1
|
Karan C, Chaudhuri D. Cooperation and competition in the collective drive by motor proteins: mean active force, fluctuations, and self-load. SOFT MATTER 2023; 19:1834-1843. [PMID: 36789956 DOI: 10.1039/d2sm01183b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We consider the dynamics of a bio-filament under the collective drive of motor proteins. They are attached irreversibly to a substrate and undergo stochastic attachment-detachment with the filament to produce a directed force on it. We establish the dependence of the mean directed force and force correlations on the parameters describing the individual motor proteins using analytical theory and direct numerical simulations. The effective Langevin description for the filament motion gives mean-squared displacement, asymptotic diffusion constant, and mobility leading to an effective temperature. Finally, we show how competition between motor protein extensions generates a self-load, describable in terms of the effective temperature, affecting the filament motion.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
2
|
Halbi G, Fayer I, Aranovich D, Gat S, Bar S, Erukhimovitch V, Granek R, Bernheim-Groswasser A. Nano-Particles Carried by Multiple Dynein Motors Self-Regulate Their Number of Actively Participating Motors. Int J Mol Sci 2021; 22:ijms22168893. [PMID: 34445598 PMCID: PMC8396316 DOI: 10.3390/ijms22168893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Intra-cellular active transport by native cargos is ubiquitous. We investigate the motion of spherical nano-particles (NPs) grafted with flexible polymers that end with a nuclear localization signal peptide. This peptide allows the recruitment of several mammalian dynein motors from cytoplasmic extracts. To determine how motor–motor interactions influenced motility on the single microtubule level, we conducted bead-motility assays incorporating surface adsorbed microtubules and combined them with model simulations that were based on the properties of a single dynein. The experimental and simulation results revealed long time trajectories: when the number of NP-ligated motors Nm increased, run-times and run-lengths were enhanced and mean velocities were somewhat decreased. Moreover, the dependence of the velocity on run-time followed a universal curve, regardless of the system composition. Model simulations also demonstrated left- and right-handed helical motion and revealed self-regulation of the number of microtubule-bound, actively transporting dynein motors. This number was stochastic along trajectories and was distributed mainly between one, two, and three motors, regardless of Nm. We propose that this self-regulation allows our synthetic NPs to achieve persistent motion that is associated with major helicity. Such a helical motion might affect obstacle bypassing, which can influence active transport efficiency when facing the crowded environment of the cell.
Collapse
Affiliation(s)
- Gal Halbi
- The Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (G.H.); (D.A.); (S.G.); (S.B.); (V.E.)
| | - Itay Fayer
- The Stella and Avram Goren-Goldstein Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Dina Aranovich
- The Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (G.H.); (D.A.); (S.G.); (S.B.); (V.E.)
| | - Shachar Gat
- The Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (G.H.); (D.A.); (S.G.); (S.B.); (V.E.)
| | - Shay Bar
- The Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (G.H.); (D.A.); (S.G.); (S.B.); (V.E.)
| | - Vitaly Erukhimovitch
- The Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (G.H.); (D.A.); (S.G.); (S.B.); (V.E.)
| | - Rony Granek
- The Stella and Avram Goren-Goldstein Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
- The Ilse Katz Institute for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Correspondence: (R.G.); (A.B.-G.)
| | - Anne Bernheim-Groswasser
- The Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (G.H.); (D.A.); (S.G.); (S.B.); (V.E.)
- The Ilse Katz Institute for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Correspondence: (R.G.); (A.B.-G.)
| |
Collapse
|
3
|
Effect of Kinesin-5 Tail Domain on Motor Dynamics for Antiparallel Microtubule Sliding. Int J Mol Sci 2021; 22:ijms22157857. [PMID: 34360622 PMCID: PMC8345995 DOI: 10.3390/ijms22157857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
Kinesin-5 motor consists of two pairs of heads and tail domains, which are situated at the opposite ends of a common stalk. The two pairs of heads can bind to two antiparallel microtubules (MTs) and move on the two MTs independently towards the plus ends, sliding apart the two MTs, which is responsible for chromosome segregation during mitosis. Prior experimental data showed that the tails of kinesin-5 Eg5 can modulate the dynamics of single motors and are critical for multiple motors to generate high steady forces to slide apart two antiparallel MTs. To understand the molecular mechanism of the tails modulating the ability of Eg5 motors, based on our proposed model the dynamics of the single Eg5 with the tails and that without the tails moving on single MTs is studied analytically and compared. Furthermore, the dynamics of antiparallel MT sliding by multiple Eg5 motors with the tails and that without the tails is studied numerically and compared. Both the analytical results for single motors and the numerical results for multiple motors are consistent with the available experimental data.
Collapse
|
4
|
Xie P. Theoretical Analysis of Dynamics of Kinesin Molecular Motors. ACS OMEGA 2020; 5:5721-5730. [PMID: 32226850 PMCID: PMC7097908 DOI: 10.1021/acsomega.9b03738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/23/2020] [Indexed: 05/07/2023]
Abstract
Kinesin is a typical molecular motor that can step processively on microtubules powered by hydrolysis of adenosine triphosphate (ATP) molecules, playing a critical role in intracellular transports. Its dynamical properties such as its velocity, stepping ratio, run length, dissociation rate, etc. as well as the load dependencies of these quantities have been well documented through single-molecule experimental methods. In particular, the run length shows a dramatic asymmetry with respect to the direction of the load, and the dissociation rate exhibits a slip-catch-slip bond behavior under the backward load. Here, an analytic theory was provided for the dynamics of kinesin motors under both forward and backward loads, explaining consistently and quantitatively the diverse available experimental results.
Collapse
|
5
|
Guo SK, Shi XX, Wang PY, Xie P. Force dependence of unbinding rate of kinesin motor during its processive movement on microtubule. Biophys Chem 2019; 253:106216. [PMID: 31288174 DOI: 10.1016/j.bpc.2019.106216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022]
Abstract
Kinesin is a biological molecular motor that can move continuously on microtubule until it unbinds. Here, we studied computationally the force dependence of the unbinding rate of the motor. Our results showed that while the unbinding rate under the forward load has the expected characteristic of "slip bond", with the unbinding rate increasing monotonically with the increase of the forward load, the unbinding rate under the backward load shows counterintuitive characteristic of "slip-catch-slip bond": as the backward load increases, the unbinding rate increases exponentially firstly, then drops rapidly and then increases again. Our calculated data are in agreement with the available single-molecule data from different research groups. The mechanism of the slip-catch-slip bond was revealed.
Collapse
Affiliation(s)
- Si-Kao Guo
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Xuan Shi
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Fu YB, Guo SK, Wang PY, Xie P. Dynamics of cooperative cargo transport by two elastically coupled kinesin motors. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:41. [PMID: 30927108 DOI: 10.1140/epje/i2019-11801-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 02/25/2019] [Indexed: 05/23/2023]
Abstract
Intracellular transport is performed often by multiple motor proteins bound to the same cargo. Here, we study theoretically collective transport of the cargo by two kinesin motors. We propose that the motor has only the elastic interaction with the cargo via the linker connecting them and has no interaction with another motor. With parameters values for single motors from the available single-molecule data, we show that at linker's elastic strength [Formula: see text] pN/nm the theoretical data of both velocity and run length of the two-motor assembly under no load are identical to the available experimental data. The run length distribution is single exponential. The single-motor-bound state of the assembly dominates the transport. Both the force dependence of the velocity of the cargo driven by single load-bearing motor and that by two load-bearing motors in the assembly are consistent with the experimental data. The stall force of the assembly is larger than the sum of stall forces of two uncoupled motors. Moreover, we predict that the stall force increases with the increase of K and becomes saturated at large K, with the saturated value being 1.5-fold larger than the sum of stall forces of the two uncoupled motors.
Collapse
Affiliation(s)
- Yi-Ben Fu
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Si-Kao Guo
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
7
|
Kaplan L, Ierokomos A, Chowdary P, Bryant Z, Cui B. Rotation of endosomes demonstrates coordination of molecular motors during axonal transport. SCIENCE ADVANCES 2018; 4:e1602170. [PMID: 29536037 PMCID: PMC5846296 DOI: 10.1126/sciadv.1602170] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/30/2018] [Indexed: 05/29/2023]
Abstract
Long-distance axonal transport is critical to the maintenance and function of neurons. Robust transport is ensured by the coordinated activities of multiple molecular motors acting in a team. Conventional live-cell imaging techniques used in axonal transport studies detect this activity by visualizing the translational dynamics of a cargo. However, translational measurements are insensitive to torques induced by motor activities. By using gold nanorods and multichannel polarization microscopy, we simultaneously measure the rotational and translational dynamics for thousands of axonally transported endosomes. We find that the rotational dynamics of an endosome provide complementary information regarding molecular motor activities to the conventionally tracked translational dynamics. Rotational dynamics correlate with translational dynamics, particularly in cases of increased rotation after switches between kinesin- and dynein-mediated transport. Furthermore, unambiguous measurement of nanorod angle shows that endosome-contained nanorods align with the orientation of microtubules, suggesting a direct mechanical linkage between the ligand-receptor complex and the microtubule motors.
Collapse
Affiliation(s)
- Luke Kaplan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Athena Ierokomos
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Praveen Chowdary
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Palacci H, Idan O, Armstrong MJ, Agarwal A, Nitta T, Hess H. Velocity Fluctuations in Kinesin-1 Gliding Motility Assays Originate in Motor Attachment Geometry Variations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7943-7950. [PMID: 27414063 DOI: 10.1021/acs.langmuir.6b02369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Motor proteins such as myosin and kinesin play a major role in cellular cargo transport, muscle contraction, cell division, and engineered nanodevices. Quantifying the collective behavior of coupled motors is critical to our understanding of these systems. An excellent model system is the gliding motility assay, where hundreds of surface-adhered motors propel one cytoskeletal filament such as an actin filament or a microtubule. The filament motion can be observed using fluorescence microscopy, revealing fluctuations in gliding velocity. These velocity fluctuations have been previously quantified by a motional diffusion coefficient, which Sekimoto and Tawada explained as arising from the addition and removal of motors from the linear array of motors propelling the filament as it advances, assuming that different motors are not equally efficient in their force generation. A computational model of kinesin head diffusion and binding to the microtubule allowed us to quantify the heterogeneity of motor efficiency arising from the combination of anharmonic tail stiffness and varying attachment geometries assuming random motor locations on the surface and an absence of coordination between motors. Knowledge of the heterogeneity allows the calculation of the proportionality constant between the motional diffusion coefficient and the motor density. The calculated value (0.3) is within a standard error of our measurements of the motional diffusion coefficient on surfaces with varying motor densities calibrated by landing rate experiments. This allowed us to quantify the loss in efficiency of coupled molecular motors arising from heterogeneity in the attachment geometry.
Collapse
Affiliation(s)
- Henri Palacci
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Ofer Idan
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Megan J Armstrong
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
- Department of Biomedical Engineering and Department of Pathology, University of Miami , Coral Gables, Florida 33146, United States
| | - Takahiro Nitta
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
- Department of Mathematical and Design Engineering, Gifu University , Gifu 501-1193, Japan
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| |
Collapse
|
9
|
Kakizuka T, Ikezaki K, Kaneshiro J, Fujita H, Watanabe TM, Ichimura T. Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots. BIOMEDICAL OPTICS EXPRESS 2016; 7:2475-93. [PMID: 27446684 PMCID: PMC4948608 DOI: 10.1364/boe.7.002475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 05/24/2023]
Abstract
Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery.
Collapse
Affiliation(s)
- Taishi Kakizuka
- Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory for Comprehensive Bioimaging, RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Keigo Ikezaki
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba 277-8561, Japan
| | - Junichi Kaneshiro
- Laboratory for Comprehensive Bioimaging, RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Hideaki Fujita
- Laboratory for Comprehensive Bioimaging, RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomonobu M. Watanabe
- Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory for Comprehensive Bioimaging, RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taro Ichimura
- Laboratory for Comprehensive Bioimaging, RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
10
|
Bhat D, Gopalakrishnan M. Transport of organelles by elastically coupled motor proteins. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:71. [PMID: 27439854 DOI: 10.1140/epje/i2016-16071-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Motor-driven intracellular transport is a complex phenomenon where multiple motor proteins simultaneously attached on to a cargo engage in pulling activity, often leading to tug-of-war, displaying bidirectional motion. However, most mathematical and computational models ignore the details of the motor-cargo interaction. A few studies have focused on more realistic models of cargo transport by including elastic motor-cargo coupling, but either restrict the number of motors and/or use purely phenomenological forms for force-dependent hopping rates. Here, we study a generic model in which N motors are elastically coupled to a cargo, which itself is subjected to thermal noise in the cytoplasm and to an additional external applied force. The motor-hopping rates are chosen to satisfy detailed balance with respect to the energy of elastic stretching. With these assumptions, an (N + 1) -variable master equation is constructed for dynamics of the motor-cargo complex. By expanding the hopping rates to linear order in fluctuations in motor positions, we obtain a linear Fokker-Planck equation. The deterministic equations governing the average quantities are separated out and explicit analytical expressions are obtained for the mean velocity and diffusion coefficient of the cargo. We also study the statistical features of the force experienced by an individual motor and quantitatively characterize the load-sharing among the cargo-bound motors. The mean cargo velocity and the effective diffusion coefficient are found to be decreasing functions of the stiffness. While the increase in the number of motors N does not increase the velocity substantially, it decreases the effective diffusion coefficient which falls as 1/N asymptotically. We further show that the cargo-bound motors share the force exerted on the cargo equally only in the limit of vanishing elastic stiffness; as stiffness is increased, deviations from equal load sharing are observed. Numerical simulations agree with our analytical results where expected. Interestingly, we find in simulations that the stall force of a cargo elastically coupled to motors is independent of the stiffness of the linkers.
Collapse
Affiliation(s)
- Deepak Bhat
- Department of Physics, Indian Institute of Technology Madras, 600036, Chennai, India.
| | - Manoj Gopalakrishnan
- Department of Physics, Indian Institute of Technology Madras, 600036, Chennai, India
| |
Collapse
|
11
|
Peker I, Granek R. Multimotor Driven Cargos: From Single Motor under Load to the Role of Motor-Motor Coupling. J Phys Chem B 2016; 120:6319-26. [PMID: 27044876 DOI: 10.1021/acs.jpcb.6b02790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Motor proteins constitute an essential part of the cellular machinery. They have been the subject of intensive studies in the past two decades. Yet, when several motors simultaneously carry a single cargo, the effect of motor-motor coupling, such as mutual stalling and jamming, remains unclear. We commence by constructing a general model for single motor motion, which is a product of a derived load-dependent expression and a phenomenological motor specific function. Forming the latter according to recent single molecule measurements for a given load, the model correctly predicts the motor full step-size distribution for all other measured loads. We then use our proposed model to predict transport properties of multimotor complexes, with particular attention to 1-dimensional constructs with variable flexibility, motor density, and number of motors: (i) a chain of motors connected by springs, a recently studied construction of a pair, and (ii) an array of motors all connected by identical springs to a stiff rod, which is essentially a mirror image of standard gliding motility assays. In both systems, and for any number of carrying motors, we find that, while low flexibility results in a strongly damped velocity, increased flexibility renders an almost single motor velocity. Comparing our model based simulations to recent gliding assays we find remarkable qualitative agreement. We also demonstrate consistency with other multimotor motility assays. In all cases, the characteristic spring constant, that controls the crossover behavior between high and low velocity regimes, is found to be the stalling force divided by the mean step size. We conjecture that this characteristic spring constant can serve as a tool for engineering multimotor complexes.
Collapse
Affiliation(s)
- Itay Peker
- The Stella and Avram Goren-Goldstein Department of Biotechnology Engineering, Ben-Gurion University of The Negev , Beer Sheva 84105, Israel
| | - Rony Granek
- The Stella and Avram Goren-Goldstein Department of Biotechnology Engineering, Ben-Gurion University of The Negev , Beer Sheva 84105, Israel.,The Ilse Katz Institute for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer Sheva 84105, Israel
| |
Collapse
|
12
|
McLaughlin RT, Diehl MR, Kolomeisky AB. Collective dynamics of processive cytoskeletal motors. SOFT MATTER 2016; 12:14-21. [PMID: 26444155 PMCID: PMC4684438 DOI: 10.1039/c5sm01609f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Major cellular processes are supported by various biomolecular motors that usually operate together as teams. We present an overview of the collective dynamics of processive cytokeletal motor proteins based on recent experimental and theoretical investigations. Experimental studies show that multiple motors function with different degrees of cooperativity, ranging from negative to positive. This effect depends on the mechanical properties of individual motors, the geometry of their connections, and the surrounding cellular environment. Theoretical models based on stochastic approaches underline the importance of intermolecular interactions, the properties of single motors, and couplings with cellular medium in predicting the collective dynamics. We discuss several features that specify the cooperativity in motor proteins. Based on this approach a general picture of collective dynamics of motor proteins is formulated, and the future directions and challenges are discussed.
Collapse
Affiliation(s)
- R Tyler McLaughlin
- Rice University, Systems, Synthetic, and Physical Biology, Houston, TX 77005, USA and Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | - Michael R Diehl
- Rice University, Systems, Synthetic, and Physical Biology, Houston, TX 77005, USA and Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | - Anatoly B Kolomeisky
- Rice University, Systems, Synthetic, and Physical Biology, Houston, TX 77005, USA and Rice University, Department of Chemistry, Houston, TX 77005, USA.
| |
Collapse
|
13
|
Levien E, Bressloff PC. Quasi-steady-state analysis of coupled flashing ratchets. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042129. [PMID: 26565190 DOI: 10.1103/physreve.92.042129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 06/05/2023]
Abstract
We perform a quasi-steady-state (QSS) reduction of a flashing ratchet to obtain a Brownian particle in an effective potential. The resulting system is analytically tractable and yet preserves essential dynamical features of the full model. We first use the QSS reduction to derive an explicit expression for the velocity of a simple two-state flashing ratchet. In particular, we determine the relationship between perturbations from detailed balance, which are encoded in the transitions rates of the flashing ratchet, and a tilted-periodic potential. We then perform a QSS analysis of a pair of elastically coupled flashing ratchets, which reduces to a Brownian particle moving in a two-dimensional vector field. We suggest that the fixed points of this vector field accurately approximate the metastable spatial locations of the coupled ratchets, which are, in general, impossible to identify from the full system.
Collapse
Affiliation(s)
- Ethan Levien
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112, USA
| | - Paul C Bressloff
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112, USA
| |
Collapse
|
14
|
Berger F, Keller C, Klumpp S, Lipowsky R. External forces influence the elastic coupling effects during cargo transport by molecular motors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022701. [PMID: 25768525 DOI: 10.1103/physreve.91.022701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 06/04/2023]
Abstract
Cellular transport is achieved by the cooperative action of molecular motors which are elastically linked to a common cargo. When the motors pull on the cargo at the same time, they experience fluctuating elastic strain forces induced by the stepping of the other motors. These elastic coupling forces can influence the motors' stepping and unbinding behavior and thereby the ability to transport cargos. Based on a generic single motor description, we introduce a framework that explains the response of two identical molecular motors to a constant external force. In particular, we relate the single motor parameters, the coupling strength and the external load force to the dynamics of the motor pair. We derive four distinct transport regimes and determine how the crossover lines between the regimes depend on the load force. Our description of the overall cargo dynamics takes into account relaxational displacements of the cargo caused by the unbinding of one motor. For large forces and weak elastic coupling these back-shifts dominate the displacements. To develop an intuitive understanding about motor cooperativity during cargo transport, we introduce a time scale for load sharing. This time scale allows us to predict how the regulation of single motor parameters influences the cooperativity. As an example, we show that up-regulating the single motor processivity enhances load sharing of the motor pair.
Collapse
Affiliation(s)
- Florian Berger
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Corina Keller
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Stefan Klumpp
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
15
|
Cohen O, Granek R. Nucleus-targeted drug delivery: theoretical optimization of nanoparticles decoration for enhanced intracellular active transport. NANO LETTERS 2014; 14:2515-2521. [PMID: 24646130 DOI: 10.1021/nl500248q] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A rational design for a nanoparticle is suggested, which will maximize its arrival efficiency from the plasma membrane to the nuclear surrounding. The design is based on grafting the particle surface with polymer spacers, each ending with a motor protein associating molecule, for example, nuclear localization signal peptide. It is theoretically shown that the spacer polymer molecular weight can be adjusted to significantly increase the effective particle processivity time. This should lead to appreciable enhancement of active transport of the nanocarrier, and consequently drug delivery, to the nucleus.
Collapse
Affiliation(s)
- Ohad Cohen
- The Stella and Avram Goren-Goldstein Department of Biotechnology Engineering and ‡The Ilse Katz Institute for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer Sheva 84105, Israel
| | | |
Collapse
|