1
|
Wang H, Li M, Fei L, Xie C, Ding L, Zhu C, Zeng F, Liu N. Bone Marrow-Derived Mesenchymal Stem Cells Transplantation Attenuates Renal Fibrosis Following Acute Kidney Injury in Rats by Diminishing Pericyte-Myofibroblast Transition and Extracellular Matrix Augment. Transplant Proc 2023; 55:225-234. [PMID: 36604251 DOI: 10.1016/j.transproceed.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Renal fibrosis is a common chronic outcome of acute kidney injury (AKI). Pericyte-myofibroblasts transition and production of abundant extracellular matrix are the important pathologic basis. This study investigated the effect of bone marrow-derived mesenchymal stem cells (BMSCs) transplantation on the AKI kidney fibrosis and the possible mechanisms. METHODS By constructing the animal and cell model of AKI pericyte injury, the therapeutic effect of BMSCs on pericyte-myofibroblasts transition was detected. The production and accumulation of extracellular matrix, including collagen I, collagen III, and fibronectin were also tested. The mechanism was revealed by means of analysis of signal pathway. RESULTS After AKI insult, many myofibroblasts emerged in the renal interstitium together with a large amount of extracellular matrix components. The BMSCs transplantation significantly decreased the number of myofibroblasts trans-differentiated from pericytes in the AKI model. The changes of vascular endothelial growth factor subtypes and Ang-I/AngII secreted by pericytes were also significantly reduced after BMSCs co-culture. At the same time, extracellular matrix components, including collagen I, collagen III, and fibronectin, decreased significantly. Transplantation treatment alleviated the fibrosis score. The transforming growth factor β (TGF-β) concentration decreased as well as the levels of Smad2/3 and p-Smad2/3 with the presence of BMSCs therapy. CONCLUSIONS Bone marrow-derived mesenchymal stem cells transplantation diminished pericyte-myofibroblast transition and extracellular matrix augment after AKI by regulating the TGF-β/Smad2/3 signaling pathway. It may be used as a novel therapeutic method for retarding renal fibrosis, which is worthy of further study.
Collapse
Affiliation(s)
- Hao Wang
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Maoting Li
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Liyan Fei
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Chuang Xie
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Lingling Ding
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Changhao Zhu
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Fanzhou Zeng
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Rogers JD, Aguado BA, Watts KM, Anseth KS, Richardson WJ. Network modeling predicts personalized gene expression and drug responses in valve myofibroblasts cultured with patient sera. Proc Natl Acad Sci U S A 2022; 119:e2117323119. [PMID: 35181609 PMCID: PMC8872767 DOI: 10.1073/pnas.2117323119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023] Open
Abstract
Aortic valve stenosis (AVS) patients experience pathogenic valve leaflet stiffening due to excessive extracellular matrix (ECM) remodeling. Numerous microenvironmental cues influence pathogenic expression of ECM remodeling genes in tissue-resident valvular myofibroblasts, and the regulation of complex myofibroblast signaling networks depends on patient-specific extracellular factors. Here, we combined a manually curated myofibroblast signaling network with a data-driven transcription factor network to predict patient-specific myofibroblast gene expression signatures and drug responses. Using transcriptomic data from myofibroblasts cultured with AVS patient sera, we produced a large-scale, logic-gated differential equation model in which 11 biochemical and biomechanical signals were transduced via a network of 334 signaling and transcription reactions to accurately predict the expression of 27 fibrosis-related genes. Correlations were found between personalized model-predicted gene expression and AVS patient echocardiography data, suggesting links between fibrosis-related signaling and patient-specific AVS severity. Further, global network perturbation analyses revealed signaling molecules with the most influence over network-wide activity, including endothelin 1 (ET1), interleukin 6 (IL6), and transforming growth factor β (TGFβ), along with downstream mediators c-Jun N-terminal kinase (JNK), signal transducer and activator of transcription (STAT), and reactive oxygen species (ROS). Lastly, we performed virtual drug screening to identify patient-specific drug responses, which were experimentally validated via fibrotic gene expression measurements in valvular interstitial cells cultured with AVS patient sera and treated with or without bosentan-a clinically approved ET1 receptor inhibitor. In sum, our work advances the ability of computational approaches to provide a mechanistic basis for clinical decisions including patient stratification and personalized drug screening.
Collapse
Affiliation(s)
- Jesse D Rogers
- Bioengineering Department, Clemson University, Clemson, SC 29634
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830
| | - Brian A Aguado
- Chemical and Biological Engineering Department, BioFrontiers Institute, University of Colorado, Boulder, CO 80309
- Bioengineering Department, University of California San Diego, La Jolla, CA 92093
- Stem Cell Program, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Kelsey M Watts
- Bioengineering Department, Clemson University, Clemson, SC 29634
| | - Kristi S Anseth
- Chemical and Biological Engineering Department, BioFrontiers Institute, University of Colorado, Boulder, CO 80309;
| | | |
Collapse
|
3
|
Rogers JD, Holmes JW, Saucerman JJ, Richardson WJ. Mechano-chemo signaling interactions modulate matrix production by cardiac fibroblasts. Matrix Biol Plus 2021; 10:100055. [PMID: 34195592 PMCID: PMC8233457 DOI: 10.1016/j.mbplus.2020.100055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/20/2023] Open
Abstract
Extracellular matrix remodeling after myocardial infarction occurs in a dynamic environment in which local mechanical stresses and biochemical signaling species stimulate the accumulation of collagen-rich scar tissue. It is well-known that cardiac fibroblasts regulate post-infarction matrix turnover by secreting matrix proteins, proteases, and protease inhibitors in response to both biochemical stimuli and mechanical stretch, but how these stimuli act together to dictate cellular responses is still unclear. We developed a screen of cardiac fibroblast-secreted proteins in response to combinations of biochemical agonists and cyclic uniaxial stretch in order to elucidate the relationships between stretch, biochemical signaling, and cardiac matrix turnover. We found that stretch significantly synergized with biochemical agonists to inhibit the secretion of matrix metalloproteinases, with stretch either amplifying protease suppression by individual agonists or antagonizing agonist-driven upregulation of protease expression. Stretch also modulated fibroblast sensitivity towards biochemical agonists by either sensitizing cells towards agonists that suppress protease secretion or de-sensitizing cells towards agonists that upregulate protease secretion. These findings suggest that the mechanical environment can significantly alter fibrosis-related signaling in cardiac fibroblasts, suggesting caution when extrapolating in vitro data to predict effects of fibrosis-related cytokines in situations like myocardial infarction where mechanical stretch occurs.
Collapse
Affiliation(s)
- Jesse D. Rogers
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Jeffrey W. Holmes
- Departments of Biomedical Engineering, Medicine/Cardiovascular Disease, and Surgery/Cardiothoracic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
4
|
Riley LA, Merryman WD. Cadherin-11 and cardiac fibrosis: A common target for a common pathology. Cell Signal 2020; 78:109876. [PMID: 33285242 DOI: 10.1016/j.cellsig.2020.109876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis represents an enormous health concern as it is prevalent in nearly every form of cardiovascular disease, the leading cause of death worldwide. Fibrosis is characterized by the activation of fibroblasts into myofibroblasts, a contractile cell type that secretes significant amounts of extracellular matrix components; however, the onset of this condition is also due to persistent inflammation and the cellular responses to a changing mechanical environment. In this review, we provide an overview of the pro-fibrotic, pro-inflammatory, and biomechanical mechanisms that lead to cardiac fibrosis in cardiovascular diseases. We then discuss cadherin-11, an intercellular adhesion protein present on both myofibroblasts and inflammatory cells, as a potential link for all three of the fibrotic mechanisms. Since experimentally blocking cadherin-11 dimerization prevents fibrotic diseases including cardiac fibrosis, understanding how this protein can be targeted for therapeutic use could lead to better treatments for patients with heart disease.
Collapse
Affiliation(s)
- Lance A Riley
- Department of Biomedical Engineering, Vanderbilt University, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, USA.
| |
Collapse
|
5
|
Wan W, Cheng B, Zhang C, Ma Y, Li A, Xu F, Lin M. Synergistic Effect of Matrix Stiffness and Inflammatory Factors on Osteogenic Differentiation of MSC. Biophys J 2019; 117:129-142. [PMID: 31178039 PMCID: PMC6626830 DOI: 10.1016/j.bpj.2019.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) in vivo reside in a complex microenvironment. Changes of both biochemical and biophysical cues in the microenvironment caused by inflammation affect the differentiation behaviors of MSCs. Most studies, however, only focus on either biochemical or biophysical cues, although the synergistic effect of matrix stiffness and inflammatory factors on osteogenic differentiation of MSCs has not been explored yet. Here, we showed that there was a matrix stiffness-dependent modulation in the osteogenic differentiation of human MSCs (hMSCs) with higher matrix stiffness favoring osteogenesis bias. However, when interleukin-1 β (IL-1β) was added, the osteogenic differentiation of hMSCs was suppressed, which was independent of increasing matrix stiffness. Both experimental observations and mathematical modeling confirmed that matrix stiffness and IL-1β could activate the ERK1/2 signaling and contribute to osteogenic differentiation. The p38 signaling activated by IL-1β has a strong role in inhibiting osteoblastic differentiation, thus diminishing the vital effect of ERK1/2 signaling. In addition, sensitivity analysis of the model parameters revealed that activation/deactivation dynamics of sensitive factors (e.g., FAK, ERK, and p38) also played a key role in the synergistic effect of matrix stiffness and IL-1β on the osteogenic differentiation of hMSCs. The outcomes of this study provide new insights into the synergistic effect of biochemical and biophysical microenvironments on regulating MSC differentiation.
Collapse
Affiliation(s)
- Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Cheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|
6
|
Schroer A, Pardon G, Castillo E, Blair C, Pruitt B. Engineering hiPSC cardiomyocyte in vitro model systems for functional and structural assessment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:3-15. [PMID: 30579630 PMCID: PMC6919215 DOI: 10.1016/j.pbiomolbio.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/24/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
The study of human cardiomyopathies and the development and testing of new therapies has long been limited by the availability of appropriate in vitro model systems. Cardiomyocytes are highly specialized cells whose internal structure and contractile function are sensitive to the local microenvironment and the combination of mechanical and biochemical cues they receive. The complementary technologies of human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) and microphysiological systems (MPS) allow for precise control of the genetics and microenvironment of human cells in in vitro contexts. These combined systems also enable quantitative measurement of mechanical function and intracellular organization. This review describes relevant factors in the myocardium microenvironment that affect CM structure and mechanical function and demonstrates the application of several engineered microphysiological systems for studying development, disease, and drug discovery.
Collapse
Affiliation(s)
- Alison Schroer
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Gaspard Pardon
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Erica Castillo
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Cheavar Blair
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Beth Pruitt
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| |
Collapse
|
7
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Energetics: An emerging frontier in cellular mechanosensing. Phys Life Rev 2017; 22-23:130-135. [DOI: 10.1016/j.plrev.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 10/25/2022]
|
9
|
Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 2017; 22-23:88-119. [PMID: 28688729 PMCID: PMC5712490 DOI: 10.1016/j.plrev.2017.06.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
Cells in vivo reside within complex microenvironments composed of both biochemical and biophysical cues. The dynamic feedback between cells and their microenvironments hinges upon biophysical cues that regulate critical cellular behaviors. Understanding this regulation from sensing to reaction to feedback is therefore critical, and a large effort is afoot to identify and mathematically model the fundamental mechanobiological mechanisms underlying this regulation. This review provides a critical perspective on recent progress in mathematical models for the responses of cells to the biophysical cues in their microenvironments, including dynamic strain, osmotic shock, fluid shear stress, mechanical force, matrix rigidity, porosity, and matrix shape. The review highlights key successes and failings of existing models, and discusses future opportunities and challenges in the field.
Collapse
Affiliation(s)
- Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Mechanical Engineering & Materials Science, and NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
10
|
Zeigler AC, Richardson WJ, Holmes JW, Saucerman JJ. Computational modeling of cardiac fibroblasts and fibrosis. J Mol Cell Cardiol 2016; 93:73-83. [PMID: 26608708 PMCID: PMC4846515 DOI: 10.1016/j.yjmcc.2015.11.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
Abstract
Altered fibroblast behavior can lead to pathologic changes in the heart such as arrhythmia, diastolic dysfunction, and systolic dysfunction. Computational models are increasingly used as a tool to identify potential mechanisms driving a phenotype or potential therapeutic targets against an unwanted phenotype. Here we review how computational models incorporating cardiac fibroblasts have clarified the role for these cells in electrical conduction and tissue remodeling in the heart. Models of fibroblast signaling networks have primarily focused on fibroblast cell lines or fibroblasts from other tissues rather than cardiac fibroblasts, specifically, but they are useful for understanding how fundamental signaling pathways control fibroblast phenotype. In the future, modeling cardiac fibroblast signaling, incorporating -omics and drug-interaction data into signaling network models, and utilizing multi-scale models will improve the ability of in silico studies to predict potential therapeutic targets against adverse cardiac fibroblast activity.
Collapse
Affiliation(s)
- Angela C Zeigler
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| | - William J Richardson
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| | - Jeffrey W Holmes
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| | - Jeffrey J Saucerman
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| |
Collapse
|
11
|
Abstract
Fibrotic cardiac disease, a leading cause of death worldwide, manifests as substantial loss of function following maladaptive tissue remodeling. Fibrosis can affect both the heart valves and the myocardium and is characterized by the activation of fibroblasts and accumulation of extracellular matrix. Valvular interstitial cells and cardiac fibroblasts, the cell types responsible for maintenance of cardiac extracellular matrix, are sensitive to changing mechanical environments, and their ability to sense and respond to mechanical forces determines both normal development and the progression of disease. Recent studies have uncovered specific adhesion proteins and mechano-sensitive signaling pathways that contribute to the progression of fibrosis. Integrins form adhesions with the extracellular matrix, and respond to changes in substrate stiffness and extracellular matrix composition. Cadherins mechanically link neighboring cells and are likely to contribute to fibrotic disease propagation. Finally, transition to the active myofibroblast phenotype leads to maladaptive tissue remodeling and enhanced mechanotransductive signaling, forming a positive feedback loop that contributes to heart failure. This Commentary summarizes recent findings on the role of mechanotransduction through integrins and cadherins to perpetuate mechanically induced differentiation and fibrosis in the context of cardiac disease.
Collapse
Affiliation(s)
- Alison K Schroer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|