1
|
Wang C, Xia W. Proanthocyanidin Regulates NETosis and Inhibits the Growth and Proliferation of Liver Cancer Cells - In Vivo, In Vitro and In Silico Investigation. Cell Biochem Biophys 2025; 83:1223-1235. [PMID: 39382828 DOI: 10.1007/s12013-024-01557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Liver cancer ranks third in global cancer-related mortality, with about 700,000 deaths recorded yearly, making it one of the most common cancers worldwide. Even though prognoses differ according to the severity of the diseases, many patients now exhibit an increased life cycle since the implementation of chemotherapy. In the current study, we investigated the effect of proanthocyanidin ‒a polyphenol molecule found in many plants‒ on the proliferation and invasion of liver cancer cells. In particular, we determined the effect of proanthocyanidin on the serum levels of four strategic liver cancer target, TNFα, IL-6, cfDNA, and IL-1β. Further molecular insight on the inhibitory mechanism of proanthocyanidin against TNFα, IL-6, and IL-1β was obtained via molecular docking, molecular dynamics simulations and binding free energy calculations. Results showed that proanthocyanidin inhibited the growth of HepG2 and HEP3B cells, and effectively reduced clonogenic survival and invasion potential when compared to control cells. Proanthocyanidin was also found to suppress the expression of Bcl-2 (26 kDa) protein in HepG2 cells, while increasing the expression of Bax (21 kDa). Molecular dynamics (MD) and thermodynamic binding free energy calculations showed that proanthocyanidin maintained stable binding within the active site of target proteins across the entire 100 ns MD simulation period, and its binding affinity outscored respective control molecules.In conclusion, the multifaceted analysis showcased in this study demonstrated promising anti-cancer effect of proanthocyanidin on HepG2 and HEP3B cancer cells, highlighting its potential as a viable liver cancer therapeutic alternative.
Collapse
Affiliation(s)
- Chenhui Wang
- Department of Pharmaceutical, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, No. 427, Section 3, Furong Middle Road, Changsha, 410007, China
| | - Wu Xia
- Department of Pharmaceutical, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, No. 427, Section 3, Furong Middle Road, Changsha, 410007, China.
| |
Collapse
|
2
|
Kehinde IO, Akawa O, Adewumi AT, Rabbad AH, Soliman MES. PCSK9 inhibitors as safer therapeutics for atherosclerotic cardiovascular disease (ASCVD): Pharmacophore design and molecular dynamics analysis. J Cell Biochem 2024; 125:e30581. [PMID: 38747499 DOI: 10.1002/jcb.30581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Cardiovascular disorders are still challenging and are among the deadly diseases. As a major risk factor for atherosclerotic cardiovascular disease, dyslipidemia, and high low-density lipoprotein cholesterol in particular, can be prevented primary and secondary by lipid-lowering medications. Therefore, insights are still needed into designing new drugs with minimal side effects. Proprotein convertase subtilisin/kexin 9 (PCSK9) enzyme catalyses protein-protein interactions with low-density lipoprotein, making it a critical target for designing promising inhibitors compared to statins. Therefore, we screened for potential compounds using a redesigned PCSK9 conformational behaviour to search for a significantly extensive chemical library and investigated the inhibitory mechanisms of the final compounds using integrated computational methods, from ligand essential functional group screening to all-atoms MD simulations and MMGBSA-based binding free energy. The inhibitory mechanisms of the screened compounds compared with the standard inhibitor. K31 and K34 molecules showed stronger interactions for PCSK9, having binding energy (kcal/mol) of -33.39 and -63.51, respectively, against -27.97 of control. The final molecules showed suitable drug-likeness, non-mutagenesis, permeability, and high solubility values. The C-α atoms root mean square deviation and root mean square fluctuation of the bound-PCSK9 complexes showed stable and lower fluctuations compared to apo PCSK9. The findings present a model that unravels the mechanism by which the final molecules proposedly inhibit the PCSK9 function and could further improve the design of novel drugs against cardiovascular diseases.
Collapse
Affiliation(s)
- Ibrahim O Kehinde
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Oluwole Akawa
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adeniyi T Adewumi
- Department of Life and Consumer Sciences, University of South Africa, Florida Campus, Johannesburg, South Africa
| | - Ali H Rabbad
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
3
|
Xie S, Zhou Y, Zhu H, Xu X, Zhang H, Yuan C, Huang M, Xu P, Li J, Liu Y. Interface-driven structural evolution on diltiazem as novel uPAR inhibitors: from in silico design to in vitro evaluation. Mol Divers 2024:10.1007/s11030-024-10908-7. [PMID: 38935305 DOI: 10.1007/s11030-024-10908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) emerges as a key target for anti-metastasis owing to its pivotal role in facilitating the invasive and migratory processes of cancer cells. Recently, we identified the uPAR-targeting anti-metastatic ability of diltiazem (22), a commonly used antihypertensive agent. Fine-tuning the chemical structures of known hits represents a vital branch of drug development. To develop novel anti-metastatic drugs, we performed an interface-driven structural evolution strategy on 22. The uPAR-targeting and anti-cancer abilities of this antihypertensive drug wereidentified by us recently. Based on in silico strategy, including extensive molecular dynamics (MD) simulations, hierarchical binding free energy predictions, and ADMET profilings, we designed, synthesized, and identified three new diltiazem derivatives (221-8, 221-57, and 221-68) as uPAR inhibitors. Indeed, all of these three derivatives exhibited uPAR-depending inhibitory activity against PC-3 cell line invasion at micromolar level. Particularly, derivatives 221-68 and 221-8 showed enhanced uPAR-dependent inhibitory activity against the tumor cell invasion compared to the original compound. Microsecond timesclae MD simulations demonstrated the optimized moiety of 221-68 and 221-8 forming more comprehensive interactions with the uPAR, highlighting the reasonability of our strategy. This work introduces three novel uPAR inhibitors, which not only pave the way for the development of effective anti-metastatic therapeutics, but also emphasize the efficacy and robustness of an in silico-based lead compound optimization strategy in drug design.
Collapse
Affiliation(s)
- Song Xie
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yang Zhou
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Hao Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xinyi Xu
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Han Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, China.
| | - Yichang Liu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
4
|
Aziz S, Waqas M, Mohanta TK, Halim SA, Iqbal A, Ali A, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. Identifying non-nucleoside inhibitors of RNA-dependent RNA-polymerase of SARS-CoV-2 through per-residue energy decomposition-based pharmacophore modeling, molecular docking, and molecular dynamics simulation. J Infect Public Health 2023; 16:501-519. [PMID: 36801630 PMCID: PMC9927802 DOI: 10.1016/j.jiph.2023.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The current coronavirus disease-2019 (COVID-19) pandemic has triggered a worldwide health and economic crisis. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the disease and completes its life cycle using the RNA-dependent RNA-polymerase (RdRp) enzyme, a prominent target for antivirals. In this study, we have computationally screened ∼690 million compounds from the ZINC20 database and 11,698 small molecule inhibitors from DrugBank to find existing and novel non-nucleoside inhibitors for SARS-CoV-2 RdRp. METHODS Herein, a combination of the structure-based pharmacophore modeling and hybrid virtual screening methods, including per-residue energy decomposition-based pharmacophore screening, molecular docking, pharmacokinetics, and toxicity evaluation were employed to retrieve novel as well as existing RdRp non-nucleoside inhibitors from large chemical databases. Besides, molecular dynamics simulation and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method were used to investigate the binding stability and calculate the binding free energy of RdRp-inhibitor complexes. RESULTS Based on docking scores and significant binding interactions with crucial residues (Lys553, Arg557, Lys623, Cys815, and Ser816) in the RNA binding site of RdRp, three existing drugs, ZINC285540154, ZINC98208626, ZINC28467879, and five compounds from ZINC20 (ZINC739681614, ZINC1166211307, ZINC611516532, ZINC1602963057, and ZINC1398350200) were selected, and the conformational stability of RdRp due to their binding was confirmed through molecular dynamics simulation. The free energy calculations revealed these compounds possess strong binding affinities for RdRp. In addition, these novel inhibitors exhibited drug-like features, good absorption, distribution, metabolism, and excretion profile and were found to be non-toxic. CONCLUSION The compounds identified in the study by multifold computational strategy can be validated in vitro as potential non-nucleoside inhibitors of SARS-CoV-2 RdRp and holds promise for the discovery of novel drugs against COVID-19 in future.
Collapse
Affiliation(s)
- Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25000, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, 2100, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25000, Pakistan; Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, 2100, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| |
Collapse
|
5
|
Ejalonibu MA, Elrashedy AA, Lawal MM, Mhlongo NN, Kumalo HM. Pharmacophore mapping of the crucial mediators of dual inhibitor activity of PanK and PyrG in tuberculosis disease. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.2019251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Murtala A. Ejalonibu
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ahmed A. Elrashedy
- Natural and Microbial Product Department, National Research Centre, Giza, Egypt
| | - Monsurat M. Lawal
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ndumiso N. Mhlongo
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M. Kumalo
- Biomolecular Modeling Research Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Kekez M, Zanki V, Antičević I, Rokov-Plavec J, Maršavelski A. Importance of protein intrinsic conformational dynamics and transient nature of non-covalent interactions in ligand binding affinity. Int J Biol Macromol 2021; 192:692-700. [PMID: 34655583 DOI: 10.1016/j.ijbiomac.2021.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 11/15/2022]
Abstract
We have recently identified BEN1 as a protein interactor of seryl-tRNA synthetase (SerRS) from model plant Arabidopsis thaliana. BEN1 contains an NADP+ binding domain and possesses acidic N-terminal extension essential for interaction with A. thaliana SerRS. This extension, specific for BEN1 homologues from Brassicaceae family, is solvent-exposed and distant to the nucleotide-binding site. We prepared a truncated BEN1 variant ΔN17BEN1 lacking the first 17 amino acid of this N-terminal extension as well as full-length BEN1 to investigate how the truncation affects the binding affinity towards coenzyme NADP+. By performing microscale thermophoresis (MST) experiments we have shown that both BEN1 variants bind the NADP+ cofactor, however, truncated BEN1 showed 34-fold higher affinity towards NADP+ indicating that its core protein structure is not just preserved but it binds NADP+ even stronger. To further corroborate the obtained results, we opted for a computational approach based on classical molecular dynamics simulations of both complexes. Our results have shown that both truncated and intact BEN1 variants form the same number of interactions with the NADP+ cofactor; however, it was the interaction occupancy that was affected. Namely, three independent MD simulations showed that the ΔN17BEN1 variant in complex with NADP+ has significantly higher interaction occupancy thus binds NADP+ with more than one order of magnitude higher affinity. Contrary to our expectations, the truncation of this distant region that does not communicate with the nucleotide-binding site didn't result in the gain of interaction but affected the intrinsic conformational dynamics which in turn fine-tuned the binding affinity by increasing the interaction occupancy and strength of the key conserved cation-π interaction between Arg69 and adenine of NADP+ and hydrogen bond between Ser244 and phosphate of NADP+.
Collapse
Affiliation(s)
- Mario Kekez
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | - Vladimir Zanki
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | - Ivan Antičević
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | - Jasmina Rokov-Plavec
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Croatia.
| | - Aleksandra Maršavelski
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Croatia.
| |
Collapse
|
7
|
Ugbaja S, Lawal I, Kumalo H, Lawal M. Alzheimer's Disease and β-Secretase Inhibition: An Update With a Focus on Computer-Aided Inhibitor Design. Curr Drug Targets 2021; 23:266-285. [PMID: 34370634 DOI: 10.2174/1389450122666210809100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is an intensifying neurodegenerative illness due to its irreversible nature. Identification of β-site amyloid precursor protein (APP) cleaving enzyme1 (BACE1) has been a significant medicinal focus towards AD treatment, and this has opened ground for several investigations. Despite the numerous works in this direction, no BACE1 inhibitor has made it to the final approval stage as an anti-AD drug. METHOD We provide an introductory background of the subject with a general overview of the pathogenesis of AD. The review features BACE1 inhibitor design and development with a focus on some clinical trials and discontinued drugs. Using the topical keywords BACE1, inhibitor design, and computational/theoretical study in the Web of Science and Scopus database, we retrieved over 49 relevant articles. The search years are from 2010 and 2020, with analysis conducted from May 2020 to March 2021. RESULTS AND DISCUSSION Researchers have employed computational methodologies to unravel potential BACE1 inhibitors with a significant outcome. The most used computer-aided approach in BACE1 inhibitor design and binding/interaction studies are pharmacophore development, quantitative structure-activity relationship (QSAR), virtual screening, docking, and molecular dynamics (MD) simulations. These methods, plus more advanced ones including quantum mechanics/molecular mechanics (QM/MM) and QM, have proven substantial in the computational framework for BACE1 inhibitor design. Computational chemists have embraced the incorporation of in vitro assay to provide insight into the inhibition performance of identified molecules with potential inhibition towards BACE1. Significant IC50 values up to 50 nM, better than clinical trial compounds, are available in the literature. CONCLUSION The continuous failure of potent BACE1 inhibitors at clinical trials is attracting many queries prompting researchers to investigate newer concepts necessary for effective inhibitor design. The considered properties for efficient BACE1 inhibitor design seem enormous and require thorough scrutiny. Lately, researchers noticed that besides appreciable binding affinity and blood-brain barrier (BBB) permeation, BACE1 inhibitor must show low or no affinity for permeability-glycoprotein. Computational modeling methods have profound applications in drug discovery strategy. With the volume of recent in silico studies on BACE1 inhibition, the prospect of identifying potent molecules that would reach the approved level is feasible. Investigators should try pushing many of the identified BACE1 compounds with significant anti-AD properties to preclinical and clinical trial stages. We also advise computational research on allosteric inhibitor design, exosite modeling, and multisite inhibition of BACE1. These alternatives might be a solution to BACE1 drug discovery in AD therapy.
Collapse
Affiliation(s)
- Samuel Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Isiaka Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vaal University of Technology, Vanderbijlpark Campus, Boulevard, 1900, Vanderbijlpark, Saudi Arabia
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| |
Collapse
|
8
|
Exploration of alternate therapeutic remedies in Ebola virus disease: the case of reported antiviral phytochemical derived from the leaves Spondias Mombin Linn. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00603-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Saeed M, Shoaib A, Tasleem M, Alabdallah NM, Alam MJ, Asmar ZE, Jamal QMS, Bardakci F, Alqahtani SS, Ansari IA, Badraoui R. Assessment of Antidiabetic Activity of the Shikonin by Allosteric Inhibition of Protein-Tyrosine Phosphatase 1B (PTP1B) Using State of Art: An In Silico and In Vitro Tactics. Molecules 2021; 26:3996. [PMID: 34208908 PMCID: PMC8271486 DOI: 10.3390/molecules26133996] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a multifactorial disease that affects both developing and developed countries and is a major public health concern. Many synthetic drugs are available in the market, which counteracts the associated pathologies. However, due to the propensity of side effects, there is an unmet need for the investigation of safe and effective drugs. This research aims to find a novel phytoconstituent having diminished action on blood glucose levels with the least side effects. Shikonin is a naturally occurring naphthoquinone dying pigment obtained by the roots of the Boraginaceae family. Besides its use as pigments, it can be used as an antimicrobial, anti-inflammatory, and anti-tumor agent. This research aimed to hypothesize the physicochemical and phytochemical properties of Shikonin's in silico interaction with protein tyrosine phosphate 1B, as well as it's in vitro studies, in order to determine its potential anti-diabetic impact. To do so, molecular docking experiments with target proteins were conducted to assess their anti-diabetic ability. Analyzing associations with corresponding amino acids revealed the significant molecular interactions between Shikonin and diabetes-related target proteins. In silico pharmacokinetics and toxicity profile of Shikonin using ADMET Descriptor, Toxicity Prediction, and Calculate Molecular Properties tools from Biovia Discovery Studio v4.5. Filter by Lipinski and Veber Rule's module from Biovia Discovery Studio v4.5 was applied to assess the drug-likeness of Shikonin. The in vitro studies exposed that Shikonin shows an inhibitory potential against the PTP1B with an IC50 value of 15.51 µM. The kinetics studies revealed that it has a competitive inhibitory effect (Ki = 7.5 M) on the enzyme system, which could be useful in the production of preventive and therapeutic agents. The findings of this research suggested that the Shikonin could be used as an anti-diabetic agent and can be used as a novel source for drug delivery.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box No. 114, Jazan 45142, Saudi Arabia;
| | - Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, 383, Dammam 31113, Saudi Arabia;
| | - Md Jahoor Alam
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Zeina El Asmar
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52571, Saudi Arabia;
| | - Fevzi Bardakci
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box No. 114, Jazan 45142, Saudi Arabia;
| | | | - Riadh Badraoui
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| |
Collapse
|
10
|
Ajadi MB, Soremekun OS, Adewumi AT, Kumalo HM, Soliman MES. Leveraging on Active Site Similarities; Identification of Potential Inhibitors of Zinc-Finger and UFSP domain Protein (ZUFSP). Curr Pharm Biotechnol 2021; 22:995-1004. [PMID: 32744966 DOI: 10.2174/1389201021666200730151218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/30/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND ZUFSP (Zinc-finger and UFSP domain protein) is a novel representative member of the recently characterized seventh class of deubiquitinating enzymes (DUBs). Due to the roles DUBs play in genetic instability, they have become a major drug target in cancer and neurodegenerative diseases. ZUFSP, being a DUB enzyme has also been implicated in genetic stability. However, no lead compound has been developed to target ZUFSP. OBJECTIVE/METHODS Therefore, in this study, we used a combined drug repurposing, virtual screening and per-Residue Energy Decomposition (PRED) to identify ZUFSP inhibitors with therapeutic potential. 3-bromo-6-{[4-hydroxy-1-3(3-phenylbutanoyl)piperidin-4-yl]methyl}-4H,5H,6H,7H-thieno[2,3- C]pyridine-7-one (BHPTP) which is an inhibitor of USP7 was repurposed to target ZUFSP. The rationale behind this is based on the similarity of the active between USP7 and ZUFSP. RESULTS PRED of the binding between BHPTP and ZUFSP revealed Cys223, Arg408, Met410, Asn460, and Tyr465 as the crucial residues responsible for this interaction. The pharmacophoric moieties of BHPTP responsible for this binding along with other physiochemical properties were used as a filter to retrieve potential ligands. 799 compounds were retrieved, ZINC083241427, ZINC063648749, and ZINC063648753 were selected due to the binding energy they exhibited. Cheminformatics analysis revealed that the compounds possess high membrane permeability, however, BHPTP had a low membrane permeability. Furthermore, the compounds are drug like, having obeyed Lipinski's rule of five. CONCLUSION Taken together, findings from this study put ZINC083241427, ZINC063648749, and ZINC063648753 as potential ZUFSP inhibitor, however, more experimental validation is required to unravel the mechanism of actions of these compounds.
Collapse
Affiliation(s)
- Mary B Ajadi
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban 4000, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Adeniyi T Adewumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Hezekiel M Kumalo
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban 4000, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
11
|
Ugbaja SC, Lawal M, Kumalo H. An Overview of β-Amyloid Cleaving Enzyme 1 (Bace1) in Alzheimer's Disease Therapy Elucidating its Exosite-Binding Antibody and Allosteric Inhibitor. Curr Med Chem 2021; 29:114-135. [PMID: 34102967 DOI: 10.2174/0929867328666210608145357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Over decades of its identification, numerous past and ongoing researches have focused on the therapeutic roles of β-amyloid cleaving enzyme 1 (BACE1) as a target in treating Alzheimer's disease (AD). Although the initial BACE1 inhibitors at phase-3 clinical trials tremendously reduced β-amyloid-associated plaques in patients with AD, the researchers eventually discontinued the tests due to the lack of potency. This discontinuation has resulted in limited drug development and discovery targeted at BACE1, despite the high demand for dementia and AD therapies. It is, therefore, imperative to describe the detailed underlying biological basis of the BACE1 therapeutic option in neurological diseases. Herein, we highlight BACE1 bioactivity, genetic properties, and role in neurodegenerative therapy. We review research contributions to BACE1 exosite-binding antibody and allosteric inhibitor development as AD therapies. The review also covers BACE1 biological function, the disease-associated mechanisms, and the enzyme conditions for amyloid precursor protein sites splitting. Based on the present review, we suggest further studies on anti-BACE1 exosite antibodies and BACE1 allosteric inhibitors. Non-active site inhibition might be the way forward to BACE1 therapy in Alzheimer's neurological disorder.
Collapse
Affiliation(s)
- Samuel C Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
12
|
A probable means to an end: exploring P131 pharmacophoric scaffold to identify potential inhibitors of Cryptosporidium parvum inosine monophosphate dehydrogenase. J Mol Model 2021; 27:35. [PMID: 33423140 DOI: 10.1007/s00894-020-04663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Compound P131 has been established to inhibit Cryptosporidium parvum's inosine monophosphate dehydrogenase (CpIMPDH). Its inhibitory activity supersedes that of paromomycin, which is extensively used in treating cryptosporidiosis. Through the per-residue energy decomposition approach, crucial moieties of P131 were identified and subsequently adopted to create a pharmacophore model for virtual screening in the ZINC database. This search generated eight ADMET-compliant hits that were examined thoroughly to fit into the active site of CpIMPDH via molecular docking. Three compounds ZINC46542062, ZINC58646829, and ZINC89780094, with favorable docking scores of - 8.3 kcal/mol, - 8.2 kcal/mol, and - 7.5 kcal/mol, were selected. The potential inhibitory mechanism of these compounds was probed using molecular dynamics simulation and Molecular Mechanics Generalized Poisson Boltzmann Surface Area (MM/PBSA) analyses. Results revealed that one of the hits (ZINC46542062) exhibited a lower binding free energy of - 39.52 kcal/mol than P131, which had - 34.6 kcal/mol. Conformational perturbation induced by the binding of the identified hits to CpIMPDH was similar to P131, suggesting a similarity in inhibitory mechanisms. Also, in silico investigation of the properties of the hit compounds implied superior physicochemical properties with regards to their synthetic accessibility, lipophilicity, and number of hydrogen bond donors and acceptors in comparison with P131. ZINC46542062 was identified as a promising hit compound with the highest binding affinity to the target protein and favorable physicochemical and pharmacokinetic properties relative to P131. The identified compounds can serve as a basis for conducting further experimental investigations toward the development of anticryptosporidials, which can overcome the challenges of existing therapeutic options. Graphical abstract P131 and the identified compounds docked in the NAD+ binding site of Cryptosporidium parvum IMPDH.
Collapse
|
13
|
'Polymorphism-aided' Selective Targeting and Inhibition of Caspase-6 by a Novel Allosteric Inhibitor Towards Efficient Alzheimer's Disease Treatment. Cell Biochem Biophys 2020; 78:291-299. [PMID: 32592127 DOI: 10.1007/s12013-020-00927-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
The predominance of Alzheimer's disease (AD) among the aged remains a global challenge. As such, the search for alternative and effective therapeutic options continuous unabated. Among the therapeutic targets explored over the years toward impeding the progression of AD is caspase-6 (Casp6), although selectively targeting Casp6 remains a challenge due to high homology with other members of the caspase family. Methyl 3-[(2,3-dihydro-1-benzofuran-2-yl formamido) methyl]-5-(furan-2-amido) benzoate (C13), a novel allosteric inhibitor, is reportedly shown to exhibit selective inhibition against mutant human Casp6 variants (E35K). However, structural and atomistic insights accounting for the reported inhibitory prowess of C13 remains unresolved. In this study, we seek to unravel the mechanistic selectivity of C13 coupled with the complementary effects of E35K single-nucleotide polymorphism (SNP) relative to Casp6 inhibition. Analyses of binding dynamics revealed that the variant Lysine-35 mediated consistent high-affinity interactions with C13 at the allosteric site, possibly forming the molecular basis of the selectivity of C13 as well as its high binding free energy as estimated. Analysis of residue interaction network around Glu35 and Lys35 revealed prominent residue network distortions in the mutant Casp6 conformation evidenced by a decrease in node degree, reduced number of edges and an increase short in path length relative to a more compact conformation in the wild system. The relatively higher binding free energy of C13 coupled with the stronger intermolecular interactions elicited in the mutant conformation further suggests that the mutation E35K probably favours the inhibitory activity of C13. Further analysis of atomistic changes showed increased C-α atom deviations consistent with structural disorientations in the mutant Casp6. Structural Insights provided could open up a novel paradigm of structure-based design of selective allosteric inhibition of Casp6 towards the treatment of neurodegenerative diseases.
Collapse
|
14
|
Ibeji CU. Molecular dynamics and DFT study on the structure and dynamics of N-terminal domain HIV-1 capsid inhibitors. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1674850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Collins U. Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
15
|
Govender H, Mocktar C, Kumalo HM, Koorbanally NA. Synthesis, antibacterial activity and docking studies of substituted quinolone thiosemicarbazones. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1618298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Chunderika Mocktar
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M. Kumalo
- Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Neil A. Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Soremekun OS, Olotu FA, Agoni C, Soliman MES. Drug promiscuity: Exploring the polypharmacology potential of 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones as an inhibitor of the 'god father' of immune checkpoint. Comput Biol Chem 2019; 80:433-440. [PMID: 31146119 DOI: 10.1016/j.compbiolchem.2019.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
High production cost, instability, low tumor penetration are some of the shortcomings that have characterized and undermined the use of antibodies as a target for Cytotoxic T-lymphocytes associated protein 4 (CTLA-4). Design and discovery of small molecule inhibitors have therefore become a sine qua non in targeting immune proteins implicated in immune disorders. In this study, we utilized a drug repositioning approach to explore the characteristic feature of unrelated proteins to have similar binding sites and the promiscuity of drugs to repurpose an existing drug to target CTLA-4. CTLA-4 and Kallikrein-7 were found to have similar binding sites, we therefore used 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones (TDSO) which is an inhibitor of Kallikrein-7 as our lead compound. High throughput screening using TDSO as a lead compound resulted in 9 hits with ZINC04515726 and ZINC08985213 having the highest binding score. We went ahead to investigate the interaction of these compounds with CTLA-4 by conducting a molecular dynamic simulation. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) estimations revealed that TDSO had the highest binding energy value of -28.51Kcal/mol, with ZINC04515726 and ZINC08985213 having -23.76Kcal/mol and -21.03Kcal/mol respectively. The per-residue decomposition highlighted Tyr24, Ala25, Gly28, Ala30, Tyr53 and Asn72 as having significantly high electrostatic energy contributions and the main contributing residues to the binding of TDSO, ZINC04515726 and ZINC08985213 to Cytotoxic T lymphocytes CTLA-4. Summarily, from the results gathered, we proposed that TDSO can be an effective immune check point small molecule inhibitor against the suppression of T-cell activation, proliferation, and tumor cell eradication.
Collapse
Affiliation(s)
- Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| |
Collapse
|
17
|
Sosibo SC, Somboro AM, Amoako DG, Osei Sekyere J, Bester LA, Ngila JC, Sun DD, Kumalo HM. Impact of Pyridyl Moieties on the Inhibitory Properties of Prominent Acyclic Metal Chelators Against Metallo-β-Lactamase-Producing Enterobacteriaceae: Investigating the Molecular Basis of Acyclic Metal Chelators' Activity. Microb Drug Resist 2019; 25:439-449. [DOI: 10.1089/mdr.2018.0272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sphelele C. Sosibo
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Anou M. Somboro
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel G. Amoako
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Durban, South Africa
| | - Linda A. Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jane C. Ngila
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Darren D. Sun
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg, South Africa
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Somboro AM, Amoako DG, Osei Sekyere J, Kumalo HM, Khan R, Bester LA, Essack SY. 1,4,7-Triazacyclononane Restores the Activity of β-Lactam Antibiotics against Metallo-β-Lactamase-Producing Enterobacteriaceae: Exploration of Potential Metallo-β-Lactamase Inhibitors. Appl Environ Microbiol 2019; 85:e02077-18. [PMID: 30478231 PMCID: PMC6344617 DOI: 10.1128/aem.02077-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/24/2018] [Indexed: 01/07/2023] Open
Abstract
Metallo-β-lactamase (MBL)-producing Enterobacteriaceae are of grave clinical concern, particularly as there are no metallo-β-lactamase inhibitors approved for clinical use. The discovery and development of MBL inhibitors to restore the efficacy of available β-lactams are thus imperative. We investigated a zinc-chelating moiety, 1,4,7-triazacyclononane (TACN), for its inhibitory activity against clinical carbapenem-resistant Enterobacteriaceae MICs, minimum bactericidal concentrations (MBCs), the serum effect, fractional inhibitory concentration indexes, and time-kill kinetics were determined using broth microdilution techniques according to Clinical and Laboratory Standards Institute (CSLI) guidelines. Enzyme kinetic parameters and the cytotoxic effects of TACN were determined using spectrophotometric assays. The interactions of the enzyme-TACN complex were investigated by computational studies. Meropenem regained its activity against carbapenemase-producing Enterobacteriaceae, with the MIC decreasing from between 8 and 64 mg/liter to 0.03 mg/liter in the presence of TACN. The TACN-meropenem combination showed bactericidal effects with an MBC/MIC ratio of ≤4, and synergistic activity was observed. Human serum effects on the MICs were insignificant, and TACN was found to be noncytotoxic at concentrations above the MIC values. Computational studies predicted that TACN inhibits MBLs by targeting their catalytic active-site pockets. This was supported by its inhibition constant (Ki ), which was 0.044 μM, and its inactivation constant (Kinact), which was 0.0406 min-1, demonstrating that TACN inhibits MBLs efficiently and holds promise as a potential inhibitor.IMPORTANCE Carbapenem-resistant Enterobacteriaceae (CRE)-mediated infections remain a significant public health concern and have been reported to be critical in the World Health Organization's priority pathogens list for the research and development of new antibiotics. CRE produce enzymes, such as metallo-β-lactamases (MBLs), which inactivate β-lactam antibiotics. Combination therapies involving a β-lactam antibiotic and a β-lactamase inhibitor remain a major treatment option for infections caused by β-lactamase-producing organisms. Currently, no MBL inhibitor-β-lactam combination therapy is clinically available for MBL-positive bacterial infections. Hence, developing efficient molecules capable of inhibiting these enzymes could be a promising way to overcome this phenomenon. TACN played a significant role in the inhibitory activity of the tested molecules against CREs by potentiating the activity of carbapenem. This study demonstrates that TACN inhibits MBLs efficiently and holds promises as a potential MBL inhibitor to help curb the global health threat posed by MBL-producing CREs.
Collapse
Affiliation(s)
- Anou M Somboro
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel G Amoako
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Hezekiel M Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - René Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Linda A Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
19
|
Badichi Akher F, Farrokhzadeh A, Olotu FA, Agoni C, Soliman MES. The irony of chirality – unveiling the distinct mechanistic binding and activities of 1-(3-(4-amino-5-(7-methoxy-5-methylbenzo[b]thiophen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-7-yl)pyrrolidin-1-yl)prop-2-en-1-one enantiomers as irreversible covalent FGFR4 inhibitors. Org Biomol Chem 2019; 17:1176-1190. [DOI: 10.1039/c8ob02811g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretical investigation of the effect of chirality on inhibitors is providing essential insights for drug design.
Collapse
Affiliation(s)
- Farideh Badichi Akher
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Abdolkarim Farrokhzadeh
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Fisayo A. Olotu
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahmoud E. S. Soliman
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| |
Collapse
|
20
|
Somboro AM, Osei Sekyere J, Amoako DG, Kumalo HM, Khan R, Bester LA, Essack SY. In vitro potentiation of carbapenems with tannic acid against carbapenemase-producing enterobacteriaceae: exploring natural products as potential carbapenemase inhibitors. J Appl Microbiol 2018; 126:452-467. [PMID: 30365206 DOI: 10.1111/jam.14141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 02/03/2023]
Abstract
AIMS We hypothesized and confirmed that tannic acid (TA) reverses carbapenem resistance by inhibiting carbapenemases in class A and B carbapenemase-producing Enterobacteriaceae. METHODS AND RESULTS Minimum inhibitory concentrations of carbapenems in the presence and absence of TA and other efflux pump inhibitors, TA-carbapenemases inhibition assays and computational studies showed that TA had the greatest effect on metallo-β-lactamases (MBLs) followed by class A serine-β-lactamases (SBLs). TA completely reversed the MICs of MBL producers from between 32 and ≥512 mg l-1 to susceptible values (<4 mg l-1 ) while substantially reducing the MICs of SBLs from between 16 and >512 mg l-1 to <4 to 16 mg l-1 . Tolerable cytotoxic effect was observed for the concentrations tested (8-1024 mg l-1 ). TA inhibited enzymes with a marked difference of ≈50% inhibition (IC50 ) for NDM-1 (270 μmol l-1 ) and KPC-2 (15 μmol l-1 ). CONCLUSION TA inhibited both MBLs and SBLs by targeting their hydrophobic sites. Moreover, TA had a stronger binding affinity for MBLs than SBLs as the MBLs, specifically VIM-1 (-43·7220 ± 0·4513 kcal mol-1 ) and NDM-1(-44·2329 ± 0·3806 kcal mol-1 ), interact with a larger number of their catalytic active-site residues than that of OXA-48 (-22·5275 ± 0·1300 kcal mol-1 ) and KPC-2 (-22·1164 ± 0·0111 kcal mol-1 ). SIGNIFICANCE AND IMPACT OF THE STUDY Tannic acid or its analogues could be developed into carbapenemase-inhibiting adjuvants to restore carbapenem activity in CRE infections, save many lives and reduce healthcare associated costs.
Collapse
Affiliation(s)
- A M Somboro
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - J Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - D G Amoako
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - H M Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - R Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - L A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - S Y Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
21
|
Arba M, Nur-Hidayat A, Surantaadmaja SI, Tjahjono DH. Pharmacophore-based virtual screening for identifying β5 subunit inhibitor of 20S proteasome. Comput Biol Chem 2018; 77:64-71. [PMID: 30243108 DOI: 10.1016/j.compbiolchem.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/16/2018] [Accepted: 08/26/2018] [Indexed: 12/13/2022]
Abstract
Proteasomal system plays an important role in maintaining cell homeostatis. Overexpression of proteasomes leads to several major diseases, such as cancer and autoimmune disorder. The β5 subunit of proteasome is a crucial active site in proteolysis, and targeting proteasome β5 subunit is essential for proteasome inhibition. In the present study, a pharmacophore-based virtual screening and molecular docking were employed to identify ligands as inhibitors of β5 subunit of proteasome. The pharmacophore features were built with one hydrogen bond donor, two hydrogen bond acceptors, and one hydrophobic feature using native ligand of proteasome (HU10), which was then used to screen ZINC database using ZINCPharmer. The retrieved virtual hits were subjected to molecular docking analysis using iDock. The best six hits were subjected to molecular dynamics (MD) simulation and each complex was stable during 40 ns MD simulation as indicated by root-mean-square-deviation (RMSD) and root-mean-square-fluctuation (RMSF) values. The current study identifies 5 best hits having better binding potentials than HU10 as predicted by molecular mechanics Poisson-Boltzmann Surface Area (MM-PBSA) method, i.e. Lig1540/ZINC33356240, Lig1546/ZINC33356235, Lig1522/ZINC20854878, Lig980/ZINC12391945, and Lig1119/ZINC19865241, which can be used in the development of new proteasome inhibitors.
Collapse
Affiliation(s)
- Muhammad Arba
- Faculty of Pharmacy, Halu Oleo University, Kendari, 93231, Indonesia.
| | - Andry Nur-Hidayat
- Faculty of Pharmacy, Halu Oleo University, Kendari, 93231, Indonesia
| | | | - Daryono H Tjahjono
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40312, Indonesia
| |
Collapse
|
22
|
Machaba KE, Mhlongo NN, Soliman MES. Induced Mutation Proves a Potential Target for TB Therapy: A Molecular Dynamics Study on LprG. Cell Biochem Biophys 2018; 76:345-356. [PMID: 30073572 DOI: 10.1007/s12013-018-0852-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
Molecular dynamics (MD) simulations of wild-type and V91W mutant Mycobacterium tuberculosis-LprG (Mtb-LprG) were performed with the goal to provide a comprehensive understanding of the Mtb-LprG as a potential antimycobacterial target. A long-range MD simulations and post-MD analyzes led us to various results that plainly explained the impact of V91W mutation on Mtb-LprG. Herein, the results revealed that the wild-type is less stable compared to V91W mutant. This was further supported by root mean square fluctuation, where the V91W mutant showed a higher degree of flexibility compared to the wild-type. Dynamic cross-correlation analysis revealed that induced mutation leads to higher residual flexibility in the mutant structure as compared to the wild-type structure thus resulting in the existence of negatively correlated motions. The difference in principal component analysis scatter plot across the first two normal modes suggests a greater mobility of the V91W mutant conformation compared to the wild-type. Thermodynamic calculations revealed that the van der Waals (Evdw) forces contribute the most towards binding free energy in a case of the V91W mutant as compared to the wild-type LprG complex. In addition, the residue interaction networks revealed more of Evdw interaction existence among residues in case of the V91W mutant. This study supports the Mtb-LprG as a potential antimycobacterial target and also serves as a cornerstone to identifying new potential targets that have no inhibitors.
Collapse
Affiliation(s)
- Kgothatso E Machaba
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Ndumiso N Mhlongo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.
| |
Collapse
|
23
|
Ndagi U, Mhlongo NN, Soliman ME. Re-emergence of an orphan therapeutic target for the treatment of resistant prostate cancer - a thorough conformational and binding analysis for ROR-γ protein. J Biomol Struct Dyn 2018; 36:335-350. [PMID: 28027708 DOI: 10.1080/07391102.2016.1277555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023]
Abstract
Recent studies have linked a deadly form of prostate cancer known as metastatic castration-resistant prostate cancer to retinoic acid-related orphan-receptor gamma (ROR-γ). Most of these studies continued to place ROR-γ as orphan because of unidentifiable inhibitor. Recently identified inhibitors of ROR-γ and their therapeutic potential were evaluated, among which inhibitor XY018 was the potent. However, molecular understanding of the conformational features of XY018-ROR-γ complex is still elusive. Herein, molecular dynamics simulations were conducted on HC9-ROR-γ and XY018-ROR-γ complexes to understand their conformational features at molecular level and the influence of XY018 binding on the dynamics of ROR-γ with the aid of post-dynamic analytical tools. These include; principal component analysis, radius of gyration, binding free energy calculation (MM/GBSA), per-residue fluctuation and hydrogen bond occupancy. Findings from this study revealed that (1) hydrophobic packing contributes significantly to binding free energy, (2) Ile136 and Leu60 exhibited high hydrogen-bond occupancy in XY018-ROR-γ and HC9-ROR-γ, respectively, (3) XY018-ROR-γ displayed a relatively high loop region residue fluctuation compared to HC9-ROR-γ, (4) electrostatic interactions are a potential binding force in XY018-ROR-γ complex compared to HC9-ROR-γ, (5) XY018-ROR-γ assumes a rigid conformation which is highlighted by a decrease in residual fluctuation, (6) XY018 could potentially induce pseudoporphyria, nephritis and interstitial nephritis but potentially safe in renal failure. This study could serve as a base line for the design of new potential ROR-γ inhibitors.
Collapse
Affiliation(s)
- Umar Ndagi
- a Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban 4000 , South Africa
| | - Ndumiso N Mhlongo
- a Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban 4000 , South Africa
| | - Mahmoud E Soliman
- a Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban 4000 , South Africa
| |
Collapse
|
24
|
Kumar A, Srivastava G, Negi AS, Sharma A. Docking, molecular dynamics, binding energy-MM-PBSA studies of naphthofuran derivatives to identify potential dual inhibitors against BACE-1 and GSK-3β. J Biomol Struct Dyn 2018; 37:275-290. [DOI: 10.1080/07391102.2018.1426043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India
| | - Gaurava Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India
| | - Arvind S. Negi
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India
| |
Collapse
|
25
|
Ncube NB, Ramharack P, Soliman MES. An “All-In-One” Pharmacophoric Architecture for the Discovery of Potential Broad-Spectrum Anti-Flavivirus Drugs. Appl Biochem Biotechnol 2018; 185:799-814. [DOI: 10.1007/s12010-017-2690-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
|
26
|
Balmith M, Soliman MES. Potential Ebola drug targets — filling the gap: a critical step forward towards the design and discovery of potential drugs. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Buthelezi NM, Machaba KE, Soliman ME. The Identification of potential human rhinovirus inhibitors: exploring the binding landscape of HRV-3C protease through PRED pharmacophore screening. Future Virol 2017. [DOI: 10.2217/fvl-2017-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhinovirus infections are estimated to be 70% of virus-related cold and flu-like illnesses. The disastrous impact of human rhinovirus infections costs healthcare systems billions annually. Herein, an in-house target-bound pharmacophore-based virtual screening protocol, outlined in our previous publications, was employed in identifying potential drug lead of 3C protease, based on the structural characteristics of rupintrivir. The two novel hits HRV-ZINC01537619 and HRV-ZINC601135028 may be commissioners of the new group of 3C proteases inhibitors against human rhinoviruses. Interestingly, both ZINC01537619 and ZINC601135028 interact with catalytic residues His40 and Cys147, respectively. This is a significant phenomenon which gives hope that viral replication inhibition is possible. These promising compounds now pave a fundamental new route toward the successful inhibition of the virus.
Collapse
Affiliation(s)
- Ndumiso M Buthelezi
- Molecular Modeling & Drug Design Research Group, School of Health Sciences, Pharmaceutical Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, KwaZulu-Natal 4001, South Africa
| | - Kgothatso E Machaba
- Molecular Modeling & Drug Design Research Group, School of Health Sciences, Pharmaceutical Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, KwaZulu-Natal 4001, South Africa
| | - Mahmoud E Soliman
- Molecular Modeling & Drug Design Research Group, School of Health Sciences, Pharmaceutical Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, KwaZulu-Natal 4001, South Africa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural & Mechanical University (FAMU), Tallahassee, FL 32307, USA
| |
Collapse
|
28
|
Kumar A, Srivastava G, Srivastava S, Verma S, Negi AS, Sharma A. Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimer's disease. J Mol Model 2017; 23:239. [PMID: 28741112 DOI: 10.1007/s00894-017-3396-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
BACE-1 and GSK-3β are potential therapeutic drug targets for Alzheimer's disease. Recently, both the targets received attention for designing dual inhibitors for Alzheimer's disease. Until now, only two-scaffold triazinone and curcumin have been reported as BACE-1 and GSK-3β dual inhibitors. Docking, molecular dynamics, clustering, binding energy, and network analysis of triazinone derivatives with BACE-1 and GSK-3β was performed to get molecular insight into the first reported dual inhibitor. Further, we designed and evaluated a naphthofuran series for its ability to inhibit BACE-1 and GSK-3β with the computational approaches. Docking study of naphthofuran series showed a good binding affinity towards both the targets. Molecular dynamics, binding energy, and network analysis were performed to compare their binding with the targets and amino acids responsible for binding. Naphthofuran series derivatives showed good interaction within the active site residues of both of the targets. Hydrogen bond occupancy and binding energy suggested strong binding with the targets. Dual-inhibitor binding was mostly governed by the hydrophobic interactions for both of the targets. Per residue energy decomposition and network analysis identified the key residues involved in the binding and inhibiting BACE-1 and GSK-3β. The results indicated that naphthofuran series derivative 11 may be a promising first-in-class dual inhibitor against BACE-1 and GSK-3β. This naphthofuran series may be further explored to design better dual inhibitors. Graphical abstract Naphthofuran derivative as a dual inhibitor for BACE-1 and GSK-3β.
Collapse
Affiliation(s)
- Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Gaurava Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Swati Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Seema Verma
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Arvind S Negi
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, UP, 226015, India.
| |
Collapse
|
29
|
Oguntade S, Ramharack P, Soliman MES. Characterizing the ligand-binding landscape of Zika NS3 helicase-promising lead compounds as potential inhibitors. Future Virol 2017. [DOI: 10.2217/fvl-2017-0014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This study aims to provide insight into the binding features of the ATPase and ssRNA sites of the NS3 helicase. Methods: Clinically approved Flavivirus inhibitors were docked to the corresponding active sites of the protein, and the three best compounds were validated with molecular dynamic simulations. Result: Binding of Ivermectin to ssRNA site and Lapachol and HMC-HO1α to the ATPase site allowed for conformational rigidity of the Zika NS3 helicase, thus stabilizing residue fluctuations and allowing for protein stability. Favorable free binding energies were also noted between compounds and the helicase, thus supporting the intermolecular forces at the helicase active site. Conclusion: The pharmacophoric characteristics found in Lapachol, HMC-HO1α and Ivermectin may be utilized in the design of a potent hybrid drug that is able to show efficient inhibition of a multitude of diseases including the detrimental co-infection of Zika virus, dengue and chikungunya.
Collapse
Affiliation(s)
- Sofiat Oguntade
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Pritika Ramharack
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud ES Soliman
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- College of Pharmacy & Pharmaceutical Sciences, Florida Agricultural & Mechanical University, FAMU, FL 32307, USA
| |
Collapse
|
30
|
Tailored-pharmacophore model to enhance virtual screening and drug discovery: a case study on the identification of potential inhibitors against drug-resistant Mycobacterium tuberculosis (3R)-hydroxyacyl-ACP dehydratases. Future Med Chem 2017. [DOI: 10.4155/fmc-2017-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Virtual screening (VS) is powerful tool in discovering molecular inhibitors that are most likely to bind to drug targets of interest. Herein, we introduce a novel VS approach, so-called ‘tailored-pharmacophore’, in order to explore inhibitors that overcome drug resistance. Methodology & results: The emergence and spread of drug resistance strains of tuberculosis is one of the most critical issues in healthcare. A tailored-pharmacophore approach was found promising to identify in silico predicted hit with better binding affinities in case of the resistance mutations in MtbHadAB as compared with thiacetazone, a prodrug used in the clinical treatment of tuberculosis. Conclusion: This approach can potentially be enforced for the discovery and design of drugs against a wide range of resistance targets.
Collapse
|
31
|
Ramharack P, Soliman MES. Zika virus NS5 protein potential inhibitors: an enhanced in silico approach in drug discovery. J Biomol Struct Dyn 2017; 36:1118-1133. [PMID: 28351337 DOI: 10.1080/07391102.2017.1313175] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The re-emerging Zika virus (ZIKV) is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus has already been linked to irreversible chronic central nervous system conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of ZIKV Methyltransferase and RNA dependent RNA polymerase. This in silico 'per-residue energy decomposition pharmacophore' virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents.
Collapse
Affiliation(s)
- Pritika Ramharack
- a Molecular Modeling and Drug Design Research Group , School of Health Sciences, University of KwaZulu-Natal , Westville Campus, Durban 4001 , South Africa
| | - Mahmoud E S Soliman
- a Molecular Modeling and Drug Design Research Group , School of Health Sciences, University of KwaZulu-Natal , Westville Campus, Durban 4001 , South Africa.,b Pharmaceutical Sciences , University of KwaZulu-Natal , Westville Campus, Durban 4001 , South Africa.,c Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry , Zagazig University , Zagazig , Egypt.,d College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, FAMU , Tallahassee , FL 32307 , USA
| |
Collapse
|
32
|
Machaba KE, Cele FN, Mhlongo NN, Soliman MES. Sliding Clamp of DNA Polymerase III as a Drug Target for TB Therapy: Comprehensive Conformational and Binding Analysis from Molecular Dynamic Simulations. Cell Biochem Biophys 2017; 74:473-481. [PMID: 27651172 DOI: 10.1007/s12013-016-0764-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is one of the most common causes of death in the world. Mycobacterium tuberculosis -sliding clamp is a protein essential for many important DNA transactions including replication and DNA repair proteins, thus, a potential drug target for tuberculosis. Further investigation is needed in understanding DNA polymerase sliding clamp structure, especially from a computational perspective. In this study, we employ a wide-range of comparative molecular dynamic analyses on two systems: Mycobacterium tuberculosis - sliding clamp enzyme in its apo and bound form. The results reported in this study shows apo conformation to be less stable, as compared to bound conformation with an average radius of gyration of 25.812 and 25.459 Å, respectively. This was further supported by root mean square fluctuation, where an apo enzyme showed a higher degree of flexibility. However, the presence of the ligand lowers radius of gyration and root mean square fluctuation and also leads to an existence of negative correlated motions. Principal component analysis further justifies the same findings, whereby the apo enzyme exhibits a higher fluctuation compared to the bound complex. In addition, a stable 310 helix located at the binding site appears to be unstable in the presence of the ligand. Hence, it is possible that the binding of the ligand may have caused a rearrangement of the structure, leading to a change in the unwinding of 310 helix. Findings reported in this study further enhance the understanding of Mycobacterium tuberculosis -DnaN and also give a lead to the development of potent tuberculosis drugs.
Collapse
Affiliation(s)
- Kgothatso E Machaba
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Favorite N Cele
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Ndumiso N Mhlongo
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.
| |
Collapse
|
33
|
Hybrid Receptor-Bound/MM-GBSA-Per-residue Energy-Based Pharmacophore Modelling: Enhanced Approach for Identification of Selective LTA4H Inhibitors as Potential Anti-inflammatory Drugs. Cell Biochem Biophys 2016; 75:35-48. [PMID: 27914004 DOI: 10.1007/s12013-016-0772-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
Leukotriene A4 hydrolase has been identified as an enzyme with dual anti- and pro-inflammatory role, thus, the conversion of leukotriene to leukotriene B4 in the initiation stage of inflammation and the removal of the chemotactic Pro-Gly-Pro tripeptide. These findings make leukotriene A4 hydrolase an attractive drug target: suggesting an innovative approach towards the identification and design of novel class of compounds that can selectively inhibit leukotriene B4 synthesis while sparing the aminopeptidase activity. Previous inhibitors block the dual activity of the enzyme. Recently, a small lead molecule inhibitor denoted as ARM1 has been identified to block the hydrolase activity of leukotriene A4 hydrolase whilst sparing the aminopeptidase activity. In this study, a hybrid receptor-bound/MM-GBSA-per-residue energy based pharmacophore modeling approach was implemented to identify potential selective hydrolase inhibitors of leukotriene A4 hydrolase. In this approach, active site residues that favorably contributed to the binding of the bound conformation of ARM1 were derived from MD ensembles and MM/GBSA thermodynamic calculations. These residues were then mapped to key pharmacophore features of ARM1. The generated pharmacophore model was used to search the ZINC database for 3D structures that match the pharmacophore. Five new compounds have been identified and proposed as potential epoxide hydrolase selective inhibitors of leukotriene A4 hydrolase. Molecular docking and MM/GBSA analyses revealed that, these top five lead-like compounds ZINC00142747, ZINC94260794, ZINC01382396, ZINC02508448, and ZINC53994447 showed better binding affinities to the hydrolase active site pocket compared to ARM1. Per-residue energy decomposition analysis revealed that amino acid residues Phe314, Tyr378, Pro382, Trp311, Val367, and Ala377 are key residues critical in the selective inhibition of these hits. Information highlighted in this study may guide the the design the next generation of novel and potent epoxide hydrolase selective inhibitors of leukotriene A4 hydrolase.
Collapse
|
34
|
Ramharack P, Soliman MES. Zika virus drug targets: a missing link in drug design and discovery – a route map to fill the gap. RSC Adv 2016. [DOI: 10.1039/c6ra12142j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review depicts anin silicoroute map for ZIKV drug discovery, thus revealing novel potential inhibitors of viral replication.
Collapse
Affiliation(s)
- Pritika Ramharack
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahmoud E. S. Soliman
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| |
Collapse
|