1
|
Wu H, Hao J, Zhang S, Jiang Y, Zhu Y, Liu J, Davey K, Qiao SZ. Aqueous Zinc-Iodine Pouch Cells with Long Cycling Life and Low Self-Discharge. J Am Chem Soc 2024. [PMID: 38840442 DOI: 10.1021/jacs.4c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Aqueous zinc batteries are practically promising for large-scale energy storage because of cost-effectiveness and safety. However, application is limited because of an absence of economical electrolytes to stabilize both the cathode and anode. Here, we report a facile method for advanced zinc-iodine batteries via addition of a trace imidazolium-based additive to a cost-effective zinc sulfate electrolyte, which bonds with polyiodides to boost anti-self-discharge performance and cycling stability. Additive aggregation at the cathode improves the rate capacity by boosting the I2 conversion kinetics. Also, the introduced additive enhances the reversibility of the zinc anode by adjusting Zn2+ deposition. The zinc-iodine pouch cell, therefore, exhibits industrial-level performance evidenced by a ∼99.98% Coulombic efficiency under ca. 0.4C, a significantly low self-discharge rate with 11.7% capacity loss per month, a long lifespan with 88.3% of initial capacity after 5000 cycles at a 68.3% zinc depth-of-discharge, and fast-charging of ca. 6.7C at a high active-mass loading >15 mg cm-2. Highly significant is that this self-discharge surpasses commercial nickel-metal hydride batteries and is comparable with commercial lead-acid batteries, together with the fact that the lifespan is over 10 times greater than reported works, and the fast-charging performance is better than commercial lithium-ion batteries.
Collapse
Affiliation(s)
- Han Wu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Junnan Hao
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shaojian Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yunling Jiang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yilong Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jiahao Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
2
|
Yu K, Chen W, Deng D, Wu Q, Hao J. Advancements in Battery Monitoring: Harnessing Fiber Grating Sensors for Enhanced Performance and Reliability. SENSORS (BASEL, SWITZERLAND) 2024; 24:2057. [PMID: 38610274 PMCID: PMC11014410 DOI: 10.3390/s24072057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Batteries play a crucial role as energy storage devices across various industries. However, achieving high performance often comes at the cost of safety. Continuous monitoring is essential to ensure the safety and reliability of batteries. This paper investigates the advancements in battery monitoring technology, focusing on fiber Bragg gratings (FBGs). By examining the factors contributing to battery degradation and the principles of FBGs, this study discusses key aspects of FBG sensing, including mounting locations, monitoring targets, and their correlation with optical signals. While current FBG battery sensing can achieve high measurement accuracies for temperature (0.1 °C), strain (0.1 με), pressure (0.14 bar), and refractive index (6 × 10-5 RIU), with corresponding sensitivities of 40 pm/°C, 2.2 pm/με, -0.3 pm/bar, and -18 nm/RIU, respectively, accurately assessing battery health in real time remains a challenge. Traditional methods struggle to provide real-time and precise evaluations by analyzing the microstructure of battery materials or physical phenomena during chemical reactions. Therefore, by summarizing the current state of FBG battery sensing research, it is evident that monitoring battery material properties (e.g., refractive index and gas properties) through FBGs offers a promising solution for real-time and accurate battery health assessment. This paper also delves into the obstacles of battery monitoring, such as standardizing the FBG encapsulation process, decoupling multiple parameters, and controlling costs. Ultimately, the paper highlights the potential of FBG monitoring technology in driving advancements in battery development.
Collapse
Affiliation(s)
- Kaimin Yu
- School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China; (K.Y.); (D.D.); (Q.W.)
| | - Wen Chen
- School of Ocean Information Engineering, Jimei University, Xiamen 361021, China
| | - Dingrong Deng
- School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China; (K.Y.); (D.D.); (Q.W.)
| | - Qihui Wu
- School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China; (K.Y.); (D.D.); (Q.W.)
| | - Jianzhong Hao
- Institute for Infocomm Research (IR), Agency for Science, Technology and Research (A★STAR), Singapore 138632, Singapore
| |
Collapse
|
3
|
Chen B, Sui S, He F, He C, Cheng HM, Qiao SZ, Hu W, Zhao N. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem Soc Rev 2023; 52:7802-7847. [PMID: 37869994 DOI: 10.1039/d3cs00445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.
Collapse
Affiliation(s)
- Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| | - Simi Sui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| |
Collapse
|
4
|
Chen Z, Ghosh A, Lopez NSA. Optimisation of a standalone photovoltaic electric vehicle charging station using the loss of power supply probability. Heliyon 2023; 9:e20836. [PMID: 37867817 PMCID: PMC10585305 DOI: 10.1016/j.heliyon.2023.e20836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
The UK is planning to ban the sale of fuel vehicles entirely by 2035 and electric vehicles will be a potential alternative to fuel vehicles. The increase in electric vehicles will increase the charging demand. Standalone charging stations are a potential solution to alleviate the grid challenges of increased charging demand. In this work, the authors investigate a reliability analysis of a 2 MW standalone photovoltaic electric vehicle charging station (PVEVCS) using the loss of power supply probability(LPSP). The PVEVCS model consists of a PV system, a battery energy storage system (BESS) and a CS, using the climate data from Camborne, UK and classifying it into high and low irradiation sections. Next, four different charging demand profiles are selected to examine the models' LPSP. Later, the chosen charging demand profiles are optimised using various combinations of PV systems, BESS and CS. It is concluded that the different solar irradiation had a significant effect on the LPSP. Under the same combination, higher PV capacity has a more positive impact on reducing daytime LPSP, higher BESS capacity has a more significant effect on lowering nighttime LPSP and larger CS capacity has a more significant impact on declining hourly LPSP.
Collapse
Affiliation(s)
- Zhendong Chen
- Faculty of Environment, Science and Economy (ESE), Renewable Energy, Electric and Electronic Engineering, University of Exeter, Penryn TR10 9FE, UK
| | - Aritra Ghosh
- Faculty of Environment, Science and Economy (ESE), Renewable Energy, Electric and Electronic Engineering, University of Exeter, Penryn TR10 9FE, UK
| | - Neil Stephen A. Lopez
- Department of Mechanical Engineering, De La Salle University, Manila, 0922, Philippines
| |
Collapse
|
5
|
Porzio J, Wolfson D, Auffhammer M, Scown CD. Private and External Costs and Benefits of Replacing High-Emitting Peaker Plants with Batteries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4992-5002. [PMID: 36917208 PMCID: PMC10061926 DOI: 10.1021/acs.est.2c09319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Falling costs of lithium-ion (Li-ion) batteries have made them attractive for grid-scale energy storage applications. Energy storage will become increasingly important as intermittent renewable generation and more frequent extreme weather events put stress on the electricity grid. Environmental groups across the United States are advocating for the replacement of the highest-emitting power plants, which run only at times of peak demand, with Li-ion battery systems. We analyze the life-cycle cost, climate, and human health impacts of replacing the 19 highest-emitting peaker plants in California with Li-ion battery energy storage systems (BESS). Our results show that designing Li-ion BESS to replace peaker plants puts them at an economic disadvantage, even if facilities are only sized to meet 95% of the original plants' load events and are free to engage in arbitrage. However, five of 19 potential replacements do achieve a positive net present value after including monetized climate and human health impacts. These BESS cycle far less than typical front-of-the-meter batteries and rely on the frequency regulation market for most of their revenue. All projects offer net air pollution benefits but increase net greenhouse gas emissions due to electricity demand during charging and upstream emissions from battery manufacturing.
Collapse
Affiliation(s)
- Jason Porzio
- Energy
Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Energy
and Biosciences Institute, University of
California, Berkeley, Berkeley, California 94720, United States
- Civil
and Environmental Engineering Department, University of California, Berkeley, Berkeley, California 94720, United States
| | - Derek Wolfson
- Department
of Agricultural and Resource Economics, University of California, Berkeley, Berkeley, California 94720, United States
| | - Maximilian Auffhammer
- Energy
Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Agricultural and Resource Economics, University of California, Berkeley, Berkeley, California 94720, United States
- National
Bureau of Economic Research, Cambridge, Massachusetts 02138, United States
| | - Corinne D. Scown
- Energy
Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Energy
and Biosciences Institute, University of
California, Berkeley, Berkeley, California 94720, United States
- Life Cycle,
Economics and Agronomy Division, Joint BioEnergy
Institute, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720 United States
| |
Collapse
|
6
|
Thakur RC, Sharma A, Sharma R, Kaur H. A Comparative Analysis of Volumetric, Viscometric and Conductometric Properties of Triethylmethylammonium Tetrafluoroborate (TEMABF4) and Tetraethylammonium Tetrafluoroborate (TEABF4) in Pure Propylene Carbonate (PC) and Binary Aqueous Propylene Carbonate Solvents. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Fan X, Zhong C, Liu J, Ding J, Deng Y, Han X, Zhang L, Hu W, Wilkinson DP, Zhang J. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chem Rev 2022; 122:17155-17239. [PMID: 36239919 DOI: 10.1021/acs.chemrev.2c00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ever-increasing demand for flexible and portable electronics has stimulated research and development in building advanced electrochemical energy devices which are lightweight, ultrathin, small in size, bendable, foldable, knittable, wearable, and/or stretchable. In such flexible and portable devices, semi-solid/solid electrolytes besides anodes and cathodes are the necessary components determining the energy/power performances. By serving as the ion transport channels, such semi-solid/solid electrolytes may be beneficial to resolving the issues of leakage, electrode corrosion, and metal electrode dendrite growth. In this paper, the fundamentals of semi-solid/solid electrolytes (e.g., chemical composition, ionic conductivity, electrochemical window, mechanical strength, thermal stability, and other attractive features), the electrode-electrolyte interfacial properties, and their relationships with the performance of various energy devices (e.g., supercapacitors, secondary ion batteries, metal-sulfur batteries, and metal-air batteries) are comprehensively reviewed in terms of materials synthesis and/or characterization, functional mechanisms, and device assembling for performance validation. The most recent advancements in improving the performance of electrochemical energy devices are summarized with focuses on analyzing the existing technical challenges (e.g., solid electrolyte interphase formation, metal electrode dendrite growth, polysulfide shuttle issue, electrolyte instability in half-open battery structure) and the strategies for overcoming these challenges through modification of semi-solid/solid electrolyte materials. Several possible directions for future research and development are proposed for going beyond existing technological bottlenecks and achieving desirable flexible and portable electrochemical energy devices to fulfill their practical applications. It is expected that this review may provide the readers with a comprehensive cross-technology understanding of the semi-solid/solid electrolytes for facilitating their current and future researches on the flexible and portable electrochemical energy devices.
Collapse
Affiliation(s)
- Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jia Ding
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Lei Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, British ColumbiaV6T 1W5, Canada
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - David P Wilkinson
- Department of Chemical and Biochemical Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1W5, Canada
| | - Jiujun Zhang
- Energy, Mining & Environment, National Research Council of Canada, Vancouver, British ColumbiaV6T 1W5, Canada
- Department of Chemical and Biochemical Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1W5, Canada
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, China
| |
Collapse
|
8
|
Páez Jerez AL, Mori MF, Flexer V, Tesio AY. Water Kefir Grains-Microbial Biomass Source for Carbonaceous Materials Used as Sulfur-Host Cathode in Li-S Batteries. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248856. [PMID: 36556663 PMCID: PMC9785453 DOI: 10.3390/ma15248856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 06/12/2023]
Abstract
Nowadays, the use of biomass to produce cathode materials for lithium-sulfur (Li-S) batteries is an excellent alternative due to its numerous advantages. Generally, biomass-derived materials are abundant, and their production processes are environmentally friendly, inexpensive, safe, and easily scalable. Herein, a novel biomass-derived material was used as the cathode material in Li-S batteries. The synthesis of the new carbonaceous materials by simple carbonization and washing of water kefir grains, i.e., a mixed culture of micro-organisms, is reported. The carbonaceous materials were characterized morphologically, texturally and chemically by using scanning electron microscopy, N2 adsorption-desorption, thermogravimetric analysis, X-ray diffraction, and both Raman and X-ray photoelectron spectroscopy. After sulfur infiltration using the melt diffusion method, a high sulfur content of ~70% was achieved. Results demonstrated that the cell fitted with a cathode prepared following a washing step with distilled water after carbonization of the water kefir grains only, i.e., not subjected to any chemical activation, achieved good electrochemical performance at 0.1 C. The cell reached capacity values of 1019 and 500 mAh g-1 sulfur for the first cycle and after 200 cycles, respectively, at a high mass loading of 2.5 mgS cm-2. Finally, a mass loading study was carried out.
Collapse
Affiliation(s)
- Ana L. Páez Jerez
- CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, Av. Martijena S/N, Palpalá 4612, Argentina
| | - M. Fernanda Mori
- Instituto de Investigaciones en Catálisis y Petroquímica, CONICET, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe S3000, Argentina
| | - Victoria Flexer
- CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, Av. Martijena S/N, Palpalá 4612, Argentina
| | - Alvaro Y. Tesio
- CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, Av. Martijena S/N, Palpalá 4612, Argentina
| |
Collapse
|
9
|
Jose Saucedo-Dorantes J, Alejandro Elvira-Ortiz D, Gustavo Manriquez-Padilla C, Yosimar Jaen-Cuellar A, Perez-Cruz A. New Trends and Challenges in Condition Monitoring Strategies for Assessing the State-of-charge in Batteries. ARTIF INTELL 2022. [DOI: 10.5772/intechopen.109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Condition monitoring strategies play an important key role to ensure the proper operation and/or working conditions in electrical, mechanical, and electronic systems; in this sense, condition monitoring methods are commonly implemented aiming to avoid undesired breakdowns and are also implemented to extend the useful life of the evaluated elements as much as possible. Therefore, the objective of this work is to report the new trends and challenges related to condition monitoring strategies for assessing the state-of-charge in batteries under the Industry 4.0 framework. Specifically, this work is focused on the analysis of those signal processing and artificial intelligence techniques that are implemented in experimental and model-based assessing approaches. With this work, important aspects may be highlighted as well as the conclusions and prospects may be included for the development trend of condition monitoring strategies to assess and ensure the state-of-charge in batteries.
Collapse
|
10
|
Treatment of Wastewater Effluent with Heavy Metal Pollution Using a Nano Ecological Recycled Concrete. WATER 2022. [DOI: 10.3390/w14152334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Water pollution exacerbates water stress and poses a great threat to the ecosystem and human health. Construction and demolition waste (CDW) due to rapid urbanization also causes heavy environmental burdens. A major proportion of CDW can be effectively converted into recycled aggregates, which can be reused in many fields, including environment remediation. In this study, a nano ecological recycled concrete (nano-ERC) was produced with recycled aggregates and copper oxide nanoparticles (nCuO) to remove heavy metals (HMs) from a simulated wastewater effluent (SWE) for further treatment. Recycled aggregates were obtained from CDW, thereby simultaneously reducing the treatment cost of the SWE and the environmental burden of solid waste. The adsorption capacity of nano-ERC was presumed to be significantly enhanced by the addition of nCuO due to the unique large surface-to-volume ratio and other properties of NPs. The SWE containing five common HMs, arsenic (As), chromium (Cr), cadmium (Cd), manganese (Mn) and lead (Pb), was filtered through a control ERC and nano-ERCs, and the concentrations of these HMs were determined with ICP-MS in the SWE and the filtrates. Results showed the nano-ERCs could significantly remove these HMs from the SWE compared to the control ERC, due to the enhanced adsorption capacity by nCuO. The relative weighted average removal percentage (RWAR%) was in the range of 53.05–71.83% for nano-ERCs and 39.27–61.65% for control ERC. Except for Cr, concentrations of these HMs in the treated wastewater effluent met the requirements for crop irrigation or scenic water supplementation; the Cr may be removed by multiple filtrations. In conclusion, nano-ERC can serve as a cost-effective approach for the further treatment of wastewater effluent and may be applied more widely in wastewater treatment to help relieve water stress.
Collapse
|
11
|
Singh JP, Paidi AK, Chae KH, Lee S, Ahn D. Synchrotron radiation based X-ray techniques for analysis of cathodes in Li rechargeable batteries. RSC Adv 2022; 12:20360-20378. [PMID: 35919598 PMCID: PMC9277717 DOI: 10.1039/d2ra01250b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/15/2022] [Indexed: 01/21/2023] Open
Abstract
Li-ion rechargeable batteries are promising systems for large-scale energy storage solutions. Understanding the electrochemical process in the cathodes of these batteries using suitable techniques is one of the crucial steps for developing them as next-generation energy storage devices. Due to the broad energy range, synchrotron X-ray techniques provide a better option for characterizing the cathodes compared to the conventional laboratory-scale characterization instruments. This work gives an overview of various synchrotron radiation techniques for analyzing cathodes of Li-rechargeable batteries by depicting instrumental details of X-ray diffraction, X-ray absorption spectroscopy, X-ray imaging, and X-ray near-edge fine structure-imaging. Analysis and simulation procedures to get appropriate information of structural order, local electronic/atomic structure, chemical phase mapping and pores in cathodes are discussed by taking examples of various cathode materials. Applications of these synchrotron techniques are also explored to investigate oxidation state, metal-oxygen hybridization, quantitative local atomic structure, Ni oxidation phase and pore distribution in Ni-rich layered oxide cathodes.
Collapse
Affiliation(s)
- Jitendra Pal Singh
- Pohang Accelerator Laboratory, Pohang University of Science and Technology Pohang-37673 Republic of Korea
- Department of Physics, Manav Rachna University Faridabad-121004 Haryana India
| | - Anil Kumar Paidi
- Pohang Accelerator Laboratory, Pohang University of Science and Technology Pohang-37673 Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology Seoul-02792 Republic of Korea
| | - Sangsul Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology Pohang-37673 Republic of Korea
- Xavisoptics Pohang-37673 Republic of Korea
| | - Docheon Ahn
- Pohang Accelerator Laboratory, Pohang University of Science and Technology Pohang-37673 Republic of Korea
| |
Collapse
|
12
|
A Comparative Review of Lead-Acid, Lithium-Ion and Ultra-Capacitor Technologies and Their Degradation Mechanisms. ENERGIES 2022. [DOI: 10.3390/en15134930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
As renewable energy sources, such as solar systems, are becoming more popular, the focus is moving into more effective utilization of these energy sources and harvesting more energy for intermittency reduction in this renewable source. This is opening up a market for methods of energy storage and increasing interest in batteries, as they are, as it stands, the foremost energy storage device available to suit a wide range of requirements. This interest has brought to light the downfalls of batteries and resultantly made room for the investigation of ultra-capacitors as a solution to these downfalls. One of these downfalls is related to the decrease in capacity, and temperamentality thereof, of a battery when not used precisely as stated by the supplier. The usable capacity is reliant on the complete discharge/charge cycles the battery can undergo before a 20% degradation in its specified capacity is observed. This article aims to investigate what causes this degradation, what aggravates it and how the degradation affects the usage of the battery. This investigation will lead to the identification of a gap in which this degradation can be decreased, prolonging the usage and increasing the feasibility of the energy storage devices.
Collapse
|
13
|
Recent Advances on CO2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H2. ENERGIES 2022. [DOI: 10.3390/en15134790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The increasing trend in global energy demand has led to an extensive use of fossil fuels and subsequently in a marked increase in atmospheric CO2 content, which is the main culprit for the greenhouse effect. In order to successfully reverse this trend, many schemes for CO2 mitigation have been proposed, taking into consideration that large-scale decarbonization is still infeasible. At the same time, the projected increase in the share of variable renewables in the future energy mix will necessitate large-scale curtailment of excess energy. Collectively, the above crucial problems can be addressed by the general scheme of CO2 hydrogenation. This refers to the conversion of both captured CO2 and green H2 produced by RES-powered water electrolysis for the production of added-value chemicals and fuels, which are a great alternative to CO2 sequestration and the use of green H2 as a standalone fuel. Indeed, direct utilization of both CO2 and H2 via CO2 hydrogenation offers, on the one hand, the advantage of CO2 valorization instead of its permanent storage, and the direct transformation of otherwise curtailed excess electricity to stable and reliable carriers such as methane and methanol on the other, thereby bypassing the inherent complexities associated with the transformation towards a H2-based economy. In light of the above, herein an overview of the two main CO2 abatement schemes, Carbon Capture and Storage (CCS) and Carbon Capture and Utilization (CCU), is firstly presented, focusing on the route of CO2 hydrogenation by green electrolytic hydrogen. Next, the integration of large-scale RES-based H2 production with CO2 capture units on-site industrial point sources for the production of added-value chemicals and energy carriers is contextualized and highlighted. In this regard, a specific reference is made to the so-called Power-to-X schemes, exemplified by the production of synthetic natural gas via the Power-to-Gas route. Lastly, several outlooks towards the future of CO2 hydrogenation are presented.
Collapse
|
14
|
Abstract
To address the climate emergency, France is committed to achieving carbon neutrality by 2050. It plans to significantly increase the contribution of renewable energy in its energy mix. The share of renewable energy in its electricity production, which amounts to 25.5% in 2020, should reach at least 40% in 2030. This growth poses several new challenges that require policy makers and regulators to act on the technological changes and expanding need for flexibility in power systems. This document presents the main strategies and projects developed in France as well as various recommendations to accompany and support its energy transition policy.
Collapse
|
15
|
Bai X, Cao D, Jiang Z, Zhang H. Exploration of hydrated lithium manganese oxide with a nanoribbon structure as cathodes in aqueous lithium ion and magnesium ion batteries. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01222c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous lithium/magnesium ion battery was assembled with Li0.21MnO2·H2O (LMO) as the cathode and VO2 as the anode.
Collapse
Affiliation(s)
- Xue Bai
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P.R. China
| | - Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| | - Hongyu Zhang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| |
Collapse
|
16
|
Abstract
Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications. This work is a comprehensive review of the recent progress made in metal-air batteries MABs. It covers the theoretical considerations and mechanisms of MABs, electrochemical performance, and the progress made in the development of different structures of MABs. The operational concepts and recent developments in MABs are thoroughly discussed, with a particular focus on innovative materials design and cell structures. The classical research on traditional MABs was chosen and contrasted with metal–air flow systems, demonstrating the merits associated with the latter in terms of achieving higher energy density and efficiency, along with stability. Furthermore, the recent applications of MABs were discussed. Finally, a broad overview of challenges/opportunities and potential directions for commercializing this technology is carefully discussed. The primary focus of this investigation is to present a concise summary and to establish future directions in the development of MABs from traditional static to advanced flow technologies. A systematic analysis of this subject from a material and chemistry standpoint is presented as well.
Collapse
|
17
|
Wang G, Jiao Q, Zhang Z, Zhao Y, Lin C, Zhang X, Ma H, Dai S, Xu T. Improved electrochemical behavior of Li–S battery with functional WS2@PB–PPy–modified separator. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
18
|
Abstract
Transportation is the second-largest sector contributing to greenhouse gas emissions due to CO2 gas generation from the combustion of fossil fuels. Electric vehicles (EVs) are believed to be a great solution to overcome this issue. EVs can reduce CO2 emissions because the vehicles use an electric motor as a propeller instead of an internal combustion engine. Combined with sustainable energy resources, EVs may become zero-emission transportation. This paper presents an overview of the EV drive train types, including their architecture with the benefits and drawbacks of each type. The aim is to summarize the recent progress of EV technology that always continues to be updated. Furthermore, a comparative investigation on energy density and efficiency, specific energy and power, cost, and application is carried out for batteries as the main energy storage. This discussion provides an understanding of the current development of battery technology, especially the batteries used in EVs. Moreover, the electric motor efficiency, power density, fault tolerance, reliability, and cost are also presented, including the most effective electric motor to use in EVs. The challenges and opportunities of EV deployment in the future are then discussed comprehensively. The government regulation for EVs is still a major non-technical challenge, whereas the charging time and battery performance are the challenges for the technical aspect.
Collapse
|
19
|
Ramasubramanian B, Reddy MV, Zaghib K, Armand M, Ramakrishna S. Growth Mechanism of Micro/Nano Metal Dendrites and Cumulative Strategies for Countering Its Impacts in Metal Ion Batteries: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2476. [PMID: 34684917 PMCID: PMC8538702 DOI: 10.3390/nano11102476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Metal-ion batteries are capable of delivering high energy density with a longer lifespan. However, they are subject to several issues limiting their utilization. One critical impediment is the budding and extension of solid protuberances on the anodic surface, which hinders the cell functionalities. These protuberances expand continuously during the cyclic processes, extending through the separator sheath and leading to electrical shorting. The progression of a protrusion relies on a number of in situ and ex situ factors that can be evaluated theoretically through modeling or via laboratory experimentation. However, it is essential to identify the dynamics and mechanism of protrusion outgrowth. This review article explores recent advances in alleviating metal dendrites in battery systems, specifically alkali metals. In detail, we address the challenges associated with battery breakdown, including the underlying mechanism of dendrite generation and swelling. We discuss the feasible solutions to mitigate the dendrites, as well as their pros and cons, highlighting future research directions. It is of great importance to analyze dendrite suppression within a pragmatic framework with synergy in order to discover a unique solution to ensure the viability of present (Li) and future-generation batteries (Na and K) for commercial use.
Collapse
Affiliation(s)
| | - M. V. Reddy
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Institute of Research Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada
| | - Karim Zaghib
- Department of Mining and Materials Engineering, McGill University, Wong Building, 3610 University Street, Montreal, QC H3A OC5, Canada;
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies, Basque Research and Technology Alliance, Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
20
|
General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13169301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Distributed generators (DGs) have emerged as an advanced technology for satisfying growing energy demands and significantly mitigating the pollution caused by emissions. Microgrids (MGs) are attractive energy systems because they offer the reliable integration of DGs into the utility grid. An MG-based approach uses a self-sustained system that can operate in a grid-tied mode under normal conditions, as well as in an islanded mode when grid disturbance occurs. Islanding detection is essential; islanding may injure utility operators and disturb electricity generation and supply because of unsynchronized re-closure. In MGs, an energy management system (EMS) is essential for the optimal use of DGs in intelligent, sustainable, reliable, and integrated ways. In this comprehensive review, the classification of different operating modes of MGs, islanding detection techniques (IDTs), and EMSs are presented and discussed. This review shows that the existing IDTs and EMSs can be used when operating MGs. However, further development of IDTs and EMSs is still required to achieve more reliable operation and cost-effective energy management of MGs in the future. This review also highlights various MG challenges and recommendations for the operation of MGs, which will enhance the cost, efficiency, and reliability of MG operation for next-generation smart grid applications.
Collapse
|
21
|
The Trade-Offs in the Design of Reversible Zinc Anodes for Secondary Alkaline Batteries. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00107-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Chen S, Zhang J, Wang Z, Nie L, Hu X, Yu Y, Liu W. Electrocatalytic NiCo 2O 4 Nanofiber Arrays on Carbon Cloth for Flexible and High-Loading Lithium-Sulfur Batteries. NANO LETTERS 2021; 21:5285-5292. [PMID: 34076444 DOI: 10.1021/acs.nanolett.1c01422] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur batteries have ultrahigh theoretical energy densities, which makes them one of the most promising next-generation energy storage systems. However, it is still difficult to achieve large-scale commercialization because of the severe lithium polysulfide (LiPS) shuttle effect and low sulfur loading. Here, we report a flexible lithium-sulfur battery of a high sulfur loading with the assistance of NiCo2O4 nanofiber array grown carbon cloth. The NiCo2O4 nanofibers are ideal electrocatalysts for accelerating LiPS conversion kinetics through strong chemical interactions. Therefore, the composite cathode delivers a high specific capacity of 1280 mAh g-1 at 0.2 C with a sulfur loading of 3.5 mg cm-2, and it can maintain a high specific capacity of 660 mAh g-1 after 200 cycles, showing a good cycle stability. The "layer-by-layer" stacking strategy enables the Li-S battery with a high S loading of ∼9.0 mg cm-2 to deliver a high areal capacity of 8.9 mAh cm-2.
Collapse
Affiliation(s)
- Shaojie Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingxuan Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zeyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lu Nie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiangchen Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
23
|
Salgado RM, Danzi F, Oliveira JE, El-Azab A, Camanho PP, Braga MH. The Latest Trends in Electric Vehicles Batteries. Molecules 2021; 26:3188. [PMID: 34073571 PMCID: PMC8198776 DOI: 10.3390/molecules26113188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Global energy demand is rapidly increasing due to population and economic growth, especially in large emerging countries, which will account for 90% of energy demand growth to 2035. Electric vehicles (EVs) play a paramount role in the electrification revolution towards the reduction of the carbon footprint. Here, we review all the major trends in Li-ion batteries technologies used in EVs. We conclude that only five types of cathodes are used and that most of the EV companies use Nickel Manganese Cobalt oxide (NMC). Most of the Li-ion batteries anodes are graphite-based. Positive and negative electrodes are reviewed in detail as well as future trends such as the effort to reduce the Cobalt content. The electrolyte is a liquid/gel flammable solvent usually containing a LiFeP6 salt. The electrolyte makes the battery and battery pack unsafe, which drives the research and development to replace the flammable liquid by a solid electrolyte.
Collapse
Affiliation(s)
- Rui Martim Salgado
- DEMec, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Federico Danzi
- LAETA, Engineering Faculty, Engineering Physics Department, University of Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (F.D.); (J.E.O.)
- INEGI, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal
| | - Joana Espain Oliveira
- LAETA, Engineering Faculty, Engineering Physics Department, University of Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (F.D.); (J.E.O.)
- INEGI, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal
| | - Anter El-Azab
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA;
| | - Pedro Ponces Camanho
- DEMec, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- INEGI, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal
| | - Maria Helena Braga
- LAETA, Engineering Faculty, Engineering Physics Department, University of Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (F.D.); (J.E.O.)
- INEGI, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal
| |
Collapse
|
24
|
Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing. ENERGIES 2021. [DOI: 10.3390/en14113093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The continuous development of energy storage (ES) technologies and their wider utilization in modern power systems are becoming more and more visible. ES is used for a variety of applications ranging from price arbitrage, voltage and frequency regulation, reserves provision, black-starting and renewable energy sources (RESs), supporting load-generation balancing. The cost of ES technologies remains high; nevertheless, future decreases are expected. As the most profitable and technically effective solutions are continuously sought, this article presents the results of the analyses which through the created unit commitment and dispatch optimization model examines the use of ES as support for load-generation balancing. The performed simulations based on various scenarios show a possibility to reduce the number of starting-up centrally dispatched generating units (CDGUs) required to satisfy the electricity demand, which results in the facilitation of load-generation balancing for transmission system operators (TSOs). The barriers that should be encountered to improving the proposed use of ES were also identified. The presented solution may be suitable for further development of renewables and, in light of strict climate and energy policies, may lead to lower utilization of large-scale power generating units required to maintain proper operation of power systems.
Collapse
|
25
|
Yi S, Wang L, Zhang X, Li C, Liu W, Wang K, Sun X, Xu Y, Yang Z, Cao Y, Sun J, Ma Y. Cationic intermediates assisted self-assembly two-dimensional Ti 3C 2T x/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci Bull (Beijing) 2021; 66:914-924. [PMID: 36654240 DOI: 10.1016/j.scib.2020.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 12/06/2020] [Indexed: 01/20/2023]
Abstract
Two-dimensional (2D) material MXenes have been intensively concerned in energy-storage field due to these unique properties of metallic-like conductivity, good hydrophilicity and high volumetric capacity. However, the self-restocking of ultra-thin 2D materials seriously hinders these performances, which significantly inhibits the full exploitation of MXenes in the field of energy storage. To solve this issue, a strategy to prepare delaminated Ti3C2Tx (MXene) nanoflakes/reduced graphene oxide (rGO) composites is proposed using the electrostatic self-assembly between positively charged Ti3C2Tx with tetrabutylammonium ion (TBA+) modification and negatively charged graphene. The nanoflakes of Ti3C2Tx/rGO are well dispersed and arranged in a face-to-face structure to effectively alleviate the self-restacking and provide more electroactive sites for accessible of electrolyte ions. The prepared delaminated Ti3C2Tx/rGO anode shows a high reversible capacity up to 1394 mAh g-1 at a current density of 50 mA g-1. Moreover, a lithium-ion capacitor (LIC) was assembled with delaminated Ti3C2Tx/rGO anode and activated carbon (AC) cathode which can exhibit a specific capacity of 70.7 F g-1 at a current density of 0.1 A g-1 and deliver an ultrahigh energy density of 114 Wh kg-1 at a relatively high power density of 3125 W kg-1. These good electrochemical performances demonstrate the potential of delaminated Ti3C2Tx/rGO as an anode material for lithium-ion capacitors.
Collapse
Affiliation(s)
- Sha Yi
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Zhang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China.
| | - Chen Li
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Liu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianzhong Sun
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanan Xu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanxu Yang
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001, China
| | - Yu Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yanwei Ma
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
26
|
Wei R, Chen S, Gao T, Liu W. Challenges, fabrications and horizons of oxide solid electrolytes for solid‐state lithium batteries. NANO SELECT 2021. [DOI: 10.1002/nano.202100110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ran Wei
- School of Physical Science and Technology ShanghaiTech University Shanghai China
| | - Shaojie Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai China
| | - Tianyi Gao
- School of Physical Science and Technology ShanghaiTech University Shanghai China
| | - Wei Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai China
| |
Collapse
|
27
|
Optimal Siting and Sizing of Battery Energy Storage: Case Study Seventh Feeder at Nakhon Phanom Substation in Thailand. ENERGIES 2021. [DOI: 10.3390/en14051458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The optimal siting and sizing of battery energy storage system (BESS) is proposed in this study to improve the performance of the seventh feeder at Nakhon Phanom substation, which is a distribution network with the connected photovoltaic (PV) in Thailand. The considered objective function aims to improve the distribution network performance by minimizing costs incurred in the distribution network within a day, comprising of voltage regulation cost, real power loss cost, and peak demand cost. Particle swarm optimization (PSO) is applied to solve the optimization problem. It is found that the optimal siting and sizing of the BESS installation could improve the performance of the distribution network in terms of cost minimization, voltage profile, real power loss, and peak demand. The results are investigated from three cases where case 1 is without PV and BESS installation, case 2 is with only PV installation, and case 3 is with PV and BESS installations. The comparison results show that case 3 provided the best costs, voltage deviation, real power loss, and peak demand compared to those of cases 1 and 2; system costs provided by cases 1, 2 and 3 are USD 4598, USD 5418, and USD 1467, respectively.
Collapse
|
28
|
Xu J, Dou S, Wang Y, Yuan Q, Deng Y, Chen Y. Development of Metal and Metal-Based Composites Anode Materials for Potassium-Ion Batteries. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s12209-021-00281-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies. SUSTAINABILITY 2020. [DOI: 10.3390/su122410651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of photovoltaic (PV) technology is now a reality. The inclusion of lithium-ion batteries in grid-connected PV systems is growing, and the sharp drop in prices for these batteries will enable their use in applications such as PV water pumping schemes (PVWPS). A technical solution for the monitoring and tracking of PV systems is shown in this work, and a novel quasi-real-time monitoring system for a PVWPS with a Li-ion battery is proposed in which open-source Internet of Things (IoT) tools are used. The purpose of the monitoring system is to provide a useful tool for the operation, management, and development of these facilities. The experimental facility used to test the monitoring system includes a 2.4 kWpk photovoltaic field, a 3.6 kVA hybrid inverter, a 3.3 kWh/3 kW lithium-ion battery, a 2.2 kVA variable speed driver, and a 1.5 kW submersible pump. To address this study, data acquisition is performed using commercial hardware solutions that communicate using a Modbus-RTU protocol over an RS485 bus and open software. A Raspberry Pi is used in the data gateway stage, including a PM2 free open-source process manager to increase the robustness and reliability of the monitoring system. Data storage is performed in a server using InfluxDB for open-source database storage and Grafana as open-source data visualization software. Data processing is complemented with a configurable data exporter program that enables users to select and copy the data stored in InfluxDB. Excel or .csv files can be created that include the desired variables with a defined time interval and with the desired data granularity. Finally, the initial results of the monitoring system are presented, and the possible uses of the acquired data and potential users of the system are identified and described.
Collapse
|
30
|
The Synergistic Effects of Alloying on the Performance and Stability of Co3Mo and Co7Mo6 for the Electrocatalytic Hydrogen Evolution Reaction. HYDROGEN 2020. [DOI: 10.3390/hydrogen1010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metal alloys have become a ubiquitous choice as catalysts for electrochemical hydrogen evolution in alkaline media. However, scarce and expensive Pt remains the key electrocatalyst in acidic electrolytes, making the search for earth-abundant and cheaper alternatives important. Herein, we present a facile and efficient synthetic route towards polycrystalline Co3Mo and Co7Mo6 alloys. The single-phased nature of the alloys is confirmed by X-ray diffraction and electron microscopy. When electrochemically tested, they achieve competitively low overpotentials of 115 mV (Co3Mo) and 160 mV (Co7Mo6) at 10 mA cm−2 in 0.5 M H2SO4, and 120 mV (Co3Mo) and 160 mV (Co7Mo6) at 10 mA cm−2 in 1 M KOH. Both alloys outperform Co and Mo metals, which showed significantly higher overpotentials and lower current densities when tested under identical conditions, confirming the synergistic effect of the alloying. However, the low overpotential in Co3Mo comes at the price of stability. It rapidly becomes inactive when tested under applied potential bias. On the other hand, Co7Mo6 retains the current density over time without evidence of current decay. The findings demonstrate that even in free-standing form and without nanostructuring, polycrystalline bimetallic electrocatalysts could challenge the dominance of Pt in acidic media if ways for improving their stability were found.
Collapse
|
31
|
Ash B, Nalajala VS, Popuri AK, Subbaiah T, Minakshi M. Perspectives on Nickel Hydroxide Electrodes Suitable for Rechargeable Batteries: Electrolytic vs. Chemical Synthesis Routes. NANOMATERIALS 2020; 10:nano10091878. [PMID: 32961689 PMCID: PMC7559403 DOI: 10.3390/nano10091878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
A significant amount of work on electrochemical energy storage focuses mainly on current lithium-ion systems with the key markets being portable and transportation applications. There is a great demand for storing higher capacity (mAh/g) and energy density (Wh/kg) of the electrode material for electronic and vehicle applications. However, for stationary applications, where weight is not as critical, nickel-metal hydride (Mi-MH) technologies can be considered with tolerance to deep discharge conditions. Nickel hydroxide has gained importance as it is used as the positive electrode in nickel-metal hydride and other rechargeable batteries such as Ni-Fe and Ni-Cd systems. Nickel hydroxide is manufactured industrially by chemical methods under controlled conditions. However, the electrochemical route is relatively better than the chemical counterpart. In the electrochemical route, a well-regulated OH− is generated at the cathode forming nickel hydroxide (Ni(OH)2) through controlling and optimizing the current density. It produces nickel hydroxide of better purity with an appropriate particle size, well-oriented morphology, structure, et cetera, and this approach is found to be environmentally friendly. The structures of the nickel hydroxide and its production technologies are presented. The mechanisms of product formation in both chemical and electrochemical preparation of nickel hydroxide have been presented along with the feasibility of producing pure nickel hydroxide in this review. An advanced Ni(OH)2-polymer embedded electrode has been reported in the literature but may not be suitable for scalable electrochemical methods. To the best of our knowledge, no such insights on the Ni(OH)2 synthesis route for battery applications has been presented in the literature.
Collapse
Affiliation(s)
- Baladev Ash
- Department of Chemistry, M.P.C. (Autonomous) College, Baripada, Odisha 757003, India;
| | - Venkata Swamy Nalajala
- Department of Chemical Engineering, VFSTR (Vignan’s Foundation for Science, Technology and Research), Vadlamudi 522 213, India; (V.S.N.); (A.K.P.)
| | - Ashok Kumar Popuri
- Department of Chemical Engineering, VFSTR (Vignan’s Foundation for Science, Technology and Research), Vadlamudi 522 213, India; (V.S.N.); (A.K.P.)
| | - Tondepu Subbaiah
- Department of Chemical Engineering, VFSTR (Vignan’s Foundation for Science, Technology and Research), Vadlamudi 522 213, India; (V.S.N.); (A.K.P.)
- Correspondence: (T.S.); (M.M.)
| | - Manickam Minakshi
- College of Science, Health, Engineering & Education, Murdoch University, Perth, WA 6150, Australia
- Correspondence: (T.S.); (M.M.)
| |
Collapse
|
32
|
Abstract
Stationary battery systems are becoming increasingly common worldwide. Energy storage is a key technology in facilitating renewable energy market penetration and battery energy storage systems have seen considerable investment for this purpose. Large battery installations such as energy storage systems and uninterruptible power supplies can generate substantial heat in operation, and while this is well understood, the thermal management systems that currently exist have not kept pace with stationary battery installation development. Stationary batteries operating at elevated temperatures experience a range of deleterious effects and, in some cases, serious safety concerns can arise. Optimal thermal management prioritizes safety and balances costs between the cooling system and battery degradation due to thermal effects. Electric vehicle battery thermal management has undergone significant development in the past decade while stationary battery thermal management has remained mostly stagnant, relying on the use of active and passive air cooling. Despite being the default method for thermal management, there is an absence of justifying research or comparative reviews. This literature review seeks to define the role of stationary battery systems in modern power applications, the effects that heat generation and temperature have on the performance of these systems, thermal management methods, and future areas of study.
Collapse
|
33
|
Chen T, Jin Y, Lv H, Yang A, Liu M, Chen B, Xie Y, Chen Q. Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s12209-020-00236-w] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AbstractIn the electrical energy transformation process, the grid-level energy storage system plays an essential role in balancing power generation and utilization. Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response, modularization, and flexible installation. Among several battery technologies, lithium-ion batteries (LIBs) exhibit high energy efficiency, long cycle life, and relatively high energy density. In this perspective, the properties of LIBs, including their operation mechanism, battery design and construction, and advantages and disadvantages, have been analyzed in detail. Moreover, the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services: (1) frequency regulation; (2) peak shifting; (3) integration with renewable energy sources; and (4) power management. In addition, the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.
Collapse
|