Biochemistry, School of medicine, Shahid Sadoughi University of medical sciences and Health Services, Yazd, Iran
| | - Nafise Hosseini
- Department of Pharmacology, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mahdi Dehghan Manshadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|