1
|
Lebiedzinska-Arciszewska M, Pakula B, Bonora M, Missiroli S, Potes Y, Jakubek-Olszewska P, Simoes ICM, Pinton P, Wieckowski MR. Distribution of the p66Shc Adaptor Protein Among Mitochondrial and Mitochondria-Associated Membranes Fractions in Normal and Oxidative Stress Conditions. Int J Mol Sci 2024; 25:12835. [PMID: 39684546 DOI: 10.3390/ijms252312835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
p66Shc is an adaptor protein and one of the cellular fate regulators since it modulates mitogenic signaling pathways, mitochondrial function, and reactive oxygen species (ROS) production. p66Shc is localized mostly in the cytosol and endoplasmic reticulum (ER); however, under oxidative stress, p66Shc is post-translationally modified and relocates to mitochondria. p66Shc was found in the intermembrane space, where it interacts with cytochrome c, contributing to the hydrogen peroxide generation by the mitochondrial respiratory chain. Our previous studies suggested that p66Shc is localized also in mitochondria-associated membranes (MAM). MAM fraction consists of mitochondria and mostly ER membranes. Contact sites between ER and mitochondria host proteins involved in multiple processes including calcium homeostasis, apoptosis, and autophagy regulation. Thus, p66Shc in MAM could participate in processes related to cell fate determination. Due to reports on various and conditional p66Shc intracellular localization, in the present paper, we describe the allocation of p66Shc pools in different subcellular compartments in mouse liver tissue and HepG2 cell culture. We provide additional evidence for p66Shc localization in MAM. In the present study, we use precisely purified subcellular fraction isolated by differential centrifugation-based protocol from control mouse liver tissue and HepG2 cells and from cells treated with hydrogen peroxide to promote mitochondrial p66Shc translocation. We performed controlled digestion of crude mitochondrial fraction, in which the degradation patterns of p66Shc and MAM fraction marker proteins were comparable. Moreover, we assessed the distribution of the individual ShcA isoforms (p46Shc, p52Shc, and p66Shc) in the subcellular fractions and their contribution to the total ShcA in control mice livers and HepG2 cells. In conclusion, we showed that a substantial pool of p66Shc protein resides in MAM in control conditions and after oxidative stress induction.
Collapse
Affiliation(s)
- Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Barbara Pakula
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Patrycja Jakubek-Olszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ines C M Simoes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Jiang Z, Wang H, Wang X, Duo H, Tao Y, Li J, Li X, Liu J, Ni J, Wu EJ, Xiang H, Guan C, Wang X, Zhang K, Zhang P, Hou Z, Liu Y, Wang Z, Su B, Li B, Hao Y, Li B, Wu X. TMED4 facilitates regulatory T cell suppressive function via ROS homeostasis in tumor and autoimmune mouse models. J Clin Invest 2024; 135:e179874. [PMID: 39480507 PMCID: PMC11684806 DOI: 10.1172/jci179874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) plays crucial roles in maintaining Treg stability and function, yet the underlying mechanism remains largely unexplored. Here, we demonstrate that (Tmed4ΔTreg) mice with Treg-specific KO of ERS-related protein transmembrane p24 trafficking protein 4 (TMED4) had more Tregs with impaired Foxp3 stability, Treg signatures, and suppressive activity, which led to T cell hyperactivation and an exacerbated inflammatory phenotype and boosted antitumor immunity in mice. Mechanistically, loss of Tmed4 caused defects in ERS and a nuclear factor erythroid 2-related factor 2-related (NRF2-related) antioxidant response, which resulted in excessive ROS that reduced the Foxp3 stability and suppressive function of Tregs in an IRE1α/XBP1 axis-dependent manner. The abnormalities could be effectively rescued by the ROS scavenger, NRF2 inducer, or by forcible expression of IRE1α. Moreover, TMED4 suppressed IRE1α proteosome degradation via the ER-associated degradation (ERAD) system including the ER chaperone binding immunoglobulin protein (BIP). Our study reveals that TMED4 maintained the stability of Tregs and their suppressive function through IRE1α-dependent ROS and the NRF2-related antioxidant response.
Collapse
Affiliation(s)
- Zhenyan Jiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Huizi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xiaoxia Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
- Songjiang Research Institute, Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hongrui Duo
- Research Group of Computational and Integrative Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuexiao Tao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jia Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jiamin Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jun Ni
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Emily Jiatong Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hongrui Xiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Chenyang Guan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xinyu Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Kun Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Key Laboratory of Emotions and Affective Disorders, SJTU-SM, Shanghai, China
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Key Laboratory of Emotions and Affective Disorders, SJTU-SM, Shanghai, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, SJTU-SM, Shanghai, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, SJTU-SM, Shanghai, China
| | - Bing Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Bo Li
- Research Group of Computational and Integrative Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Youjin Hao
- Research Group of Computational and Integrative Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xuefeng Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
3
|
Li Z, Sai K, Ma G, Chen F, Xu X, Chen L, Wang S, Li W, Huang G, Cui P. Diterpenoid honatisine overcomes temozolomide resistance in glioblastoma by inducing mitonuclear protein imbalance through disruption of TFAM-mediated mtDNA transcription. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155328. [PMID: 38522316 DOI: 10.1016/j.phymed.2023.155328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 03/26/2024]
Abstract
BACKGROUND Glioblastoma (GBM) represents as the most formidable intracranial malignancy. The systematic exploration of natural compounds for their potential applications in GBM therapy has emerged as a pivotal and fruitful avenue of research. PURPOSE In the present study, a panel of 96 diterpenoids was systematically evaluated as a repository of potential antitumour agents. The primary objective was to discern their potency in overcoming resistance to temozolomide (TMZ). Through an extensive screening process, honatisine, a heptacyclic diterpenoid alkaloid, emerged as the most robust candidate. Notably, honatisine exhibited remarkable efficacy in patient-derived primary and recurrent GBM strains. Subsequently, we subjected this compound to comprehensive scrutiny, encompassing GBM cultured spheres, GBM organoids (GBOs), TMZ-resistant GBM cell lines, and orthotopic xenograft mouse models of GBM cells. RESULTS Our investigative efforts delved into the mechanistic underpinnings of honatisine's impact. It was discerned that honatisine prompted mitonuclear protein imbalance and elicited the mitochondrial unfolded protein response (UPRmt). This effect was mediated through the selective depletion of mitochondrial DNA (mtDNA)-encoded subunits, with a particular emphasis on the diminution of mitochondrial transcription factor A (TFAM). The ultimate outcome was the instigation of deleterious mitochondrial dysfunction, culminating in apoptosis. Molecular docking and surface plasmon resonance (SPR) experiments validated honatisine's binding affinity to TFAM within its HMG-box B domain. This binding may promote phosphorylation of TFAM and obstruct the interaction of TFAM bound to heavy strand promoter 1 (HSP1), thereby enhancing Lon-mediated TFAM degradation. Finally, in vivo experiments confirmed honatisine's antiglioma properties. Our comprehensive toxicological assessments underscored its mild toxicity profile, emphasizing the necessity for a thorough evaluation of honatisine as a novel antiglioma agent. CONCLUSION In summary, our data provide new insights into the therapeutic mechanisms underlying honatisine's selective inducetion of apoptosis and its ability to overcome chemotherapy resistance in GBM. These actions are mediated through the disruption of mitochondrial proteostasis and function, achieved by the inhibition of TFAM-mediated mtDNA transcription. This study highlights honatisine's potential as a promising agent for glioblastoma therapy, underscoring the need for further exploration and investigation.
Collapse
Affiliation(s)
- Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Ke Sai
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Lei Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China.
| | - Ping Cui
- Department of pharmacy, Shenzhen Children's Hospital, Shenzhen 518038, China.
| |
Collapse
|
4
|
Koch C, Lenhard S, Räschle M, Prescianotto-Baschong C, Spang A, Herrmann JM. The ER-SURF pathway uses ER-mitochondria contact sites for protein targeting to mitochondria. EMBO Rep 2024; 25:2071-2096. [PMID: 38565738 PMCID: PMC11014988 DOI: 10.1038/s44319-024-00113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known. Here we show that mitochondrial contact sites play a crucial role in the ER-to-mitochondria transfer of precursor proteins. The ER mitochondria encounter structure (ERMES) and Tom70, together with Djp1 and Lam6, are part of two parallel and partially redundant ER-to-mitochondria delivery routes. When ER-to-mitochondria transfer is prevented by loss of these two contact sites, many precursors of mitochondrial inner membrane proteins are left stranded on the ER membrane, resulting in mitochondrial dysfunction. Our observations support an active role of the ER in mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Christian Koch
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Svenja Lenhard
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Anne Spang
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | |
Collapse
|
5
|
Gao B, Wang Z, Dai K, Wang Y, Li L, Li G, Niu X, Li X, Yu Z, Wang Z, Chen G. Acetylation of mtHSP70 at Lys595/653 affecting its interaction between GrpEL1 regulates glioblastoma progression via UPRmt. Free Radic Biol Med 2024; 213:394-408. [PMID: 38281626 DOI: 10.1016/j.freeradbiomed.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/01/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND The mitochondrial unfolded protein response (UPRmt) is a vital biological process that regulates mitochondrial protein homeostasis and enables glioblastoma cells to cope with mitochondrial oxidative stress in the tumor microenvironment. We previously reported that the binding of mitochondrial stress-70 protein (mtHSP70) to GrpE protein homolog 1 (GrpEL1) is involved in the regulation of the UPRmt. However, the mechanisms regulating their binding remain unclear. Herein, we examined the UPRmt in glioblastoma and explored whether modulating the interaction between mtHSP70 and GrpEL1 affects the UPRmt. METHODS Western blot analysis, aggresome staining, and transmission electron microscopy were used to detect the activation of the UPRmt and protein aggregates within mitochondria. Molecular dynamics simulations were performed to investigate the impact of different mutations in mtHSP70 on its binding to GrpEL1. Endogenous site-specific mutations were introduced into mtHSP70 in glioblastoma cells using CRISPR/Cas9. In vitro and in vivo experiments were conducted to assess mitochondrial function and glioblastoma progression. RESULTS The UPRmt was activated in glioblastoma cells in response to oxidative stress. mtHSP70 regulated mitochondrial protein homeostasis by facilitating UPRmt-progress protein import into the mitochondria. Acetylation of mtHSP70 at Lys595/653 enhanced its binding to GrpEL1. Missense mutations at Lys595/653 increased mitochondrial protein aggregates and inhibited glioblastoma progression in vitro and in vivo. CONCLUSIONS We identified an innovative mechanism in glioblastoma progression by which acetylation of mtHSP70 at Lys595/653 influences its interaction with GrpEL1 to regulate the UPRmt. Mutations at Lys595/653 in mtHSP70 could potentially serve as therapeutic targets and prognostic indicators of glioblastoma.
Collapse
Affiliation(s)
- Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Yunjiang Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Guangzhao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Hefei First People's Hospital, Hefei, 230031, China
| | - Xiaowang Niu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Xinghua People's Hospital, Xinghua, 225700, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| |
Collapse
|
6
|
Kubra KT, Barabutis N. Ceapin-A7 potentiates lipopolysaccharide-induced endothelial injury. J Biochem Mol Toxicol 2023; 37:e23460. [PMID: 37431958 PMCID: PMC10782819 DOI: 10.1002/jbt.23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Barrier dysfunction is the hallmark of severe lung injury, including acute respiratory distress syndrome. Efficient medical countermeasures to counteract endothelial hyperpermeability do not exist, hence the mortality rates of disorders related to barrier abnormalities are unacceptable high. The unfolded protein response is a highly conserved mechanism, which aims to support the cells against endoplasmic reticulum stress, and ATF6 is a protein sensor that triggers its activation. In the current study, we investigate the effects of ATF6 suppression in LPS-induced endothelial inflammation. Our observations suggest that Ceapin-A7, which is an ATF6 suppressor, potentiates LPS-induced STAT3 and JAK2 activation. Hence ATF6 activation may serve as a new therapeutic possibility toward diseases related to barrier dysfunction.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| |
Collapse
|
7
|
Xie W, Chen M, Loor JJ, Song X, Ma N, Zhou S, Zhang H, Chang G, Shen X. AMPK-endoplasmic reticulum stress axis contributes to lipopolysaccharide-caused mitochondrial dysfunction by regulating mitochondria-associated membrane function in bovine hepatocytes. J Dairy Sci 2023:S0022-0302(23)00275-8. [PMID: 37225589 DOI: 10.3168/jds.2022-22879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/17/2023] [Indexed: 05/26/2023]
Abstract
Mitochondrial homeostasis is closely associated with cellular homeostasis process, whereas mitochondrial dysfunction contributes to apoptosis and mitophagy. Hence, analyzing the mechanism of lipopolysaccharide (LPS)-caused mitochondrial damage is necessary to understand how cellular homeostasis is maintained in bovine hepatocytes. Mitochondria-associated membranes (MAM), a connection between endoplasmic reticulum (ER) and mitochondria, is important to control mitochondrial function. To investigate the underlying mechanisms of the LPS-caused mitochondrial dysfunction, hepatocytes isolated from dairy cows at ∼160 d in milk (DIM) were pretreated with the specific inhibitors of adenosine 5'-monophosphate-activated protein kinase (AMPK), ER stress, RNA-activated protein kinase-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α), c-Jun N-terminal kinase, and autophagy followed by a 12 μg/mL LPS treatment. The results showed that inhibiting ER stress with 4-phenylbutyric acid decreased the levels of autophagy and mitochondrial damage with AMPK inactivation in LPS-treated hepatocytes. The AMPK inhibitor compound C pretreatment alleviated LPS-induced ER stress, autophagy and mitochondrial dysfunction by regulating the expression of MAM-related genes, such as mitofusin 2 (MFN2), PERK, and IRE1α. Moreover, inhibiting PERK and IRE1α mitigated autophagy and mitochondrial dynamic disruption by regulating the MAM function. Additionally, blocking c-Jun N-terminal kinase, the downstream sensor of IRE1α, could reduce the levels of autophagy and apoptosis and restore the balance of mitochondrial fusion and fission by modulating the B cell leukemia 2 (BCL-2)/BCL-2 interacting protein 1 (BECLIN1) complex in the LPS-treated bovine hepatocytes. Furthermore, autophagy blockage with chloroquine could intervene in LPS-caused apoptosis to restore mitochondrial function. Collectively, these findings suggest that the AMPK-ER stress axis is involved in the LPS-caused mitochondrial dysfunction by mediating the MAM activity in bovine hepatocytes.
Collapse
Affiliation(s)
- Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Mengru Chen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Xiaokun Song
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Hongzhu Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China.
| |
Collapse
|
8
|
Tang C, Xu T, Dai M, Zhong X, Shen G, Liu L. Sitagliptin attenuates neuronal apoptosis via inhibiting the endoplasmic reticulum stress after acute spinal cord injury. Hum Exp Toxicol 2023; 42:9603271231168761. [PMID: 36977492 DOI: 10.1177/09603271231168761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Regulation of endoplasmic reticulum stress (ER) stress-induced apoptosis and nerve regeneration is a hopeful way for acute spinal cord injury (SCI). Sitagliptin (Sita) is one of dipeptidyl peptidase-4 (DPP-4) inhibitor, which is beneficial neurons damaged diseases. However, its protective mechanisms of avoiding nerve injury remain unclear. In this study, we further investigated the mechanism of the anti-apoptotic and neuroprotective effects of Sita in promoting locomotor recovery from SCI. In vivo results showed that Sita treatment reduced neural apoptosis caused by SCI. Moreover, Sita effectively attenuated the ER tress and associated apoptosis in rats with SCI. A striking feature was the occurrence of nerve fiber regeneration at the lesion site, which eventually led to significant locomotion recovery. In vitro results showed that the PC12 cell injury model induced by Thapsigargin (TG) also showed similar neuroprotective effects. Overall, sitagliptin showed potent neuroprotective effects by targeting the ER stress-induced apoptosis both in vivo and vitro, thus facilitating the regeneration of the injured spinal cord.
Collapse
Affiliation(s)
- Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangjie Shen
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Zheng W, Sun Q, Li L, Cheng Y, Chen Y, Lv M, Xiang X. Role of endoplasmic reticulum stress in hepatic glucose and lipid metabolism and therapeutic strategies for metabolic liver disease. Int Immunopharmacol 2022; 113:109458. [DOI: 10.1016/j.intimp.2022.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
|
10
|
Boosi Narayana Rao K, Pandey P, Sarkar R, Ghosh A, Mansuri S, Ali M, Majumder P, Ranjith Kumar K, Ray A, Raychaudhuri S, Mapa K. Stress Responses Elicited by Misfolded Proteins Targeted to Mitochondria. J Mol Biol 2022; 434:167618. [PMID: 35500842 DOI: 10.1016/j.jmb.2022.167618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
The double-membrane-bound architecture of mitochondria, essential for ATP production, sub-divides the organelle into inter-membrane space (IMS) and matrix. IMS and matrix possess contrasting oxido-reductive environments and discrete protein quality control (PQC) machineries resulting inherent differences in their protein folding environments. To understand the nature of stress response elicited by equivalent proteotoxic stress to these sub-mitochondrial compartments, we took misfolding and aggregation-prone stressor proteins and fused it to well described signal sequences to specifically target and impart stress to yeast mitochondrial IMS or matrix. We show, mitochondrial proteotoxicity leads to growth arrest of yeast cells of varying degrees depending on nature of stressor proteins and the intra-mitochondrial location of stress. Next, by employing transcriptomics and proteomics, we report a comprehensive stress response elicited by stressor proteins specifically targeted to mitochondrial matrix or IMS. A general response to proteotoxic stress by mitochondria-targeted misfolded proteins is mitochondrial fragmentation, and an adaptive abrogation of mitochondrial respiration with concomitant upregulation of glycolysis. Beyond shared stress responses, specific signatures due to stress within mitochondrial sub-compartments are also revealed. We report that stress-imparted by bipartite signal sequence-fused stressor proteins to IMS, leads to specific upregulation of IMS-chaperones and TOM complex components. In contrast, matrix-targeted stressors lead to specific upregulation of matrix-chaperones and cytosolic PQC components. Finally, by systematic genetic interaction using deletion strains of differentially upregulated genes, we found prominent modulatory role of TOM complex components during IMS-stress response. In contrast, VMS1 markedly modulates the stress response originated from matrix.
Collapse
Affiliation(s)
- Kannan Boosi Narayana Rao
- Proteomics and structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India
| | - Pratima Pandey
- Proteomics and structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Rajasri Sarkar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asmita Ghosh
- Proteomics and structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India
| | - Shemin Mansuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Mudassar Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Priyanka Majumder
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - K Ranjith Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Arjun Ray
- Centre for Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Swasti Raychaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Koyeli Mapa
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|